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Lecture 5:
GOSET
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What is GOSET?

GOSET stands for Genetic Optimization 
System Engineering Tool

GOSET is a MATLAB based genetic 
algorithm toolbox for solving optimization 
problems
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GOSET Features

Wide range of choices for genetic operators 
Single-objective optimization
Multi-objective optimization
Modular Structure
GUI Interface
GOSET DLL
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Algorithm Execution
START

END

STOP?

Initialization

Fitness evaluation

Mating & Crossover
&Death

Mutation

Report PlotRandom searchElitism

Diversity control

Migration

SelectionScaling
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Data Structure
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Data Structures
To conveniently process the information used in 
GOSET, the following data structures are employed

6GA Statistics GAS

76GA ParametersGAP
15PopulationP

No. of 
fieldsContentsData 

structure
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Population Data Structure (P)
P.blckeval Block evaluation flag
P.fithandle Handle to the fitness function
P.size The number of individuals in the 

population
P.nobj Number of objectives
P.mfit Fitness function values
P.fit Aggregated fitness function values
P.eval Fitness evaluation flag
P.age Age of individuals
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Population Data Structure (P)

P.ngenes Number of genes in an individual
P.min Minimum value of genes
P.max Maximum value of genes
P.type Types of genes
P.chrom_id Chromosome ID of genes (for multiple 

chromosome)
P.normgene Normalized gene values
P.gene Gene values
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Population Data Structure (P)

P.region Geographic region of individuals
P.pen Fitness weight values for penalizing in the 

diversity control
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Basic Information

P.size

P.ngenes

P.nobj
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Population Fitness

P.mfit (# obj. by pop. size)

P.fit (1 by pop. size)
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Gene Representation

P.gene (# genes by pop. size) 

P.min (# genes by 1)

P.max (# genes by 1)

P.normgene (# genes by pop. size)
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Encoding
P.type (# genes by 1)

Determine the mapping method of the 
normalized gene value to its actual value
There are three different types of mapping

Integer

0

1

min

max

Logarithmic

0

1

min

max

Real

min

max

0

1
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Chromosome ID
a b c d e f gGiven the genes of an individual

P.chrom_id = [ 1 1 1 1 1 1 1 ]T

P.chrom_id = [ 1 1 1 2 2 3 3 ]T

P.chrom_id = [ 1 2 3 2 2 3 1 ]T

d e
2

f g
3

a b c
1

a g
1

b d e
2

c f
3

Chromosome structureP.chrom_id Chromosome structureP.chrom_id

a b c d e f g
1

a b c d e f g
1
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Genetic Algorithm Parameters (GAP)

GAP.pp_list GAP.pp_xl GAP.pp_yl GAP.pp_title GAP.pp_style GAP.pp_sign GAP.pp_axisPareto plot parameters 

GAP.dp_type GAP.dp_np GAP.dp_resDistribution plot parameters

GAP.dt_alg GAP.dt_nts GAP.dt_cahDeath algorithm parameters

Field namesCategory

GAP.gd_min GAP.gd_max GAP.gd_type GAP.gd_cidGene data parameters

GAP.op_list GAP.op_style GAP.op_signObjective plot parameters 

GAP.rp_lvl GAP.rp_gbr GAP.rp_crhReporting parameters 

GAP.rs_fgs GAP.rs_fps GAP.rs_srp GAP.rs_sap GAP.rs_frp GAP.rs_feaRandom search parameters 

GAP.el_act GAP.el_fgs GAP.el_fpeElitism parameters 

GAP.sc_alg GAP.sc_kln GAP.sc_cst GAP.sc_kmxq GAP.sc_kmnqScaling parameters 

GAP.ev_bev GAP.ev_are GAP.ev_ssdEvaluation Parameters 

GAP.mg_nreg GAP.mg_tmig GAP.mg_pmigMigration parameters 

GAP.mt_ptgm GAP.mt_prgm GAP.mt_srgm GAP.mt_pagm GAP.mt_sagm GAP.mt_prvm GAP.mt_srvm
GAP.mt_pavm GAP.mt_savm GAP.mt_pigm

Mutation parameters 

GAP.mc_pp GAP.mc_fc GAP.mc_alg GAP.mc_gac GAP.mc_ecMating and crossover parameters 

GAP.sl_alg GAP.sl_nts GAP.sl_cahSelection algorithm parameters 

GAP.dc_act GAP.dc_alg GAP.dc_spc GAP.dc_mnt GAP.dc_mxt GAP.dc_ntr GAP.dc_mnb GAP.dc_mxb
GAP.dc_dc GAP.dc_nt

Diversity control parameters 

GAP.fp_ngen GAP.fp_ipop GAP.fp_npop GAP.fp_nobj GAP.fp_objFundamental parameters  
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Genetic Algorithm Parameters (GAP)

