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5/ Force and Torque 
 In previous chapters, we have concentrated on predicting the electrical 
aspects of electromagnetic device performance.  In this chapter, we consider the 
production of electromagnetic force and torque.  We will consider two approaches to 
this subject.   The first approach will be energy based.  Using this approach, given 
the relationship between flux linkage, current, and position, an algorithm will be set 
forth to find a corresponding expression for electromagnetic force / torque.   The 
second approach considered will be field based.  In this approach, which is 
geometry-dependent, we will utilize the Lorenz force equation to obtain an 
expression for torque for a certain class of rotating electromechanical devices.   

5.1 AN ENERGY APPROACH TO FORCE AND TORQUE 
 
 In this section, an energy based approach to the calculation of force and 
torque is set forth.  In this approach, it is assumed that the relationship between 
current, flux linkage, and position, i.e. the device flux linkage equation, is known.  
From this information, a method to derive an expression for force will be set forth.  
The same method can readily be used to calculate torque.   

5.1.1 Magnetic System Description 
 
 In order to use the methods set forth in this section, the relationship 
between flux linkage, current, and mechanical position must be known.  It will be 
assumed herein that this relationship can be expressed in one of two forms.  In the 
first form, the flux linkage may be expressed 
 
 ),( xfi λλ=  (5.1-1) 
 
where i , λ , and x represent current, flux linkage, and position, respectively.  For 
multi-input systems we have that 
 
 ),( xλfi λ=  (5.1-2) 
 
where the bold font indicates a vector (and flux linkage and current have the same 
dimension).  In (5.1-1) and (5.1-2), ()λf  is a suitable nonlinear function.  The ‘λ ’ 
subscript is a reminder that the first argument is flux linkage. 
 The second form of flux linkage equation is used considerably more often 
than the first and is expressed 
 
 ),( xifi=λ  (5.1-3) 
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for single-input systems, or, for multi-input systems, 
 
 ),( xi ifλ =  (5.1-4) 
 
In this case, the ‘ i ’ subscript serves as a reminder that the first argument is a current.   
 

5.1.2 Field Energy 
 
 Let us now consider an electromechanical device.   In general, any such 
device will involve a magnetic field.  The energy stored in this magnetic field will be 
referred to as the field energy and denoted fW .   Energy that is stored in the 
magnetic field has two possible sources – the electrical system or the mechanical 
system.  The energy entering the stored field from the electrical system is denoted 

eW ; energy entering the stored field from the mechanical system is denoted mW .  
Assuming that the coupling field is lossless, we have that  
 
 mef WWW +=  (5.1-5) 
 
 The assumption of a lossless field does not mean that it is assumed that the 
device is lossless.  Many sources of losses are external to the coupling field (resistive 
drops, eddy current losses, friction, etc.).  However, there is one important source of  
loss that the assumption of a lossless core does preclude – that of magnetic 
hysteresis.   Nevertheless, the analysis set forth will prove extremely useful and 
sufficiently accurate in the majority of cases. 
 As it turns out, the field energy, and a related quantity referred to as the co-
energy, will play a critical role in determining force.  In order to determine the field 
energy, let us consider the j ’th winding of the electromechanical device.    The 
current into this winding is denoted ji  and the voltage associated with the time rate 

of flux across the winding is je , where 

 
dt

d
e j

j
λ

=  (5.1-6) 

The resistive loss across the coil is not considered; this is not because the resistive 
losses are neglected; rather that they will simply be considered to be external to the 
energy conversion process.    
 The energy entering the coupling field through the j ’th winding from time 

0t  to time ft  may be expressed 

 ∫=
ft

t
jjje dtieW

0

,  (5.1-7) 
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Substitution of (5.1-6) into (5.1-7) yields 
 

 ∫=
ft

t

j
jje dt

dt
d

iW
0

,
λ

 (5.1-8) 

which reduces to 
 

 ∫=
fj

j

jjje diW
,

0,

,

λ

λ
λ  (5.1-9) 

where 0,jλ is  jλ  at 0t  and fj,λ  is jλ at ft . 
 Summing the electrically input energy over all J  windings, we have that 
 

 ∑ ∫
=

=
J

j
jje

fj

j

diW
1

,

0,

λ

λ
λ  (5.1-10) 

 
 Mechanical energy may be expressed as the integral of force over distance; 
thus we have  

 ∫−=
fx

x
em dxfW

0

 (5.1-11) 

where ef  is the electromagnetic force, 0xx =  at 0t  and fxx =  at ftt = . Therein, 

it is assumed that the electromagnetic force ef and displacement x are defined to be 
in the same direction.  The negative sign in (5.1-11) arises from the fact that positive 
force over a positive distance will cause a positive work being done on the 
mechanical system, which is a negative contribution to the coupling field.  

