5/ Force and Torque

In previous chapters, we have concentrated on predicting the electrical
aspects of electromagnetic device performance. In this chapter, we consider the
production of electromagnetic force and torque. We will consider two approaches to
this subject. The first approach will be energy based. Using this approach, given
the relationship between flux linkage, current, and position, an algorithm will be set
forth to find a corresponding expression for electromagnetic force / torque. The
second approach considered will be field based. In this approach, which is
geometry-dependent, we will utilize the Lorenz force equation to obtain an
expression for torque for a certain class of rotating electromechanical devices.

5.1 AN ENERGY APPROACH TO FORCE AND TORQUE

In this section, an energy based approach to the calculation of force and
torque is set forth. In this approach, it is assumed that the relationship between
current, flux linkage, and position, i.e. the device flux linkage equation, is known.
From this information, a method to derive an expression for force will be set forth.
The same method can readily be used to calculate torque.

5.1.1 Magnetic System Description

In order to use the methods set forth in this section, the relationship
between flux linkage, current, and mechanical position must be known. It will be
assumed herein that this relationship can be expressed in one of two forms. In the
first form, the flux linkage may be expressed

i=f,(4X) (5.1-1)

where i, A, and xrepresent current, flux linkage, and position, respectively. For
multi-input systems we have that

i=f,(0x) (5.1-2)

where the bold font indicates a vector (and flux linkage and current have the same
dimension). In (5.1-1) and (5.1-2), f,() is a suitable nonlinear function. The “ 1’

subscript is a reminder that the first argument is flux linkage.
The second form of flux linkage equation is used considerably more often
than the first and is expressed

A= fi(i,x) (5.1-3)
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for single-input systems, or, for multi-input systems,
A =1;(i,X) (5.1-4)

In this case, the “i ’ subscript serves as a reminder that the first argument is a current.

5.1.2 Field Energy

Let us now consider an electromechanical device. In general, any such
device will involve a magnetic field. The energy stored in this magnetic field will be
referred to as the field energy and denoted Wy . Energy that is stored in the

magnetic field has two possible sources — the electrical system or the mechanical
system. The energy entering the stored field from the electrical system is denoted
W, ; energy entering the stored field from the mechanical system is denoted W, .

Assuming that the coupling field is lossless, we have that

We =W, +W 5.1-5
f e m

The assumption of a lossless field does not mean that it is assumed that the
device is lossless. Many sources of losses are external to the coupling field (resistive
drops, eddy current losses, friction, etc.). However, there is one important source of
loss that the assumption of a lossless core does preclude — that of magnetic
hysteresis.  Nevertheless, the analysis set forth will prove extremely useful and
sufficiently accurate in the majority of cases.

As it turns out, the field energy, and a related quantity referred to as the co-
energy, will play a critical role in determining force. In order to determine the field
energy, let us consider the j’th winding of the electromechanical device.  The

current into this winding is denoted i; and the voltage associated with the time rate
of flux across the winding is e;, where
dA;
EJ' =—
dt
The resistive loss across the coil is not considered; this is not because the resistive
losses are neglected; rather that they will simply be considered to be external to the

energy cConversion process.
The energy entering the coupling field through the j ’th winding from time

tp to time t; may be expressed

(5.1-6)

ty
We,j = _[eJIJ dt (51-7)
to
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Substitution of (5.1-6) into (5.1-7) yields

t
W, -—jfi-%dt (5.1-8)
&1 gt '
to
which reduces to

ljvf
We j = jij dA; (5.1-9)
//LJ,O
where 1;o1is Aj attg and 2; ¢ is 2jat t¢.
Summing the electrically input energy over all J windings, we have that

3 At
We =Y [ijda (5.1-10)
i=1 25,

Mechanical energy may be expressed as the integral of force over distance;
thus we have
X¢
Wy, =- j fedx (5.1-11)
Xo
where f, is the electromagnetic force, x = xg at ty and x=x; at t=t; . Therein,

it is assumed that the electromagnetic force f, and displacement x are defined to be

in the same direction. The negative sign in (5.1-11) arises from the fact that positive
force over a positive distance will cause a positive work being done on the
mechanical system, which is a negative contribution to the coupling field.

