
1

Lecture 5:
GOSET

2

What is GOSET?

GOSET stands for Genetic Optimization
System Engineering Tool

GOSET is a MATLAB based genetic
algorithm toolbox for solving optimization
problems

3

GOSET Features

Wide range of choices for genetic operators
Single-objective optimization
Multi-objective optimization
Modular Structure
GUI Interface
GOSET DLL

4

Algorithm Execution
START

END

STOP?

Initialization

Fitness evaluation

Mating & Crossover
&Death

Mutation

Report PlotRandom searchElitism

Diversity control

Migration

SelectionScaling

5

Data Structure

6

Data Structures
To conveniently process the information used in
GOSET, the following data structures are employed

6GA Statistics GAS

76GA ParametersGAP
15PopulationP

No. of
fieldsContentsData

structure

7

Population Data Structure (P)
P.blckeval Block evaluation flag
P.fithandle Handle to the fitness function
P.size The number of individuals in the

population
P.nobj Number of objectives
P.mfit Fitness function values
P.fit Aggregated fitness function values
P.eval Fitness evaluation flag
P.age Age of individuals

8

Population Data Structure (P)

P.ngenes Number of genes in an individual
P.min Minimum value of genes
P.max Maximum value of genes
P.type Types of genes
P.chrom_id Chromosome ID of genes (for multiple

chromosome)
P.normgene Normalized gene values
P.gene Gene values

9

Population Data Structure (P)

P.region Geographic region of individuals
P.pen Fitness weight values for penalizing in the

diversity control

10

Basic Information

P.size

P.ngenes

P.nobj

11

Population Fitness

P.mfit (# obj. by pop. size)

P.fit (1 by pop. size)

12

Gene Representation

P.gene (# genes by pop. size)

P.min (# genes by 1)

P.max (# genes by 1)

P.normgene (# genes by pop. size)

13

Encoding
P.type (# genes by 1)

Determine the mapping method of the
normalized gene value to its actual value
There are three different types of mapping

Integer

0

1

min

max

Logarithmic

0

1

min

max

Real

min

max

0

1

14

Chromosome ID
a b c d e f gGiven the genes of an individual

P.chrom_id = [1 1 1 1 1 1 1]T

P.chrom_id = [1 1 1 2 2 3 3]T

P.chrom_id = [1 2 3 2 2 3 1]T

d e
2

f g
3

a b c
1

a g
1

b d e
2

c f
3

Chromosome structureP.chrom_id Chromosome structureP.chrom_id

a b c d e f g
1

a b c d e f g
1

15

Genetic Algorithm Parameters (GAP)

GAP.pp_list GAP.pp_xl GAP.pp_yl GAP.pp_title GAP.pp_style GAP.pp_sign GAP.pp_axisPareto plot parameters

GAP.dp_type GAP.dp_np GAP.dp_resDistribution plot parameters

GAP.dt_alg GAP.dt_nts GAP.dt_cahDeath algorithm parameters

Field namesCategory

GAP.gd_min GAP.gd_max GAP.gd_type GAP.gd_cidGene data parameters

GAP.op_list GAP.op_style GAP.op_signObjective plot parameters

GAP.rp_lvl GAP.rp_gbr GAP.rp_crhReporting parameters

GAP.rs_fgs GAP.rs_fps GAP.rs_srp GAP.rs_sap GAP.rs_frp GAP.rs_feaRandom search parameters

GAP.el_act GAP.el_fgs GAP.el_fpeElitism parameters

GAP.sc_alg GAP.sc_kln GAP.sc_cst GAP.sc_kmxq GAP.sc_kmnqScaling parameters

GAP.ev_bev GAP.ev_are GAP.ev_ssdEvaluation Parameters

GAP.mg_nreg GAP.mg_tmig GAP.mg_pmigMigration parameters

GAP.mt_ptgm GAP.mt_prgm GAP.mt_srgm GAP.mt_pagm GAP.mt_sagm GAP.mt_prvm GAP.mt_srvm
GAP.mt_pavm GAP.mt_savm GAP.mt_pigm

Mutation parameters

GAP.mc_pp GAP.mc_fc GAP.mc_alg GAP.mc_gac GAP.mc_ecMating and crossover parameters

GAP.sl_alg GAP.sl_nts GAP.sl_cahSelection algorithm parameters

GAP.dc_act GAP.dc_alg GAP.dc_spc GAP.dc_mnt GAP.dc_mxt GAP.dc_ntr GAP.dc_mnb GAP.dc_mxb
GAP.dc_dc GAP.dc_nt

Diversity control parameters

GAP.fp_ngen GAP.fp_ipop GAP.fp_npop GAP.fp_nobj GAP.fp_objFundamental parameters

16

Genetic Algorithm Parameters (GAP)