Substitution of (5.1-10) and (5.1-11) into (5.1-5) yields the primary results 
of this section; that is that the energy in the coupling field may be expressed 
  

 ∫∑ ∫ −=
=

ffj

j

x

x
e

J

j
jjf dxfdiW

0

,

0,1

λ

λ
λ  (5.1-12) 

5.1.3 Calculation of Field Energy 
 
 In the previous section, an expression for the energy in the coupling field 
was set forth (5.1-12).  In this section, we focus on the evaluation of this expression.  
To this end, we will concentrate on evaluating (5.1-12) when the system flux linkage 
equations are of the form wherein current is a function of flux linkage and position 
as in (5.1-1) and (5.1-2).  If this is not the case, it is much easier to calculate co-
energy; an alternative but equally useful concept which will be introduced in Section 
5.1.4.  
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 The field energy represents an energy stored in a lossless and therefore 
conservative field.  As a result, the energy stored in the field is a function of state – 
and not how that state was reached.  In other words, the field energy is a function of 
present conditions, not past history. 
 In order to calculate the field energy, we will perform a mathematical 
experiment.  In this experiment, we will specify the trajectory of our state variables 
(in this case the flux linkage and position) in such a way as to make (5.1-12) as easy 
to evaluate as possible.  Since the field is conservative, the actual trajectory is 
irrelevant; thus we pick the easiest way to evaluate the trajectory. 
 To this end, one common trajectory is to pick 0t  to correspond to a point in 
time wherein the field energy is zero, and the electrical system is unexcited.  At this 
point, since there is no magnetic field, there can be no force due to the magnetic 
field.  Hence, 0=ef .   Under these conditions, we position the mechanical system, 
varying x  from its initial value of 0x  at 0tt =  to a value of fx at ftt = .  This part 

of the trajectory does not contribute to fW since ef is zero.  Thus the expression for 
field energy reduces from (5.1-12) to  

 ∑ ∫=
=

J

j
jjf

fj

j

diW
1

,

0,

λ

λ
λ  (5.1-13) 

 
Substituting our expression for current (5.1-1) or (5.1-2) on an element-by-element 
basis into (5.1-13) yields 
 

 ∑ ∫=
=

J

j
jfjif

fj

j

dxfW
1

,
,

0,

),(
λ

λ
λλ  (5.1-14) 

  
Observe that the ‘i’ subscript in (5.1-14) is indicative of the form of the flux linkage 
equation and is not an index. 
 The process of evaluating (5.1-14) is best illustrated by a series of 
examples.  In each example, we perform a numerical experiment to bring the system 
from its’ initial state to an arbitrary final state. 
  
 
Example 5.1.3-1   
 In this example,  consider a single input electrical system wherein the initial 
current and flux linkage are zero and where 
 
 2)25( λxi +=  (5.1-15)    
 
Substitution of (5.1-15) into (5.1-14) with x  fixed at fx  yields 
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 3)25(
3
1

fff xW λ+=  (5.1-16) 

 
 Since (5.1-16) is valid for any final time, it is convenient to let ft  be the 

present time t  whereupon fλ  is the present value of flux linkage λ , and fx  is the 
present value of position x .  This yields 
 

 3)25(
3
1 λxW f +=  (5.1-17) 

 
 
Example 5.1.3-2 
 Let us now consider a multi-input system, wherein 
 
 21 22

11 )210(5 λλλ +++= exxi  (5.1-18) 
 
 21 22

22 )210(7 λλλ +++= exi  (5.1-19) 
 
 Again, we will consider the initial flux linkages to be zero, and the final 
flux linkages to be f,11 λλ =  and f,22 λλ = .  From (5.1-13), 
 

 ∫∫ +=
ff

didiW f
,2,1

0
22

0
11

λλ
λλ  (5.1-20) 

 From evaluating (5.1-20) we will position the mechanical system at 
fxx = . For this example, it is convenient to observe that the field energy given by 

(5.1-20) may be expressed as 
 
 2,1, stepfstepff WWW +=  (5.1-21) 

where  

 ∫∫ +=
0

0
22

0
111,

,1

λλ
λ

didiW
f

stepf  (5.1-22) 

and where 

 ∫∫ +=

ff

f

didiW stepf

,2,1

,1 0
22112,

λλ

λ
λλ  (5.1-23) 

 
 The second term in (5.1-22) and the first term in (5.1-23) are clearly zero.  
This formulation corresponds to a mathematical experiment wherein in the first step 



9/7/2005 Copyright 2003 S.D. Sudhoff   Page 6 

the first step 1λ  is brought from 0  to f,1λ  with 2λ fixed at zero.  In the second step, 

2λ undergoes a trajectory from 0  to f,2λ  with 1λ  fixed at f,1λ .   Evaluating (5.1-
22) and (5.1-23) yields  
 

 )1)(210(
2
1

2
5 122

,11, −++= λλ exxW fffstepf  (5.1-24) 

and 

 ))(210(
2
1

2
7 ,1,2,1 222

,22,
fff eexW ffstepf

λλλλ 2+ −++=  (5.1-25) 

 
 Summing (5.1-24) and (5.1-25) in accordance with (5.1-20) yields 
 

 2
,2

222
,1 2

71)210(
2
1

2
5 ,2,1

fffff
ffexxW λλ λλ +⎟

⎠
⎞⎜

⎝
⎛ −++= +  (5.1-26) 