Substitution of (5.1-10) and (5.1-11) into (5.1-5) yields the primary results
of this section; that is that the energy in the coupling field may be expressed

3 A X¢
Wf = Z J‘IJdﬁJ - J.fedX (51-12)
j=1 ﬁ'j,O Xo

5.1.3 Calculation of Field Energy

In the previous section, an expression for the energy in the coupling field
was set forth (5.1-12). In this section, we focus on the evaluation of this expression.
To this end, we will concentrate on evaluating (5.1-12) when the system flux linkage
equations are of the form wherein current is a function of flux linkage and position
as in (5.1-1) and (5.1-2). If this is not the case, it is much easier to calculate co-
energy; an alternative but equally useful concept which will be introduced in Section
5.14.
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The field energy represents an energy stored in a lossless and therefore
conservative field. As a result, the energy stored in the field is a function of state —
and not how that state was reached. In other words, the field energy is a function of
present conditions, not past history.

In order to calculate the field energy, we will perform a mathematical
experiment. In this experiment, we will specify the trajectory of our state variables
(in this case the flux linkage and position) in such a way as to make (5.1-12) as easy
to evaluate as possible. Since the field is conservative, the actual trajectory is
irrelevant; thus we pick the easiest way to evaluate the trajectory.

To this end, one common trajectory is to pick ty to correspond to a point in

time wherein the field energy is zero, and the electrical system is unexcited. At this
point, since there is no magnetic field, there can be no force due to the magnetic
field. Hence, fo =0. Under these conditions, we position the mechanical system,

varying x from its initial value of xg at t =ty to a value of x at t=t¢ . This part
of the trajectory does not contribute to W since f, is zero. Thus the expression for
field energy reduces from (5.1-12) to

3 At
Wi =3 [ijd4; (5.1-13)
j=1 /1]10

Substituting our expression for current (5.1-1) or (5.1-2) on an element-by-element
basis into (5.1-13) yields

3 A
Wf = Z J.fiyj()\.,Xf)dﬂj (51-14)
j=1 /1]"0

Observe that the ‘i’ subscript in (5.1-14) is indicative of the form of the flux linkage
equation and is not an index.

The process of evaluating (5.1-14) is best illustrated by a series of
examples. In each example, we perform a numerical experiment to bring the system
from its’ initial state to an arbitrary final state.

Example 5.1.3-1
In this example, consider a single input electrical system wherein the initial

current and flux linkage are zero and where
i = (5+2x) 42 (5.1-15)

Substitution of (5.1-15) into (5.1-14) with x fixed at x; Yyields
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W =%(5+2xf)/13f (5.1-16)

Since (5.1-16) is valid for any final time, it is convenient to let t; be the
present time t whereupon A is the present value of flux linkage A, and x; isthe
present value of position x. This yields

Wy = %(5+ 2x) 13 (5.1-17)

Example 5.1.3-2
Let us now consider a multi-input system, wherein

ip = 5x4 + (10 + 2x)e?t1+242 (5.1-18)

iy =74, + (10 + 2x)e24 2% (5.1-19)

Again, we will consider the initial flux linkages to be zero, and the final
flux linkages to be 4 = 4; ¢ and A, = 4, ¢ . From (5.1-13),

At X
Wf = J.ildﬂ’l_*' J.lzdﬂz (51'20)
0 0

From evaluating (5.1-20) we will position the mechanical system at
X = X¢ . For this example, it is convenient to observe that the field energy given by

(5.1-20) may be expressed as

Ws =W step1 + W+ step2 (5.1-21)
where
A6 0
W+ step1 = J.ild/ll + jizdﬂz (5.1-22)
0 0
and where
1.1 Aa,¢
W step2-= J.ild/qvl + J.izd/iz (5.1-23)
A1 0

The second term in (5.1-22) and the first term in (5.1-23) are clearly zero.
This formulation corresponds to a mathematical experiment wherein in the first step
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the first step 4; is brought from 0 to 4; ¢ with A, fixed at zero. In the second step,
A, undergoes a trajectory from 0 to A, ¢ with 4 fixed at4; . Evaluating (5.1-
22) and (5.1-23) yields