GAP.fp_ngen

GAP.fp_ipop

GAP.fp_npop

GAP.fp_nobj

GAP.fp_obj

17
The number of the total objective function evaluationsGAS.ne

The best gene values for each objective over the generations
(No. of genes × No. of generations × No. of objectives)

GAS.bestgenes

The best fitness values of each objective
(No. of objectives × No. of generations)

GAS.bestfit

The average fitness values of each objective
(No. of objectives × No. of generations)

GAS.meanfit

The median fitness values of each objective
(No. of objectives × No. of generations)

GAS.medianfit

Current generation number GAS.cg

Description GAS.[Field name]

Genetic Algorithm Statistics (GAS)

18

Genetic Algorithm Statistics (GAS)

GAS.cg Current generation number
GAS.medianfit Median fitness values (obj × gen)
GAS.meanfit Average fitness values (obj ×gen)
GAS.bestfit Best fitness values (obj × gen)
GAS.bestgenes Best gene values (genes ×gen× obj)
GAS.ne Number of objective function

evaluations

19

GOSET
Genetic Operators

20

GOSET Genetic Operators
Diversity control
Scaling
Selection
Death
Mating & crossover
Mutation
Migration
Elitism
Random search

21

Diversity Control

Maintain population diversity

Penalize individuals with many
neighbors

Four different diversity controls are
available in GOSET

22

Diversity Control Method 1

Fitness weight is inversely proportional to the number
of neighboring individuals within the threshold
distance

Threshold
distance

Threshold
distance

aa

Fitness weight for a = 1 Fitness weight for b = 1/4 Fitness weight for c = 1/2

bb

cc

23

Diversity Control Method 2

Given an arbitrary weight vector, evaluate the
weighted sum of genes for each individuals

Group individuals with similar weighted sum

Repeat multiple times with different weight
vectors and the largest penalty function value is
used for final fitness weight value

24

Diversity Control Method 2

XX

Fitness weight value ½ 1 ½ ¼

Group individuals
according to
weighted sum

1 2 3 4 51 2 3 4 5

Random weight vector

Number of individuals in the bin
Fitness weight value = 1

25

Diversity Control Method 3
Evaluate the sum of infinity norm between the
individual of interest and all other individuals
Fitness weight is increasing as the distance
sum increases

where dc is the distance constant
(GAP.dc_dc)

∑
∈

∞
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

=

Ii c

ik

d

k
 -

exp

1 individualth 'for weight Fitness
θθ

26

Diversity Control Method 3

Fitness weight for a = 0.8 Fitness weight for b = 0.2

aa b

27

Diversity Control Method 4
Similar to Diversity Control Method 3
Only evaluate the sum of distances between the
individual of interest and a certain number
(GAP.dc_nt) of randomly chosen individuals

28

Diversity Control Method 4

Fitness weight for a = 0.7 Fitness weight for b = 0.1

aa b

GAP.dc_nt =3

29

Scaling

Purpose: maintain appropriate evolution
pressure throughout evolution process
Without scaling

Early Evolution: a few strong individuals usually
dominate population quickly
Late Evolution: most individuals have similar
fitness values and the evolution slows

Seven scaling methods available

30

No Scaling

Scaling is not applied
and the actual fitness
value is used

Fitness functions must
be constructed
carefully

Good for tournament
selection

fmin fmax

fmin

fmax

f’ = ax + b

a = 1
b = 0

f ′

f

31

Offset Scaling

Linear scaling

Minimum fitness
value is mapped to
zero

Default scaling
algorithm

fmin fmax

0

fmax - fmin

f’ = ax + b

a = 1
b = -fmin

f ′

f

32

Standard Linear Scaling

Linear scaling

Average fitness value
does not change after
scaling

Most fit individual has
mapped fitness k
times bigger than that
of average fit
individual

fmin fmax

afmin+b

k⋅favg

f’ = ax + b

GAP.sc_kln=

−=
−

−
=

k

afb
ff
fk

a avg
avg

avg)1(
)1(

max

favg

favg

f ′

f

33

Modified Linear Scaling

Linear scaling

Median fitness value
is preserved after
scaling

Most fit individual is
mapped so that its
fitness value is k times
bigger than the
median fit individual

fmin fmax

k⋅fmed

f’ = ax + b

GAP.sc_kln=

−=
−

−
=

k

afb
ff
fk

a med
med

med)1(
)1(

max

fmed

fmed

afmin+b

f ′

f

34

Mapped Linear Scaling

Linear scaling

The minimum
fitness value is
mapped to 1, and
the maximum
fitness value is
mapped to k

