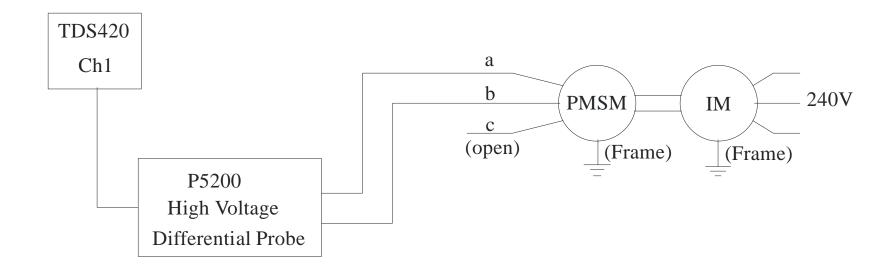
Lab 4: PMSM Characterization

EE595S

Fall 2005

S.D. Sudhoff

Machine to Characterize


- Reliance Electric
- 1 Hp Continuous at 2000 RPM
- Maximum Speed 5500 RPM
- Inertia: 0.012 Lb-in-sec^2
- Continuous Stall Torque: 31.5 Lb-in
- Peak Torque: 94.5 Lb-in
- Rated Current 3.3 A rms
- Torque Constant 3.2 Lb-in/A/Phase

Step 1: DC Resistance

- Measurement of DC Resistance Using 4-Wire Measurement
- Use Agilent 34401 Digital Voltmeter in Four Wire Mode
- Phase Resistance is ½ Average of Line-to-Line Resistance

Step 1: DC Resistance

Step 2: Phase Assignment / Back EMF

Caution: Line-to-line voltage can be fatal.

Note position of E-Stop.

You cannot measure voltage without P5200!

Use electrical tape to cover connections.

Cover all bare wires.

Equipment

- TDS420A Digitizing Osciliscope
 - ➤ Used For Data Acquisition
- P5200 High Voltage Differential Probe
 - ➤ Used to Make Differential, Isolated, High Voltage Measurements.
 - ➤ Never Measure Voltages Without This Probe!
 - ➤ Divide By 50 and By 500 Settings

TDS420A

- Acquire Menu
 - ➤ Sample *
 - Simply samples and plots
 - ➤ Peak Detect
 - ➤ High Res *
 - Oversamples and averages
 - ➤ Envelope 10
 - ➤ Average 16 *
 - Averages over cycles, not points
- *Most Commonly Used

TDS420A

- Horizontal Menu
 - ➤ Select Fit to Screen
 - ➤ Record Length (Make Sure to Get Enough Points)
- Vertical Menu
 - **≻**Coupling
 - DC (USE ALMOST ALL THE TIME)
 - AC
 - GND (For eliminating Offsets)

Comments on Open Circuit Back EMF

$$\begin{bmatrix} v_{ab} \\ v_{bc} \\ v_{ca} \end{bmatrix}_{o.c.} = \sqrt{3}\lambda_m'\omega_r \begin{bmatrix} \cos(\theta_r + \pi/6) \\ \cos(\theta_r + \pi/6 - 2\pi/3) \\ \cos(\theta_r + \pi/6 + 2\pi/3) \end{bmatrix}$$

Phase Assignment

- Label the A-Phase (Arbitrary)
- Use IM to Rotate Machine in CCW Direction (Viewed From Front)
 - ➤ Use the Paper Test
 - ➤ If Going in Wrong Direction; Interchange Leads on IM
- Label B- and C- Phase So v_{bc} 120° Behind v_{ab}
- Clearly and Semi-Permanently Label Phases

Calculation of λ_m

- Spin Machine at Constant Speed and Measure Open Circuit Line-to-Line Voltage
- Under These Conditions, Note That

$$v_{ab} = \sqrt{3}\lambda_m'\omega_r\cos(\omega_r t + \pi/6)$$

- Measuring the Frequency, We Get Speed
- Measuring the Amplitude, We Get λ_m
- Estimate By Hand; Also Record Waveform and Do Fourier Analysis. Use Fund to Get λ_m

TDS420A: Procedure to Save Data

- From Matlab Window:
- [data,deltat,points]= scoperead2(channel,gpib_address,scale,plt)
 - data = vector of data points
 - deltat = time between data points
 - point = number of data points
 - channel = channel
 - gpib_address = 4
 - scale = your scale
 - plt = plot number, if you want one

Step 3: D-Axis Inductance / Frequency Response

- Disconnect PMSM from IM
- Position Rotor
 - Connect b- and c-phases together
 - Put a dc, less than rated current into a-phase (out of b-/c-phase) [Use LCR Meter]
 - The rotor will turn to position of 90 degrees electrical.

Measurement of D-Axis Parameters

- ➤ With Machine At Standstill, Measure Small Signal Impedance from a-phase (+ node) to b/c phase (- node).
- ➤ It can be shown that

$$i_{ds}^{r} = i_{as}$$
 $v_{ds}^{r} = \frac{2}{3}v_{ab}$ $Z_{d} = \frac{2}{3}\frac{\widetilde{v}_{ab}}{\widetilde{i}_{as}}$

> It can also be shown that

$$Z_d = r_s + j\omega L_d$$

Experimental Characterization

- Be Sure to Calculate Peak Current
- Use the LCR Meter to Provide DC Current
- DO NOT DISCONNECT LCR METER WHILE BIAS IS ACTIVE THIS COULD HURT THE INSTRUMENT (APPROXIMATE COST \$ 40 k)
- Bias Level Must Be Selected With Care
- Perturbation Level Must Be Selected With Care

Frequency Sweep

Measure At

```
20.0, 35.6, 63.2, 113, ...
200, 356, 632, 1130, ...
2000, 3560, 6320, 11300, 20000
```

• Use Bias Currents Corresponding to q- and d-axis currents of 0 A, 1 A, 2 A

Step 4: Measurement of Q-Axis Parameters

- Lock the Rotor in Position From D-Axis Test
- Use the b-phase for the positive terminal and the c-phase for the negative terminal. Leave the a-phase open circuited
- Under these conditions:

$$v_{qs}^{r} = \frac{1}{\sqrt{3}} v_{bc} \qquad i_{qs}^{r} = \frac{2}{\sqrt{3}} i_{bs} \qquad Z_{q} = \frac{1}{2} \frac{\widetilde{v}_{bc}}{\widetilde{i}_{bs}} \qquad Z_{q} = r_{s} + j\omega L_{q}$$

Lab 4 Deliverables

- Resistance
 - ➤ Value for Stator Resistance
- Back EMF
 - ➤ Labeling of Phases
 - Fit of Fundamental to Measured
 - \triangleright Value of λ_m

Lab 4 Deliverables

- D-Axis Inductance, Resistance Plotted Versus Frequency For All Bias Levels (Frequency on Log Scale)
- Your Estimate of L_d
- Plot Bode Plot (Magnitude and Phase of Measured Impedance, and of Predicted Using Your Stator Resistance and L_d)
- Repeat for Q-Axis

Lab 4 Questions

- Find the Fundamental Component of the Back EMF. How Well Is the Back EMF represented by its fundamental component (Overlay Plots)
- Determine the Parameters of the Machine
- Calculate L_q , L_d , and λ_m based on the geometrical parameters of the machine. How do they compared to measured values? Note: I have estimated L_{lp} and L_{lm} at 1.2 mH and -0.20 mH, respectively.

Lab 4 Comments

• You should be sure you understand all procedures and why things work out the way they do – especially in regard to positioning the rotor