5 1 2
vastem:Exf,%f’f +E(10+2xf)(e A _y) (5.1-24)

and

2/111]( +212'f _ e2/111f )

7 1
W step2 :Eﬂ%,f +E(1O+2Xf)(e (5.1-25)

Summing (5.1-24) and (5.1-25) in accordance with (5.1-20) yields

Wk :gxfﬂff +%(10+2Xf)(62&“+2/12,, —1j+%/1§,f (5.1-26)

Since (5.1-26) holds for any final time t;, we will choose t; =t,
whereupon 4 = 45, A=A ,and x=x; . Thus

W, =ng12 +%(1o 4 2w)(e2n 2 —1)%/15 (5.1-27)

Clearly, the process of bringing the flux linkages up one at a time can be
extended to systems with any number of inputs. We will consider additional
examples of this process when we compute co-energy — a different, but entirely
analogous process.

It should be observed that in both of these examples, the field energy was
found as a function of position x and the flux linkages. Finding the field energy in
terms of the currents can be found in using the considerably more involved
procedure set forth, for example, in [1]. However, this process is never really
necessary because if the flux linkage equations are in the second form (that is (5.1-3)
or (5.1-4)) then it is possible to find the co-energy in a straightforward fashion. The
co-energy will be discussed in Section 5.1-4 and is closely related to the field
energy.

5.1.4 Calculation of Force as Function of Flux Linkage and Position

Our ultimate objective in Section 5.1 is the calculation of force, not the
calculation of field energy. However, as it turns out, once an expression for field
energy has been derived an expression for force is readily obtained. To see this, let
us first take the total derivative of (5.1-12). By the fundamental theorem of calculus,
we have
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J
de = Z IJCM,J - fedX (51-28)
j=1

Now let us suppose, that using the method of Section 5.1.2, we have an
expression for the field energy in terms of the flux linkages, W (A, x) . Taking the

total derivative of the field energy yields,

J 6Wf ()\., X) 6Wf ()\., X)
dws = Y di; + dx (5.1-29)
j=1 04 X
Equating (5.1-28) and (5.1-29),
J J oW (A, Xx) oW (X, X)
Z deﬂ] - fedX = Z d}u] + dx (51-30)
j=1 =1 04 o

Equation (5.1-30) holds for all infinitesimally small values of d; and dx. Since
zero is infinitesimally small, let us setall d; equal to zero in (5.1-30). This yields

the simple and powerful result,
oW (X, X)

= 5.1-31
e x ( )

Example 5.1.4-1
In order to demonstrate the utility of (5.1-31), let us reconsider the magnetic

system of Example 5.1.2-1, and attempt to calculate the torque. Applying (5.1-31) to
(5.1-17) we have

Q:—éf (5.1-32)

Example 5.1.4-2
Let us reconsider the magnetic system set forth in Example 5.1.3-2. In

particular, applying (5.1-31) to (5.1-27)
¢ (2zi+2/12 ) 5 2
e =—le —1+5@_ (5.1-33)

Before concluding this section, the importance of the result should again be
contemplated. In particular, using the methods of field energy, once an expression
for the flux linkages is found, it is straightforward to first find the field energy and
then an expression for force. In other words, the flux linkage equations are sufficient
information to derive the expression for force. No other additional information (such
as geometry, etc.) is needed.
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5.1.5 Co-Energy

In the Sections 5.1.3 — 5.1.4, it was assumed that the flux linkage equations
were in the form of (5.1-1) or (5.1-2); in particular it was assumed that the currents
could be expressed as an explicit function of flux linkage and position. In this
section, we consider the more common case wherein flux linkage is expressed as a
function of current and position. This corresponds to the formulation set forth in
(5.1-3) or (5.1-4).