fmin fmax

1

k
f’ = ax + b

GAP.sc_kln=

+⋅−=
−
−

=

k

afb
ff

ka 11
min

minmax

f ′

f

35

Sigma Truncation
Linear scaling
Fitness values offset
so that favg is mapped
to k ⋅ fstd
Resulting negative
fitness values are
clipped to zero
Useful when most
individuals have large
fitness value but there
are few individuals
with small fitness
values

fmin fmax

0

f’ = ax + b

favg

GAP.sc_cst=

⋅−−==

c

stdcavg

k

fkfba)(1

k fstd

fmax –favg +k⋅ fstd

f

36

Quadratic Scaling
Non-linear scaling

qGAP.sc_kmn

qGAP.sc_kmx

=

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

min

max

min

max

1

min
2

min

avg
2

avg

max
2

max

1
1
1
1

k
k

k

k

ff
ff
ff

c
b
a

fmin fmax

1

2f ax bx c′ = + +

favg

kmax

kmin

f ′

37

Selection
Purpose: select individuals from the population
to constitute a mating pool
When the multiple regions are used, selection
operation is restricted to each region and picks
the same number of individuals as those in the
current region
Roulette wheel selection
Tournament selection
Custom selection

38

Roulette Wheel Selection
An individual is selected with the probability
proportional to its fitness value
It is more likely that the better individual is
selected - the principle of the survival of the
fittest

Winner19
76
44
27

8
53
31
76

Individuals with
fitness values

Assign a piece
proportional to
the fitness value

Mating pool

39

Tournament Selection
Individuals are randomly chosen from the
population and the one with best fitness value is
selected
The number of individuals for the tournament is a
design parameter (GAP.sl_nts)

PopulationPopulation Randomly pick
multiple individuals

Randomly pick
multiple individuals

Winner

Mating pool

40

Death

Purpose: Create a list of individuals who die
and are replaced by the children

There are six different death algorithms

Custom death algorithm can be used

41

Death Algorithms
Replacing parents

Parents are replaced by their own children

Random selection
The parents to be replaced are randomly chosen

Tournament of fitness
Individuals to be replaced based on aggregate fitness
GAP.dt_nts parents are randomly chosen for tournament
Individual with worst aggregate fitness value marked for
death

42

Death Algorithms

Tournament on age
Tournament based on the age. Among randomly
chosen GAP.dt_nts parents, the oldest dies.

Custom algorithm
The custom function handle is assigned to
GAP.dt_cah

Random algorithm
The death algorithm is randomly chosen among
the first four death algorithms at each generation.

43

Mating-Crossover
Crossover operation is performed on the normalized gene
values and the actual gene values are refreshed based on
the normalized gene values
When the resulting gene value is illegal, it is automatically
adjusted using the ring-mapping

Ring-mappng maps a value to the modulus after
division by 1
Example 1.2 → 0.2 and -2.1 → 0.9

There are five different mating-crossover algorithms

44

Single-Point Crossover
Similar to the single point crossover
operator in binary-coded GAs
In multiple-chromosome setting, single
point crossover occurs in each chromosome

Parent 1 0.21
1

0.550.83 0.26
2

0.98

Parent 2 0.17
1

0.340.42 0.77
2
0.24

Parent 1 0.21
1

0.550.83 0.26
2

0.98

Parent 2 0.17
1

0.340.42 0.77
2
0.24

Child 1 0.21
1

0.55

0.83

0.26

2

0.98

Child 2 0.17
1

0.34

0.42

0.77

2
0.24

Crossover pointsCrossover points

45

Simple Blend Crossover
Children are generated from the weighted sum
of their parents
Gene values of children have same distance
from the average gene value of parents

p q(3p-q)/2 (3q-p)/2(p+q)/2

Parents

Children

46

Types of Simple Blend Crossover

Scalar simple blend crossover
Each gene has different ratio of blending
Example

P1=[0 0.8 0.3] P2=[1 0.2 0.5]
C1=[0.25 0.95 0.38] C2=[0.75 0.05 0.42]

Vector simple blend crossover
All genes are blended using same ratio
Example

P1=[0 0.8 0.3] P2=[1 0.2 0.5]
C1=[0.25 0.65 0.35] C2=[0.75 0.55 0.45]

47

Simulated Binary Crossover
Mimics the effect of single-point crossover
operator in binary-coded GA
Simulated binary crossover uses probability
density function that simulates the single-point
crossover in binary-coded GA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

P
ro

ba
bi

lit
y

de
ns

ity
 p

er
 o

ffs
pr

in
g

0

0.1

Positions of offspring solutions

ηc = 2
ηc = 5

48

Simulated Binary Crossover

Scalar simulated binary crossover
Each gene has different ratio

Vector simulated binary crossover
All genes use same ratio

49

Random Algorithm
Mating crossover algorithm changes randomly
among the five methods