 
 Since (5.1-26) holds for any final time ft , we will choose tt f = , 

whereupon f11 λλ = , f22 λλ = , and fxx = . Thus 
 

 ( ) 2
2

222
1 2

71)210(
2
1

2
5 21 λλ λλ +−++= +exxW f  (5.1-27) 

 
Clearly, the process of bringing the flux linkages up one at a time can be 

extended to systems with any number of inputs.  We will consider additional 
examples of this process when we compute co-energy – a different, but entirely 
analogous process. 
 It should be observed that in both of these examples, the field energy was 
found as a function of position x  and the flux linkages.  Finding the field energy in 
terms of the currents can be found in using the considerably more involved 
procedure set forth, for example, in [1].  However, this process is never really 
necessary because if the flux linkage equations are in the second form (that is (5.1-3) 
or (5.1-4)) then it is possible to find the co-energy in a straightforward fashion.  The 
co-energy will be discussed in Section 5.1-4 and is closely related to the field 
energy. 

5.1.4 Calculation of Force as Function of Flux Linkage and Position  
 
 Our ultimate objective in Section 5.1 is the calculation of force, not the 
calculation of field energy.  However, as it turns out, once an expression for field 
energy has been derived an expression for force is readily obtained.  To see this, let 
us first take the total derivative of (5.1-12).  By the fundamental theorem of calculus, 
we have 
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 dxfdidW e
J

j
jjf −= ∑

=1
λ  (5.1-28) 

 
Now let us suppose, that using the method of Section 5.1.2, we have an 

expression for the field energy in terms of the flux linkages, ),( xW f λ .  Taking the 
total derivative of the field energy yields, 
 

 ∑
= ∂

∂
+

∂

∂
=

J

j

f
j

j

f
f dx

x
xW

d
xW

dW
1

),(),( λλ
λ

λ
 (5.1-29) 

 
 Equating (5.1-28) and (5.1-29), 
 

 ∑∑
== ∂

∂
+

∂

∂
=−

J

j

f
j

j

f
e

J

j
jj dx

x
xW

d
xW

dxfdi
11

),(),( λλ
λ

λ
λ  (5.1-30) 

 
Equation (5.1-30) holds for all infinitesimally small values of jdλ  and dx .  Since 

zero is infinitesimally small, let us set all  jdλ  equal to zero in (5.1-30).  This yields 
the simple and powerful result,  

 
x

xW
f f
e ∂

∂
−=

),(λ
 (5.1-31) 

 
Example 5.1.4-1 
 In order to demonstrate the utility of (5.1-31), let us reconsider the magnetic 
system of Example 5.1.2-1, and attempt to calculate the torque.  Applying (5.1-31) to 
(5.1-17) we have 

 3
3
2 λ−=ef  (5.1-32) 

 
Example 5.1.4-2 
 Let us reconsider the magnetic system set forth in Example 5.1.3-2.  In 
particular, applying (5.1-31) to (5.1-27) 
 

 ( ) 2
1

22
2
5121 λλλ +−−= +efe  (5.1-33) 

 
 Before concluding this section, the importance of the result should again be 
contemplated.  In particular, using the methods of field energy, once an expression 
for the flux linkages is found, it is straightforward to first find the field energy and 
then an expression for force.  In other words, the flux linkage equations are sufficient 
information to derive the expression for force.  No other additional information (such 
as geometry, etc.) is needed. 
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5.1.5 Co-Energy 
 
 In the Sections 5.1.3 – 5.1.4, it was assumed that the flux linkage equations 
were in the form of (5.1-1) or (5.1-2); in particular it was assumed that the currents 
could be expressed as an explicit function of flux linkage and position.  In this 
section, we consider the more common case wherein flux linkage is expressed as a 
function of current and position.  This corresponds to the formulation set forth in 
(5.1-3) or (5.1-4).     
 Our basic approach to finding an expression for torque in this case will be 
through the use of a concept known as co-energy.   To introduce this concept, let us 
reconsider the evaluation of the field energy given by (5.1-13).  In particular, 
consider the j ’th term in the summation which we will define as 
 

 ∫=
fj

j

jjjf diW
,

0,

,

λ

λ
λ  (5.1-34) 

 
Comparing (5.1-13) and (5.1-34), we have 
 

 ∑
=

=
J

j
jff WW

1
,  (5.1-35) 

 
 The evaluation of (5.1-33) may be viewed geometrically in Figure 5.1-1.  
Clearly, (5.1-33) corresponds to the indicated area.   The corresponding component 
of co-energy, jcW , is the complementary area also indicated in Figure 5.1-1 and 
expressed mathematically as 

 ∫=
fj

j

i

i
jjjc diW

,

0,

, λ  (5.1-36) 

 
where 0,ji  and fji , correspond to 0,jλ and fj,λ , respectively.  It is also apparent 
from Figure 5.1-1 that 
 
 jjjfjfjfjc iiWW ,0,0,,,, λλ −=+  (5.1-37) 
 