Our basic approach to finding an expression for torque in this case will be
through the use of a concept known as co-energy. To introduce this concept, let us
reconsider the evaluation of the field energy given by (5.1-13). In particular,
consider the j ’th term in the summation which we will define as

lj;f
Wi = [ijd4 (5.1-34)
l]’o

Comparing (5.1-13) and (5.1-34), we have

J
Wi =3 Wy | (5.1-35)
j=1

The evaluation of (5.1-33) may be viewed geometrically in Figure 5.1-1.
Clearly, (5.1-33) corresponds to the indicated area. The corresponding component
of co-energy, W, jis the complementary area also indicated in Figure 5.1-1 and

expressed mathematically as
iJ,f
We, j = j/ij di (5.1-36)

|j’0

where i;q and ij ¢ correspond to 1joand 4; ¢, respectively. It is also apparent
from Figure 5.1-1 that

We j +Wt j =2t jit j — 4o jio,j (5.1-37)

Throughout Section 5.1, the use of the “ f * subscript on the currents and

flux linkages is primarily to allow us to use either current or flux linkage as a
variable of integration; since formally we should not use the variable of integration
to also be a limit of integration. In other words, we can consider A¢ j and it ; to

be the present values of interest 4; and i; ; we have introduced the “ f * for integral
operation just so that we do not have to introduce another dummy variable of
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integration. For this reason, as we have done earlier, we drop the * f * subscript in
(5.1-37) which may then be written as

We,j +Ws j = 4jij — Ao, jio,j (5.1-38)

In order to evaluate W, ; we substitute (5.1-3) or (5.1-4) into (5.1-36)
which yields

iJ,f
We j = [ £z, di (5.1-39)

iJ,O

The total co-energy may then be expressed as

We = 2We (5.1-40)
j=1
Combining (5.1-39) and (5.1-40),
3 s
We =2 | f3,(0,x) dij (5.1-41)
=i},

which is entirely analogous to (5.1-14).
From (5.1-35), (5.1-38), and (5.1-40), it is readily shown that

J
We +Wy = 3 (41} - 40} 0) (5.1-42)
j=1

Equation (5.1-42) has some important physical ramifications. In particular, recall
the field energy is a conservative field in that it is only a function of state — not of
how that state was achieved. Since the field energy is only a function of state; and
the term on the right hand side of the equal sign in (5.1-41) is only a function of
state, it follows from (5.1-42) that the co-energy is only a function of state. In other
words, the co-energy is a conservative field. Thus (5.1-41) may be evaluated along
any trajectory (preferably the one that makes the evaluation easiest) and the same
result will be achieved.

Example 5.1.5-1

Let us find the co-energy associated with the following electromechanical
system
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Ay = 20y +—(iy i) (5.1-43)
2+X

Ay =5i94 +?1X(il +ip)0° (5.1-44)

In evaluating the co-energy, we will take an approach similar to that in Example

5.1.3-2. In particular, we will utilize a two step process, wherein in the first step we

bring up the first current (in this case from zero) while holding the second current at

zero. Then, we hold the first current constant while we bring up the second current.
In particular, starting with (5.1-39) we have

h Iyt

W, = [Adi+ [ Apdi (5.1-45)
0 0

with X held fixed at x; , which can be broken up as

We =We step1 +We step2 (5.1-46)
where
i, ¢ 0
We step1 = -[/11|i2:0 dig + J./Izdiz (5.1-47)
0 0
and
i, f i2,f
We,step2 = [ Adiy + é /12|i1=i1 ; diy (5.1-48)
I, f '

Clearly, the first term in (5.1-47) and the second term in (5.1-48) are zero.
Substitution of (5.1-43) into (5.1-47) with i, =0 yields

i, f 05
W, = [ 2i;+ iy 2di 5.1-49
¢,stepl (f) AL N ( )
which evaluates to
. 2 1 .5
W =it + < i 5.1-50
c,stepl =1, f 32+Xf 1, f ( )

For the second step, we bring up the second current while we hold the first current
equal to its’ final value from step 1. Substituting (5.1-44) into (5.1-48) yields
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1

W step2 = zjf 594 + f (iy 1 +ip) > diy (5.1-51)
0
which evaluates to
We step2 = %'%ﬁ‘ +%ﬁ(il,f +ip, 1 )1'5 —éﬁ(il, f )1'5 (5.1-52)
Adding (5.1-50) to (5.1-52) yields
W, =if +§2+1Xf (ip ¢ +ig 1) +%i%f# (5.1-53)

