Immittance Based Stability Analysis of Power Electronics Based Systems

[DRAFT VERSION ONLY. NOT FOR RELEASE]

S.D. Sudhoff

Purdue University
West Lafayette, IN
USA

A monograph supported by grant N00014-02-1-0623, “National Naval Responsibility for Naval Engineers: Education and Research for the Electric Naval Engineer”

Copyright 2004.

All rights reserved.
Contents

Chapter 1 – Introduction 4
 1.1 The Stability Problem 4
 1.2 Modeling Requirements 6
 1.3 Model Linearization 7
 1.4 Immittance from Linearized Models 8
 1.5 Closing Remarks 9
 1.6 Acknowledgments 9
 1.7 References 9

Chapter 2 – Immittance Based Stability Analysis 10
 2.1 Contour Evaluations and the Cauchy Principal 10
 2.2 The Nyquist Stability Criterion 12
 2.3 Definition of a Source and Load 16
 2.4 The Nyquist Immittance Criterion 18
 2.5 Stability Criteria 19
 2.6 Comparison of Stability Criteria 21
 2.7 Construction of Design Specifications for Arbitrary Stability Criterion 23
 2.8 Closing Remarks 26
 2.9 Acknowledgements 26
 3.0 References 26

Chapter 3 – Generalized Immittance Based Stability Analysis 27
 3.1 Generalized Immittance 27
 3.2 Generalized Nyquist evaluation 30
 3.3 Generalized Middlebrook 32
 3.4 Generalized Gain and Phase Margin Criteria 33
 3.5 Generalized ESAC Criteria 35
 3.6 Case Study 36
 3.7 Closing Remarks 39
 3.8 Acknowledgements 39
 3.9 References 39

Chapter 4 – System Analysis 40
 4.1 Classification of Single Port power converters 40
 4.2 Classification of Multi-Port power converters 42
 4.3 Network Reductions 45
 4.4 Case Study Part 1: System Description 53
 4.5 Case Study Part 2: System Analysis 57
 4.6 Closing Remarks 63
 4.7 Acknowledgements 63
 4.8 References 64