GAP.fp_ngen

GAP.fp_ipop

GAP.fp_npop

GAP.fp_nobj

GAP.fp_obj
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The number of the total objective function evaluationsGAS.ne

The best gene values for each objective over the generations 
(No. of genes × No. of generations × No. of objectives )

GAS.bestgenes

The best fitness values of each objective
( No. of objectives × No. of generations )

GAS.bestfit

The average fitness values of each objective
( No. of objectives × No. of generations )

GAS.meanfit

The median fitness values of each objective
( No. of objectives × No. of generations ) 

GAS.medianfit

Current generation number GAS.cg

Description GAS.[Field name]

Genetic Algorithm Statistics (GAS)
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Genetic Algorithm Statistics (GAS)

GAS.cg Current generation number 
GAS.medianfit Median fitness values (obj × gen) 
GAS.meanfit Average fitness values (obj ×gen)
GAS.bestfit Best fitness values (obj × gen)
GAS.bestgenes Best gene values (genes ×gen× obj)
GAS.ne Number of objective function 

evaluations
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GOSET
Genetic Operators
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GOSET Genetic Operators
Diversity control
Scaling
Selection
Death
Mating & crossover
Mutation
Migration
Elitism
Random search
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Diversity Control

Maintain population diversity

Penalize individuals with many 
neighbors

Four different diversity controls are 
available in GOSET
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Diversity Control Method 1

Fitness weight is inversely proportional to the number 
of neighboring individuals within the threshold 
distance

Threshold 
distance

Threshold 
distance

aa

Fitness weight for a = 1 Fitness weight for b = 1/4 Fitness weight for c = 1/2

bb

cc
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Diversity Control Method 2

Given an arbitrary weight vector, evaluate the 
weighted sum of genes for each individuals

Group individuals with similar weighted sum

Repeat multiple times with different weight 
vectors and the largest penalty function value is 
used for final fitness weight value
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Diversity Control Method 2

XX

Fitness weight value ½ 1 ½ ¼

Group individuals 
according to 
weighted sum

1           2          3          4           51           2          3          4           5

Random weight vector

Number of individuals in the bin
Fitness weight value =  1
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Diversity Control Method 3
Evaluate the sum of infinity norm between the 
individual of interest and all other individuals
Fitness weight is increasing as the distance 
sum increases

where dc is the distance constant 
(GAP.dc_dc)
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Diversity Control Method 3

Fitness weight for a = 0.8 Fitness weight for b = 0.2

aa b
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Diversity Control Method 4
Similar to Diversity Control Method 3
Only evaluate the sum of distances between the 
individual of interest and a certain number 
(GAP.dc_nt) of randomly chosen individuals
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Diversity Control Method 4

Fitness weight for a = 0.7 Fitness weight for b = 0.1

aa b

GAP.dc_nt =3
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Scaling

Purpose:  maintain appropriate evolution 
pressure throughout evolution process
Without scaling

Early Evolution: a few strong individuals usually 
dominate population quickly 
Late Evolution: most individuals have similar 
fitness values and the evolution slows 

Seven scaling methods available
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No Scaling

Scaling is not applied 
and the actual fitness 
value is used

Fitness functions must 
be constructed 
carefully 

Good for tournament   
selection

fmin fmax

fmin

fmax

f’ = ax + b

a = 1
b = 0

f ′

f
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Offset Scaling

Linear scaling

Minimum fitness 
value is mapped to 
zero

Default scaling 
algorithm

fmin fmax

0

fmax - fmin

f’ = ax + b

a = 1
b = -fmin

f ′

f
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Standard Linear Scaling

Linear scaling

Average fitness value 
does not change after 
scaling

Most fit individual has 
mapped fitness k
times bigger than that 
of average fit 
individual

fmin fmax

afmin+b

k⋅favg

f’ = ax + b

GAP.sc_kln=

−=
−

−
=

k

afb
ff
fk

a avg
avg

avg )1(
)1(

max

favg

favg

f ′

f
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Modified Linear Scaling

Linear scaling

Median fitness value 
is preserved after 
scaling

Most fit individual is 
mapped so that its 
fitness value is k times 
bigger than the 
median fit individual

fmin fmax

k⋅fmed

f’ = ax + b

GAP.sc_kln=

−=
−

−
=

k

afb
ff
fk

a med
med

med )1(
)1(

max

fmed

fmed

afmin+b

f ′

f
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Mapped Linear Scaling

Linear scaling

The minimum 
fitness value is 
mapped to 1, and 
the maximum 
fitness value is 
mapped to k