 Throughout Section 5.1, the use of the ‘ f ’ subscript on the currents and 
flux linkages is primarily to allow us to use either current or flux linkage as a 
variable of integration;  since formally we should not use the variable of integration 
to also be a limit of integration.   In other words, we can consider jf ,λ  and jfi ,  to 

be the present values of interest jλ  and ji ; we have introduced the ‘ f ’ for integral 
operation just so that we do not have to introduce another dummy variable of 
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integration.  For this reason, as we have done earlier, we drop the ‘ f ’ subscript in 
(5.1-37) which may then be written as 
 
 jjjjjfjc iiWW ,0,0,, λλ −=+  (5.1-38) 
 
  
 In order to evaluate jcW ,  we substitute (5.1-3) or (5.1-4) into (5.1-36) 
which yields 

 ∫=
fj

j
j

i

i
jjc dixfW

,

0,

),(, iλ  (5.1-39) 

 
The total co-energy may then be expressed as 
 

 ∑
=

=
J

j
jcc WW

1
,  (5.1-40) 

Combining (5.1-39) and (5.1-40), 
 

 ∑ ∫
=

=
J

j

i

i
jc

fj

j
j

dixfW
1

,

0,

),(iλ  (5.1-41) 

 
which is entirely analogous to (5.1-14). 
 From (5.1-35), (5.1-38), and (5.1-40), it is readily shown that  
 

 ( )∑
=

−=+
J

j
jjjjfc iiWW

1
0,0,λλ  (5.1-42) 

 
Equation (5.1-42) has some important physical ramifications.  In particular, recall 
the field energy is a conservative field in that it is only a function of state – not of 
how that state was achieved.  Since the field energy is only a function of state; and 
the term on the right hand side of the equal sign in (5.1-41) is only a function of 
state, it follows from (5.1-42) that the co-energy is only a function of state.  In other 
words, the co-energy is a conservative field.  Thus (5.1-41) may be evaluated along 
any trajectory (preferably the one that makes the evaluation easiest) and the same 
result will be achieved.   
 
Example 5.1.5-1 
 
 Let us find the co-energy associated with the following electromechanical 
system 
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 5.0
2111 )(

2
12 ii

x
i +

+
+=λ  (5.1-43) 

 

 5.0
21

4.0
22 )(

2
15 ii

x
i +

+
+=λ  (5.1-44) 

 
In evaluating the co-energy, we will take an approach similar to that in Example 
5.1.3-2.  In particular, we will utilize a two step process, wherein in the first step we 
bring up the first current (in this case from zero) while holding the second current at 
zero.   Then, we hold the first current constant while we bring up the second current.  
 In particular, starting with (5.1-39) we have 
 

 ∫∫ +=
ff ii

c didiW
,2,1

0
22

0
11 λλ  (5.1-45) 

 
with  x  held fixed at fx , which can be broken up as 
 
 2,1, stepcstepcc WWW +=  (5.1-46) 
 
where 

 ∫∫ += =

0

0
22

0
1011,

,1

2
didiW

fi

istepc λλ  (5.1-47) 

and 

 ∫+∫= =

f

f

f

f

i

ii

i

i
stepc didiW

,2

,11

,1

,1 0
22112, λλ  (5.1-48) 

 
 Clearly, the first term in (5.1-47) and the second term in (5.1-48) are zero.  
Substitution of (5.1-43) into (5.1-47) with 02 =i  yields 
 

 ∫
+

+=
fi

f
stepc dii

x
iW

,1

0
1

5.0
111, 2

12  (5.1-49) 

 
which evaluates to 
 

 5.1
,1

2
,11, 2

1
3
2

f
f

fstepc i
x

iW
+

+=  (5.1-50) 

 
For the second step, we bring up the second current while we hold the first current 
equal to its’ final value from step 1.  Substituting (5.1-44) into (5.1-48) yields 
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 ∫ +
+

+=
fi

f
f

stepc diii
x

iW
,2

0
2

5.0
2,1

4.0
22, )(

2
15  (5.1-51) 

 
which evaluates to 
 

 5.1
,1

5.1
,2,1

4.1
,22, )(

2
1

3
2)(

2
1

3
2

4.1
5

f
f

ff
f

fstepc i
x

ii
x

iW
+

−+
+

+=  (5.1-52) 

 
Adding (5.1-50) to (5.1-52) yields 
 

 4.1
,2

5.1
,2,1

2
,1 4.1

5)(
2

1
3
2

fff
f

fc iii
x

iW ++
+

+=  (5.1-53) 

  
 As a final note, we observe that ft , fi ,1 , fi ,2 , and fx could represent any 

value of time, current, and position, so we drop the ‘ f ’ subscript leading to our 
final expression for this example: 
 

 4.1
2

5.1
21

2
1 4.1

5)(
2

1
3
2 iii

x
iWc ++

+
+=  (5.1-54) 