As a final note, we observe that t, i ¢, iy ¢, and x¢ could represent any

value of time, current, and position, so we drop the “ f * subscript leading to our
final expression for this example:

2 2 1 . .5 5.4
W, =i2 + 5= (iy +i +—1 5.1-54
c=h 32+x(1 2) 142 ( )

Example 5.1.5-2
In this example, we consider the same magnetic system as in Example

5.1.5-1, but we will solve the problem in a different way. In particular, in
evaluating (5.1-45) we will assume that the currents follow the trajectory

=iy o (5.1-55)
1=, f
i, =iyt (5.1-56)
2 2,f

where « varies from 0 to 1. Observe that from (5.1-55) and (5.1-56) we have that

diy =iy tda (5.1-57)
di2 = izlfda (51-58)

Incorporating (5.1-55)-(5.1-58) into (5.1-45) we have
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1
W, :I[Zil @ — iy ¢ +i f)0-5040-5)1 (da+
GNP IRl '
. (5.1-59)
j(sig-‘f‘ao-“ LGy +i f)0-5&0-5}2 (da
oL 2 2+x ot *

which reduces to (5.1-53), whereupon it can be seen that the path of integration did
not affect the results, as must be the case for a conservative field.

5.1.6 Calculation of Force as Function of Current and Position

At this point, while the reader may feel comfortable calculating co-energy,
the reader may be questioning its use. In answer to this, we will show that the co-
energy provides a useful vehicle in the calculation of force.

We begin our development by re-arranging (5.1-42) such that

J
We = Z(/Ijij —lj,oij,o)—Wf (5.1-60)
=1
From which
J
W, = 3 (4;di; +i;d4; )-dw; (5.1-61)
=

Substitution of (5.1-28) into (5.1-61)

J J
dwe = Z(ﬂjdijﬂjdzj)-z ijdA;j + fodx (5.1-62)
= j=1
which reduces to
J
dw, = Z/deij + fedx (5.1-63)
j=1

In our next step, let us suppose that we have the co-energy as a function of
current and position, i.e. W, (i, x) . Taking the total derivative yields,

J i oW (i,
W, (i, ) di + £ (i,%) dx

oi ) ox

dW, =
j=1 dj

(5.1-64)

Equating (5.1-63) and (5.1-64)
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J J i oW (i, X
$ 2,01 + fodx= 3 Wel@) g W60 (5.1-65)
=1 =1 9 X

Equation (5.1-65) must hold for all infinitesimally small values of di;and

dx . Since zero qualifies as an infinitesimally small value, it is convenient to
setdi; =0 forall j. This yields our desired result, namely that

_ We(i%)

f
¢ OX

(5.1-66)

Equation (5.1-66) is a terribly important result — it is the workhorse result in terms of
the calculation of electromagnetic force. It should be committed to memory by
anyone interested in electromechanical devices.

Example 5.1.6-1
Let us reconsider the Example 5.1.5-1. In particular, we will find the

electromagnetic force for the magnetic system specified therein. Applying (5.1-66)
to (5.1-54) yields

fo =2 (g i)' (5.1-67)

3(2+x)

5.1.7 Conditions for Conservative Magnetic Fields

An important assumption of our results in this section are that the field
energy and co-energy are conservative fields. We have argued that from a physical
viewpoint, this amount to neglecting magnetic hysteresis. However, as it turns out
this places a mathematical restriction on how we describe the system flux linkage
equations. In particular it can be shown that for a multi-input electrical system of
the form (5.1-2) we must have that

of,; of
Ll T Ak (5.1-68)
oh 04
and that for a system of the form (5.1-4) we must have
of; i of;
Tk (5.1-69)
alk alj
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for all j,kefl---J]. A discussion of this result as well as the implications of

violating these constraints is set forth in [2-4]. The reader is advised to make sure
that the flux linkage equations obey (5.1-68) or (5.1-69) as appropriate.