Single point crossover
Scalar simple blend crossover
Vector simple blend crossover
Scalar simulated binary crossover
Vector simulated binary crossover

The interval of changing algorithm is
determined by GAP.mc_gac

50

Mutation
Applied to the normalized gene values
Actual gene values are updated based on mutated
normalized gene values
When resulting gene value is illegal, it is adjusted
automatically using the ring-mapping

Ring-mapping maps a value to the modulus after
division by 1
Examples: 1.2 → 0.2 and -2.1 → 0.9

There are six different mutation algorithms

51

Total Mutation
Each gene value is replaced by a new

randomly generated gene value
New value has no relationship to old value

Original chromosome 0.180.23 0.72 0.51 0.88

Mutation point

Mutated chromosome 0.180.23 0.43 0.51 0.88

Replace current gene value with
randomly generated gene value

Original chromosome 0.180.23 0.72 0.51 0.88Original chromosome 0.180.23 0.72 0.51 0.88

Mutation pointMutation point

Mutated chromosome 0.180.23 0.43 0.51 0.88

Replace current gene value with
randomly generated gene value

Mutated chromosome 0.180.23 0.43 0.51 0.88

Replace current gene value with
randomly generated gene value

52

Relative Partial Mutation

Under mutation is multiplied by (1+N) where
N is a Gaussian random variable with the
standard deviation of GAP.mt_prgm

Original chromosome 0.180.23 0.72 0.51 0.88

Mutation point

Mutated chromosome 0.180.23 0.68 0.51 0.88

1+N = 1+(-0.055)

53

Absolute Partial Mutation
Gene under mutation is added with a Gaussian
random variable N whose standard deviation is
GAP.mt_pagm

Original chromosome 0.180.23 0.72 0.51 0.88

Mutation point

Mutated chromosome 0.730.23 0.72 0.51 0.88

+ N = 0.55

54

Relative Vector Mutation
Chromosome multiplied by RV= vdir
N(0,GAP.mt_srvm) where vdir is a normalized
random vector and N is a Gaussian random variable
with stand. dev. of GAP.mt_srvm

Original chromosome 0.180.23 0.72 0.51 0.88

Mutated chromosome 0.150.24 0.78 0.60 0.81

1+ RV

IF RV =[0.03 -0.15 -0.08 0.18 -0.08]

55

Original chromosome 0.180.23 0.72 0.51 0.88

Mutated chromosome 0.200.22 0.73 0.51 0.87

+ RV

IF RV =[-0.01 0.02 0.01 0 -0.01]

Absolute Vector Mutation
Chromosome under mutation is added RV = vdir
N(0,GAP.mt_savm) where vdir is a normalized
random vector and N is a Gaussian random variable
with the stand. dev. of GAP.mt_savm

56

Original chromosome 0.180.23 0.75

Mutation point

Mutated chromosome 0.180.23 0.25

Replace current gene value with
randomly generated gene value

Range for third gene = { 3, 4, 5, 6, 7 }

4

6

Corresponding
integer

Integer Mutation
Other mutation operators do not act on integers
Integer gene value mutated with probability of
GAP.mt_pigm

Gene value replaced by a randomly generated value

57

Migration
Multiple regions / migration captures effects of
geographical separation in biological systems
An individual is migrated with the probability of
GAP.mg_pmig
Migration occurs every GAP.mg_tmig generations

58

Migration

Region 1 Region 2

Region 3

Region 1 Region 2

Region 3Randomly pick one individual
and move to other region

59

Elitism (Single Objective)
Purpose: protect the best individual

Old population

Pick the best
individual

Genetic
operation

New population

Put the better
Individual back

Winner

Old populationOld population

Pick the best
individual

Genetic
operation
Genetic

operation

New populationNew population

Put the better
Individual back

Winner

60

Random Search
Purpose: search the vicinity of the best
individual for better solution

Pick the best individual Randomly
generates
mutants

2D Solution
spacePick

the best Individual
among the mutants

Compare and put
the better individual back

Pick the best individualPick the best individual Randomly
generates
mutants

Randomly
generates
mutants

2D Solution
space

2D Solution
spacePick

the best Individual
among the mutants

Pick
the best Individual
among the mutants

Compare and put
the better individual back
Compare and put
the better individual back

61

Random Search

Relative random search – mutants are generated using
relative vector mutation with the standard deviation
of GAP.rs_srp
Absolute random search - mutants are generated
using absolute vector mutation with the standard
deviation of GAP.rs_sap
The relative random search is selected with the
probability of GAP.rs_frp and the absolute random
search is chosen with the probability of (1-
GAP.rs_frp)

62

Random Search

Random search starts from (GAP.rs_fgs ×
GAP.fp_ngen)’th generation
(GAP.rs_fps × GAP.fp_npop) mutants
are randomly generated