 
Example 5.1.5-2 
 In this example, we consider the same magnetic system as in Example 
5.1.5-1, but we will solve the problem in a different way.   In particular, in 
evaluating (5.1-45) we will assume that the currents follow the trajectory 
 
 αfii ,11 =  (5.1-55) 

 αfii ,22 =  (5.1-56) 
 
where α varies from 0 to 1.  Observe that from (5.1-55) and (5.1-56) we have that 
 
 αdidi f,11 =  (5.1-57) 

 αdidi f,22 =  (5.1-58) 
 
Incorporating (5.1-55)-(5.1-58) into (5.1-45) we have 
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∫

∫

⎟
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⎝
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⎝
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diii
x

i

diii
x

iW

ffff

ffffc

 (5.1-59) 

 
which reduces to (5.1-53), whereupon it can be seen that the path of integration did 
not affect the results, as must be the case for a conservative field. 

5.1.6 Calculation of Force as Function of Current and Position  
 
 At this point, while the reader may feel comfortable calculating co-energy, 
the reader may be questioning its use.  In answer to this, we will show that the co-
energy provides a useful vehicle in the calculation of force.    

We begin our development by re-arranging (5.1-42) such that 
 

 ( ) f
J

j
jjjjc WiiW −−= ∑

=1
0,0,λλ  (5.1-60) 

From which 
 

 ( ) f
J

j
jjjjc dWdididW −+= ∑

=1
λλ  (5.1-61) 

 
Substitution of (5.1-28) into (5.1-61) 
 

 ( ) dxfdidididW e
J

j
jj

J

j
jjjjc +−+= ∑∑

== 11
λλλ  (5.1-62) 

 
which reduces to 
 

 dxfdidW e
J

j
jjc += ∑

=1
λ  (5.1-63) 

 
 In our next step, let us suppose that we have the co-energy as a function of 
current and position, i.e. ),( xWc i .  Taking the total derivative yields, 
 

 ∑
= ∂

∂
+

∂
∂

=
J

j

f
j

j

c
c dx

x
xW

di
i

xWdW
1

),(),( ii  (5.1-64) 

 
Equating (5.1-63) and (5.1-64) 
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 ∑∑
== ∂

∂
+

∂
∂

=+
J

j

f
j

j

c
e

J

j
jj dx

x
xW

di
i

xWdxfdi
11

),(),( iiλ  (5.1-65) 

 
 Equation (5.1-65) must hold for all infinitesimally small values of jdi and 

dx .  Since zero qualifies as an infinitesimally small value, it is convenient to 
set 0=jdi  for all j .  This yields our desired result, namely that 
 

 
x

xWf c
e ∂

∂
=

),(i  (5.1-66) 

 
Equation (5.1-66) is a terribly important result – it is the workhorse result in terms of 
the calculation of electromagnetic force.  It should be committed to memory by 
anyone interested in electromechanical devices. 
 
Example 5.1.6-1 
 Let us reconsider the Example 5.1.5-1.  In particular, we will find the 
electromagnetic force for the magnetic system specified therein.  Applying (5.1-66) 
to (5.1-54) yields 

 
( )

5.1
212 )(

2
1

3
2 ii

x
fe +

+
−=  (5.1-67) 

5.1.7 Conditions for Conservative Magnetic Fields 
 An important assumption of our results in this section are that the field 
energy and co-energy are conservative fields.   We have argued that from a physical 
viewpoint, this amount to neglecting magnetic hysteresis.  However, as it turns out 
this places a mathematical restriction on how we describe the system flux linkage 
equations.   In particular it can be shown that for a multi-input electrical system of 
the form (5.1-2) we must have that 
 

 
j

k

k

j

λλ
λλ

∂

∂
=

∂

∂ ,, ff
 (5.1-68) 

 
and that for a system of the form (5.1-4) we must have 
 

 
j

ki

k

ji

ii ∂

∂
=

∂

∂ ,, ff
 (5.1-69) 
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for all [ ]Jkj 1, ∈ .  A discussion of this result as well as the implications of 
violating these constraints is set forth in [2-4].   The reader is advised to make sure 
that the flux linkage equations obey (5.1-68) or (5.1-69) as appropriate. 

5.1.8 Linear Magnetic Systems 
 As a useful special case, let us consider the co-energy and field energy 
produced by a magnetically linear system with J  inputs in which 
 
 Liλ =  (5.1-70) 
 
Note that from (5.1-69) the L matrix must be symmetric.   