5.1.8 Linear Magnetic Systems

As a useful special case, let us consider the co-energy and field energy
produced by a magnetically linear system with J inputs in which

A=Li (5.1-70)
Note that from (5.1-69) the L matrix must be symmetric.

We will first consider the calculation of co-energy. Our initial condition for
calculation of the co-energy is that i =0 and that our final condition is i =i . Itis

convenient to utilize a trajectory as in Example 5.1.5-2 wherein

i=aif (5.1-71)
where « will vary form 0 to 1. Clearly

dl] :ij’fda (51-72)

Utilizing (5.1-41) in conjunction with (5.1-70)-(5.1-72) we have that

31 _
We = El (f)(Llf“)‘j.tth ij,tde (5.1-73)

which evaluate to

W, = ¥ L |- (5.1-74)
€ 212 Fjthrow ) f '
Rearranging (5.1-74)
W, = 3L (L I i (5.1-75)
¢ j=l2 f j'thcolumn I '
which may be written more simple as
W, = %in Li; (5.1-76)

Dropping the “ f ” subscript, the co-energy for a magnetically linear system may be
expressed
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W, = %iT Li (5.1-77)

Following an analogous procedure for the field energy, it can be shown that

W :%ﬂ L™ (5.1-78)

Using the flux linkage equations (5.1-70), it is readily shown that for this linear
system the field energy and co-energy are equal, i.e.

W, =W (5.1-79)

This result does not hold for non-linear systems.

5.1.9 Rotational Systems

The expression for mechanical work in a mechanically translational system
is the integral of force over a distance as given by (5.1-11). For rotational systems,
force is the integral of torque over angular displacement. Thus our expression for
mechanical work becomes

grm,f
Wi == [TedOn (5.1-80)

grm, 0

where T, is electromagnetic torque and &y, is rotational position. These quantities

are assumed to be defined to be positive in the same direction. Equation (5.1-80) is
of the exact same form as (5.1-11) so all of our results for translation systems also
hold for rotational systems with the exception that electromagnetic torque
Te replaces force f, and rotational position &y, replaces translational position x .

5.1.10 Application to Rotationally Transformable Machinery

As it turns out, for ac electric machinery in which position dependent
inductance can be used to eliminate rotor position inductances, there is a short cut
approach to the calculation of electric torque. The basic approach will be the same;
however the rotor position independence of the flux linkage as expressed in the rotor
reference frame will allow us to develop an expression for torque which is valid for
any machine in this class.

We will begin our development with (5.1-5). Taking the partial derivative
with respect to mechanical rotor position &,,,, we have
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Wt oW, L Wi

(5.1-81)
9y  00m 06

Our strategy will be to establish expressions for the required partial derivatives and
substitute these into (5.1-81). As it turns out, the result will yield an expression for
torque.

Our next step is to find an expression of the electrical input energy. Letting
t¢ be a dummy variable which represents time at the instant of interest, and tg be an

initial time wherein the system is de-energized, we have that

ty
W, = jPedt (5.1-82)
)

where P, is the electric power input to the field. The electrical power input may by
in turn expressed as

K
P. =€a5ias +€hsins +Ecsics + 2. Ekik (5.1-83)
k=1

In (5.1-83), iy, ips, and i are the currents into the stator a-, b-, and c-
phases, and e, ens, and e are the time rate of change of the stator phase flux
linkages (in other words, the stator phase voltages less the resistive drop). The
variables i, and e, are the current into and voltage across (less resistive drops)
circuits attached to the rotor of the electromechanical device. Denoting the a-, b-,
and c-phase flux linkages as A5, Aps, and A, and the flux linking the k’th rotor

circuitas Ay , from Faraday’s law and (5.1-83) we have

A . dAe. di.. Kdi .
P =—Casj 7bsg | e oo 5 K 5.1-84
e dt as dt bs dt cs El dt k ( )

Transforming the stator quantities to the rotor reference frame using the
techniques set forth in Chapter 2, the electrical input power becomes
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3| .r dﬂ“as ir dﬁv(rjs . dlgs
—|1 i +2i +
AR R