fmin fmax

1

k
f’ = ax + b

GAP.sc_kln=

+⋅−=
−
−

=

k

afb
ff

ka 11
min

minmax

f ′

f
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Sigma Truncation
Linear scaling
Fitness values offset 
so that favg is mapped 
to k ⋅ fstd
Resulting negative 
fitness values are 
clipped to zero
Useful when most 
individuals have large 
fitness value but there 
are few individuals 
with small fitness 
values

fmin fmax

0

f’ = ax + b

favg

GAP.sc_cst=

⋅−−==

c

stdcavg

k

fkfba )(1

k fstd

fmax –favg +k⋅ fstd

f
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Quadratic Scaling
Non-linear scaling

qGAP.sc_kmn

qGAP.sc_kmx
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Selection
Purpose:  select individuals from the population 
to constitute a mating pool
When the multiple regions are used, selection 
operation is restricted to each region and picks 
the same number of individuals as those in the 
current region
Roulette wheel selection 
Tournament selection 
Custom selection
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Roulette Wheel Selection
An individual is selected with the probability 
proportional to its fitness value
It is more likely that the better individual is 
selected - the principle of the survival of the 
fittest

Winner19
76
44
27

8
53
31
76

Individuals with 
fitness values

Assign a piece 
proportional to 
the fitness value

Mating pool
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Tournament Selection
Individuals are randomly chosen from the 
population and the one with best fitness value is 
selected 
The number of individuals for the tournament is a 
design parameter (GAP.sl_nts)

PopulationPopulation Randomly pick
multiple individuals

Randomly pick
multiple individuals

Winner

Mating pool
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Death

Purpose:  Create a list of individuals who die 
and are replaced by the children

There are six different death algorithms

Custom death algorithm can be used
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Death Algorithms
Replacing parents

Parents are replaced by their own children

Random selection
The parents to be replaced are randomly chosen

Tournament of fitness
Individuals to be replaced based on aggregate fitness 
GAP.dt_nts parents are randomly chosen for tournament 
Individual with worst aggregate fitness value marked for 
death
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Death Algorithms

Tournament on age
Tournament based on the age. Among randomly 
chosen  GAP.dt_nts parents, the oldest dies.

Custom algorithm
The custom function handle is assigned to 
GAP.dt_cah

Random algorithm
The death algorithm is randomly chosen among 
the first four death algorithms at each generation.
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Mating-Crossover
Crossover operation is performed on the normalized gene 
values and the actual gene values are refreshed based on 
the normalized gene values
When the resulting gene value is illegal, it is automatically 
adjusted using the ring-mapping

Ring-mappng maps a value to the modulus after 
division by 1  
Example 1.2 → 0.2 and -2.1 → 0.9

There are five different mating-crossover algorithms
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Single-Point Crossover
Similar to the single point crossover 
operator in binary-coded GAs
In multiple-chromosome setting, single 
point crossover occurs in each chromosome

Parent 1 0.21
1

0.550.83 0.26
2

0.98

Parent 2 0.17
1

0.340.42 0.77
2
0.24

Parent 1 0.21
1

0.550.83 0.26
2

0.98

Parent 2 0.17
1

0.340.42 0.77
2
0.24

Child 1 0.21
1

0.55

0.83

0.26

2

0.98

Child 2 0.17
1

0.34

0.42

0.77

2
0.24

Crossover pointsCrossover points
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Simple Blend Crossover
Children are generated from the weighted sum 
of their parents
Gene values of children have same distance 
from the average gene value of parents

p q(3p-q)/2 (3q-p)/2(p+q)/2

Parents

Children
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Types of Simple Blend Crossover

Scalar simple blend crossover
Each gene has different ratio of blending
Example 

P1=[ 0 0.8 0.3]  P2=[1 0.2 0.5] 
C1=[0.25 0.95 0.38] C2=[0.75 0.05 0.42]

Vector simple blend crossover
All genes are blended using same ratio
Example

P1=[ 0 0.8 0.3]  P2=[1 0.2 0.5] 
C1=[0.25 0.65 0.35] C2=[0.75 0.55 0.45]
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Simulated Binary Crossover
Mimics the effect of single-point crossover 
operator in binary-coded GA
Simulated binary crossover uses probability 
density function that simulates the single-point 
crossover in binary-coded GA
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Positions of offspring solutions

ηc = 2
ηc = 5
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Simulated Binary Crossover

Scalar simulated binary crossover
Each gene has different ratio

Vector simulated binary crossover
All genes use same ratio
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Random Algorithm
Mating crossover algorithm changes randomly 
among the five methods

Single point crossover
Scalar simple blend crossover
Vector simple blend crossover
Scalar simulated binary crossover
Vector simulated binary crossover