We will first consider the calculation of co-energy.  Our initial condition for 
calculation of the co-energy is that 0=i  and that our final condition is fii = .  It is 
convenient to utilize a trajectory as in Example 5.1.5-2 wherein  
 
 fii α=  (5.1-71) 
where α will vary form 0 to 1.  Clearly 
 
 αdd fjj ,ii =  (5.1-72) 
 
 Utilizing (5.1-41) in conjunction with (5.1-70)-(5.1-72) we have that 
 

 ( )∑ ∫=
=

J

j
fjjfc diW

1

1

0
,rowth'

ααLi  (5.1-73) 

 
which evaluate to 
 

 ( ) fj
J

j jfc iW ,
1 rowth'2

1
∑=
=

Li  (5.1-74) 

 
Rearranging (5.1-74) 
 

 ( ) fj
J

j j
T

fc iW ,
1 columnth'2
1

∑
=

= Li  (5.1-75) 

 
which may be written more simple as 

 f
T
fcW Lii

2
1

=  (5.1-76) 

 
Dropping the ‘ f ’ subscript, the co-energy for a magnetically linear system may be 
expressed 
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 LiiTcW
2
1

=  (5.1-77) 

 
 Following an analogous procedure for the field energy, it can be shown that 
 

 λLλ 1
2
1 −= T

fW  (5.1-78) 

 
Using the flux linkage equations (5.1-70), it is readily shown that for this linear 
system the field energy and co-energy are equal, i.e.  
 
 fc WW =  (5.1-79) 
 
This result does not hold for non-linear systems. 

5.1.9 Rotational Systems 
 The expression for mechanical work in a mechanically translational system 
is the integral of force over a distance as given by (5.1-11).  For rotational systems, 
force is the integral of torque over angular displacement.  Thus our expression for 
mechanical work becomes 
 

 ∫−=
frm

rm

rmem dTW
,

0,

θ

θ
θ  (5.1-80) 

 
where eT  is electromagnetic torque and rmθ is rotational position.  These quantities 
are assumed to be defined to be positive in the same direction.  Equation (5.1-80) is 
of the exact same form as (5.1-11) so all of our results for translation systems also 
hold for rotational systems with the exception that electromagnetic torque 

eT replaces force ef and rotational position rmθ replaces translational position x .  

5.1.10 Application to Rotationally Transformable Machinery 
 

As it turns out, for ac electric machinery in which position dependent 
inductance can be used to eliminate rotor position inductances, there is a short cut 
approach to the calculation of electric torque.  The basic approach will be the same; 
however the rotor position independence of the flux linkage as expressed in the rotor 
reference frame will allow us to develop an expression for torque which is valid for 
any machine in this class. 
 We will begin our development with (5.1-5).  Taking the partial derivative 
with respect to mechanical rotor position rmθ ,  we have 
 



9/7/2005 Copyright 2003 S.D. Sudhoff   Page 16 

 
rm

m

rm

e

rm

f WWW
θθθ ∂
∂

+
∂
∂

=
∂

∂
 (5.1-81) 

 
Our strategy will be to establish expressions for the required partial derivatives and 
substitute these into (5.1-81).  As it turns out, the result will yield an expression for 
torque. 
 Our next step is to find an expression of the electrical input energy.  Letting 

ft  be a dummy variable which represents time at the instant of interest, and 0t be an 
initial time wherein the system is de-energized, we have that  
 

 ∫=
ft

t
ee dtPW

0

 (5.1-82) 

 
where eP  is the electric power input to the field.  The electrical power input may by 
in turn expressed as 
 

 ∑
=

+++=
K

k
kkcscsbsbsasase ieieieieP

1
 (5.1-83) 

 
 In (5.1-83), asi , bsi , and csi  are the currents into the stator a-, b-, and c-
phases, and ase , bse , and cse are the time rate of change of the stator phase flux 
linkages (in other words, the stator phase voltages less the resistive drop).  The 
variables ki and ke are the current into and voltage across (less resistive drops) 
circuits attached to the rotor of the electromechanical device.   Denoting the a-, b-, 
and c-phase flux linkages as asλ , bsλ , and csλ , and the flux linking the k’th rotor 
circuit as kλ , from Faraday’s law and (5.1-83) we have 
 

 ∑
=

+++=
K

k
k

k
cs

cs
bs

bs
as

as
e i

dt
d

i
dt

d
i

dt
d

i
dt

d
P

1

λλλλ
 (5.1-84) 

 
 Transforming the stator quantities to the rotor reference frame using the 
techniques set forth in Chapter 2, the electrical input power becomes 
 



9/7/2005 Copyright 2003 S.D. Sudhoff   Page 17 

 

( )

∑
=

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

+−=

K

k
k

k

s
s

r
dsr

ds

r
qsr

qs

r
r
ds

r
qs

r
qs

r
dse

i
dt

d

dt
di

dt
di

dt
d

i

iiP

1

0
02

2
3

2
3

λ

λλλ

ωλλ

 (5.1-85) 

 
 It is convenient to break (5.1-85) into two terms 
 
 21 eee PPP +=  (5.1-86) 
 
where 

 

 ( ) r
r
ds

r
qs

r
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r
dse iiP ωλλ −=

2
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1  (5.1-87) 

and 
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 (5.1-88) 

 
 It is convenient to break eW into two corresponding terms such that 
 
 21 eee WWW +=  (5.1-89) 
 
where 
 

 ( )∫ −=
ft

t
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r
ds

r
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r
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r
dse dtiiW

0
2
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1 ωλλ  (5.1-90) 

 
and 
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 (5.1-91) 
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 Let us turn our attention to 1eW .  Noting 
  

 
dt

dP rm
r

θ
ω

2
=  (5.1-92) 

 
we have that 
 

 ( )∫ −=
ft

t

rmr
ds

r
qs

r
qs

r
dse dt

dt
d

iiPW
0

22
3

1
θ

λλ  (5.1-93) 

 
which may be expressed 

 

 ( )∫ −=
frm

rm

rm
r
ds

r
qs

r
qs

r
dse diiPW

,

0,
22

3
1

θ

θ
θλλ  (5.1-94) 

 
where frm,θ is the rotor position at time ft and 0,rmθ  is rmθ at time 0t . 

 Next, let us consider 2eW .  From (5.1-91), coupled with the fact that in the 
rotor reference frame the flux-linkage equations are rotor position invariant, it is 
clear that the 2eW  is only a function of flux, and will henceforth be denoted 

)(2 λeW , where the flux linkage vector λ is defined as 
 
 [ ]TKasdsqs λλλλλ 1=λ  (5.1-95) 
 
 Our next step is to take the partial derivative of eW with respect to 
mechanical rotor position.  From (5.1-89) 
 

 
rm

e

rm

e

rm

e WWW
θθθ ∂
∂

+
∂
∂

=
∂
∂ 21  (5.1-96) 

 
Using (5.1-94) for the first term, and noting that the second term is zero (since 

2eW is not a function of rotor position), we have 
 

 ( )r
ds

r
qs

r
qs

r
ds

rm

e iiPW
λλ

θ
−=

∂
∂

22
3  (5.1-97) 

 
 We will next address the calculation of the field energy.  Since the field 
energy is a conservative field, we can use (5.1-5) evaluated over any trajectory.  As 
in our earlier work, we will position the mechanical system and then bring up the 
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electrical system.  Using such a strategy, the mechanical contribution to the field 
energy is zero and so we have 
 
 FixedPositionMechanicalef WW =  (5.1-98) 

 
Observe that if the mechanical rotor position is fixed, 1eW is zero.  Thus we have 

 
 2ef WW =  (5.1-99) 
 
However, recall that 2eW is not a function of position – and thus neither will fW .  It 
follows that 
 

 0
)(
=

∂

∂

rm

fW
θ

λ
 (5.1-100) 

 
Our last energy to consider is the mechanical energy mW .   From (5.1-11) 

(with eT replacing ef and rmθ  replacing x , as discussed in Section 5.1-9), we have 
that 

 e
rm

m T
W

−=
∂
∂
θ

 (5.1-101) 

 
 Substitution of (5.1-97), (5.1-100), and (5.1-101) into (5.1-81) we have that 
 

 ( )r
ds

r
qs

r
qs

r
dse iiPT λλ −=

22
3  (5.1-102) 

 
Transforming (5.1-102) to an arbitrary reference frame, we have our final result 
 

 ( )dsqsqsdse iiPT λλ −=
22

3  (5.1-103) 

 
 Equation (5.1-103) is an extremely useful and important result.  It gives us 
an easy-to-use expression for electromagnetic torque for any three-phase machine in 
which the flux-linkage equations can be made rotor-position-invariant by 
transformation to the rotor reference frame.   The expression is commonly applied to 
synchronous machines (including certain classes of permanent magnet machines), a 
variety of reluctance machines, and induction machines.  It is highly useful in that it 
saves the effort of formally computing either the field or co-energy.  A similar 
procedure can also be carried out for two-phase machines; in this case the 
corresponding result is 
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 ( )dsqsqsdse iiPT λλ −=
2

 (5.1-104) 

 

5.2  A Field Approach to Torque Revisited 
Equation (5.1-104) is an extremely useful result. However, the derivation 

assumed that the coupling field is conservative, which means, strictly speaking, that 
the method breaks down in materials in which exhibit magnetic hysteresis.  In this 
section, an alternate method of deriving electromagnetic torque is derived.  It is valid 
for any distributed winding machine and is valid in the presence of hysteresis.  
However, there is a disadvantage in that one additional assumption will be made, 
which is that the slot/winding structure used for practical construction of the stator 
windings will produce the same amount of torque in the truly continuous distributed 
winding that it attempts to approximate.  Clearly, slot induced torque ripple will not 
be captured by this method; however the same can be said of the derivation in 
Section 5.1.10 wherein the flux-linkage equations as expressed in a rotor reference 
frame were assumed to be rotor position invariant.    
 

5.2.1 Mathematical Development 
 In this section, three phase electric machinery with distributed windings 
will be considered.  The radius of the location of the stator windings and length of 
the machine will be denoted r and L , respectively.  The turns density of the x-
phase winding will be denoted )( sxsN φ where ‘x’ may be ‘a’, ‘b’, or ‘c’ and 

sφ denotes the position along the stator as measured from the a-phase axis and 
proceeding in the counterclockwise direction facing the front of the machine.  The 
turns density is such that turns out of the cross sectional diagram of the machine 
facing the front of the machine are considered positive.  