The interval of changing algorithm is 
determined by GAP.mc_gac
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Mutation
Applied to the normalized gene values 
Actual gene values are updated based on mutated 
normalized gene values
When resulting gene value is illegal, it is adjusted 
automatically using the ring-mapping

Ring-mapping maps a value to the modulus after 
division by 1 
Examples: 1.2 → 0.2 and -2.1 → 0.9

There are six different mutation algorithms
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Total Mutation
Each gene value is replaced by a new  

randomly generated gene value 
New value has no relationship to old value

Original chromosome 0.180.23 0.72 0.51 0.88

Mutation point

Mutated chromosome 0.180.23 0.43 0.51 0.88

Replace current gene value with 
randomly generated gene value

Original chromosome 0.180.23 0.72 0.51 0.88Original chromosome 0.180.23 0.72 0.51 0.88

Mutation pointMutation point

Mutated chromosome 0.180.23 0.43 0.51 0.88

Replace current gene value with 
randomly generated gene value

Mutated chromosome 0.180.23 0.43 0.51 0.88

Replace current gene value with 
randomly generated gene value
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Relative Partial Mutation

Under mutation is multiplied by (1+N) where  
N is a Gaussian random variable with the 
standard deviation of GAP.mt_prgm

Original chromosome 0.180.23 0.72 0.51 0.88

Mutation point

Mutated chromosome 0.180.23 0.68 0.51 0.88

1+N = 1+(-0.055)
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Absolute Partial Mutation
Gene under mutation is added with a Gaussian 
random variable N whose standard deviation is
GAP.mt_pagm

Original chromosome 0.180.23 0.72 0.51 0.88

Mutation point

Mutated chromosome 0.730.23 0.72 0.51 0.88

+ N = 0.55
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Relative Vector Mutation
Chromosome multiplied by RV= vdir
N(0,GAP.mt_srvm) where vdir is a normalized 
random vector and N is a Gaussian random variable 
with stand. dev. of GAP.mt_srvm

Original chromosome 0.180.23 0.72 0.51 0.88

Mutated chromosome 0.150.24 0.78 0.60 0.81

1+ RV

IF RV =[ 0.03  -0.15  -0.08  0.18  -0.08 ]
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Original chromosome 0.180.23 0.72 0.51 0.88

Mutated chromosome 0.200.22 0.73 0.51 0.87

+ RV

IF  RV =[ -0.01  0.02  0.01  0  -0.01 ]

Absolute Vector Mutation
Chromosome under mutation is added RV = vdir
N(0,GAP.mt_savm) where vdir is a normalized 
random vector and N is a Gaussian random variable 
with the stand. dev. of GAP.mt_savm
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Original chromosome 0.180.23 0.75

Mutation point

Mutated chromosome 0.180.23 0.25

Replace current gene value with 
randomly generated gene value

Range for third gene = { 3, 4, 5, 6, 7 }

4

6

Corresponding
integer

Integer Mutation
Other mutation operators do not act on integers
Integer gene value mutated with probability of
GAP.mt_pigm

Gene value replaced by a randomly generated value
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Migration
Multiple regions / migration captures effects of 
geographical separation in biological systems
An individual is migrated with the probability of 
GAP.mg_pmig
Migration occurs every GAP.mg_tmig generations
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Migration

Region 1 Region 2

Region 3

Region 1 Region 2

Region 3Randomly pick one individual
and move to other region
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Elitism (Single Objective)
Purpose: protect the best individual

Old population

Pick the best
individual

Genetic
operation

New population

Put the better
Individual back 

Winner

Old populationOld population

Pick the best
individual

Genetic
operation
Genetic

operation

New populationNew population

Put the better
Individual back 

Winner
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Random Search
Purpose: search the vicinity of the best 
individual for better solution

Pick the best individual Randomly 
generates 
mutants

2D Solution 
spacePick 

the best Individual 
among the mutants

Compare and put
the better individual back

Pick the best individualPick the best individual Randomly 
generates 
mutants

Randomly 
generates 
mutants

2D Solution 
space

2D Solution 
spacePick 

the best Individual 
among the mutants

Pick 
the best Individual 
among the mutants

Compare and put
the better individual back
Compare and put
the better individual back
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Random Search

Relative random search – mutants are generated using 
relative vector mutation with the standard deviation 
of GAP.rs_srp
Absolute random search - mutants are generated 
using absolute vector mutation with the standard 
deviation of GAP.rs_sap
The relative random search is selected with the 
probability of GAP.rs_frp and the absolute random 
search is chosen with the probability of (1-
GAP.rs_frp)
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Random Search

Random search starts from (GAP.rs_fgs ×
GAP.fp_ngen)’th generation
(GAP.rs_fps × GAP.fp_npop) mutants 
are randomly generated