It is convenient to denote the winding function of each phase as the number 
of times the winding for that phase spans flux in the direction of rotor to stator at a 
particular point.  The winding function of each phase is denoted )( sxsW φ and 
satisfies  

 )()(
sxs

s

sxs N
d

dW φ
φ
φ

−=  (5.2-1) 

 
Thus, xsW may be found simply by integrating xsN  to within a constant, where the 
constant may be determined by noting that 
 

 0)(
2

0
=∫

π
φφ ssxs dW  (5.2-2) 
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Equation (5.2-2) comes about because for every conductor in place in a given 
direction there will be a conductor in the opposite direction.   In terms of the winding 
function, the magnetizing flux linking the x-phase may be expressed 
 

 ∫=
π

φφφλ
2

0
)()( ssrsxsxm dBWrL  (5.2-3) 

 
 An expression for torque production may be obtained starting with the 
Lorenz force equation, which states that the force acting on a single conductor in a 
machine may be expressed   
 
 )( sriLBF φ=  (5.2-4) 
 
where i is the current out of the page, )( srB φ is the flux density referenced such that 
flux flowing from the rotor to the stator is positive, and F is the force which will be 
at right angles to the conductor and at right angles to the radial flux density and will 
be in the counter clockwise direction relative to a line drawn from the center of the 
machine to the conductor.  
 From (5.2-4), the total torque on the stator in the clockwise direction may 
be expressed as 

 ∫=
π

φφφ
2

0
)()( sabcs
T

sabcssres diNBrLT  (5.2-5) 

where  
 
 [ ]Tscssbssassabcs NNNN )()()()( φφφφ =  (5.2-6) 
 
and 
 [ ]Tcsbsasabcs iiii = . (5.2-7) 
 
This must also be the negative of the torque on the rotor in the counter-clockwise 
direction, denoted eT ; i.e. 
 
 ese TT −=  (5.2-8) 
 
For certain winding distributions, including sinusoidal, the turns density may be 
expressed as a linear function of the winding function as in (5.2-9).   
 

 [ ][ ])(111)(
2

)( 3 s
T

sabcsabcs FP φφφ += AWN  (5.2-9) 

 
where P is the number of poles,Α is a constant matrix, and 
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 [ ]Tscssbssassabcs WWW )()()()( φφφφ =W , (5.2-10) 
 
and )(3 sF φ is an arbitrary scalar function of stator position.  The purpose of 
introducing )(3 sF φ into (5.2-9) is as artifact which will enable the derivation to 
handle the case wherein the machine turns density contains a sinusoidal fundamental 
component plus a considerable triple N harmonic content – the usual case.   
Substitution of (5.2-8)-(5.2-9) into (5.2-5) yields 
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 (5.2-11) 

 
Assuming that the machine is wye-connected whereupon the zero sequence current 
is zero, the contribution of the )(3 sF φ term in (5.2-11) is zero.  Next, comparing 
(5.2-11) to (5.2-3), the torque may be expressed 
 

 abcs
TT

abcse
PT iAλ
2

−=  (5.2-12) 

 
This is an interesting result in that it holds in the presence of magnetic saturation (as 
did (5.1-104)) and hysteresis (wherein the derivation of (5.1-104) breaks down). 

5.2.2 Sinusoidally Distributed Machines 
 
 As a special case, it is useful to consider a quasi-sinusoidally distributed 
machine in which 
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−=N  (5.2-13) 

 
where pkN is the peak turns density of the fundamental component of the winding 

distribution and the )3(3 sN φ term represent triplen harmonics in the winding 
function.  This is a good representation of a number of practical machines.  Applying 
(5.2-1)-(5.2-2) to (5.2-13) 
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where the )3(3 sW φ  term arises from the application of (5.2-1)-(5.2-2) to the 

)3(3 sN φ term in (5.2-13).  Comparing (5.2-9), (5.2-13), and (5.2-14) it is apparent 
that for this winding distributionA is given by 
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In this type of machine, it is often convenient to work in terms of qd0 variables.  
Transforming (5.2-12) to the arbitrary reference using the transformation defined by 
(2.X-X) and (2.X-X) 
 

 [ ] sqds
TT

s
T

mqde
PT 0

11
0 )()(

2
iKAK −−−= θθλ  (5.2-16) 

which reduces  to 
 

 ( )dsqmqsdme iiPT λλ −=
22

3  (5.2-17) 

 
which is very similar to (5.1-104) except that it is terms of the magnetizing flux 
linkages.  If the common case wherein 
 
 qslsqmqs iL )(•+= λλ  (5.2-18) 

 dslsdmds iL )(•+= λλ  (5.2-19) 
 
where )(•lsL denotes that the leakage inductance may be a function (of, for example, 
stator current magnitude or magnetizing flux magnitude), but is identical for the q- 
and d-axis, then (5.2-17) and (5.1-104) can be readily shown to be entirely 
equivalent. 
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Author’s Note (To Himself) 
You may want to add problems. 