K

Z—d/lk ik

k=1 Ot

It is convenient to break (5.1-85) into two terms

Pe =P +Pe2
where
3(.r . .
Pe1 = E(/Icr:ls'c:s - ﬂas'gs )‘“r
and
3, dlgs o odA L. ddg
P, ==|i i +2i S
e2 2 gs dt ds dt 0s dt
Kd .
—i
kZ::1 dt ¢
It is convenient to break W, into two corresponding terms such that
We =Wy +Wep
where
tig
Wel .[2( ds qs ids)“—’ dt
to
and
W i 3| .r dﬂas o d/ltrjs 2i %s z i ldt
= || = +i +2i —|
€2 tj AR T T =T
0
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(5.1-87)

(5.1-88)

(5.1-89)

(5.1-90)

(5.1-91)
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Let us turn our attention to W . Noting

P dO,
@y = ——1m 5.1-92
T2 dt ( )
we have that
3p de
Wel =55 J(/lasi(;s _/I(r]siclj's - dt (5'1'93)
22 % dt
which may be expressed
erm f
3P . .
Wep = E? (/Ias'as - ﬂas'és )19”“ (5.1-94)
6

m,0

where 6, ¢ is the rotor position at time t¢ and Gy, o is Oy attime tg.

Next, let us consider W, . From (5.1-91), coupled with the fact that in the

rotor reference frame the flux-linkage equations are rotor position invariant, it is
clear that the W,, is only a function of flux, and will henceforth be denoted

Wes (1) , where the flux linkage vector A is defined as
A=l gs Aas A k] (5.1-95)

Our next step is to take the partial derivative of W, with respect to
mechanical rotor position. From (5.1-89)

W, _ Wey  OWep
O 00 O

(5.1-96)

Using (5.1-94) for the first term, and noting that the second term is zero (since
We, is not a function of rotor position), we have

36rm :EE ids'qs _ﬂqs'ds (5.1-97)

We will next address the calculation of the field energy. Since the field
energy is a conservative field, we can use (5.1-5) evaluated over any trajectory. As
in our earlier work, we will position the mechanical system and then bring up the
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electrical system. Using such a strategy, the mechanical contribution to the field
energy is zero and so we have

w (5.1-98)

f :We|MechanicaI Position Fixed
Observe that if the mechanical rotor position is fixed, Wy is zero. Thus we have
W =We) (5.1-99)

However, recall that W, is not a function of position — and thus neither will Wy . It
follows that

W ()

5.1-100
06 ( )

Our last energy to consider is the mechanical energy W,,. From (5.1-11)

(with Tgreplacing foand 6, replacing x, as discussed in Section 5.1-9), we have
that

oWy,

06m

=T, (5.1-101)

Substitution of (5.1-97), (5.1-100), and (5.1-101) into (5.1-81) we have that

3P

T, = Eg(zgsigs At (5.1-102)

Transforming (5.1-102) to an arbitrary reference frame, we have our final result
3P, . .
T, = Eg(zdslqs ~ Jqsids) (5.1-103)

Equation (5.1-103) is an extremely useful and important result. It gives us
an easy-to-use expression for electromagnetic torque for any three-phase machine in
which the flux-linkage equations can be made rotor-position-invariant by
transformation to the rotor reference frame. The expression is commonly applied to
synchronous machines (including certain classes of permanent magnet machines), a
variety of reluctance machines, and induction machines. It is highly useful in that it
saves the effort of formally computing either the field or co-energy. A similar
procedure can also be carried out for two-phase machines; in this case the
corresponding result is
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P . .
Te = E(/lds'qs - ﬂqs'ds) (5.1-104)

5.2 A Field Approach to Torque Revisited

Equation (5.1-104) is an extremely useful result. However, the derivation
assumed that the coupling field is conservative, which means, strictly speaking, that
the method breaks down in materials in which exhibit magnetic hysteresis. In this
section, an alternate method of deriving electromagnetic torque is derived. It is valid
for any distributed winding machine and is valid in the presence of hysteresis.
However, there is a disadvantage in that one additional assumption will be made,
which is that the slot/winding structure used for practical construction of the stator
windings will produce the same amount of torque in the truly continuous distributed
winding that it attempts to approximate. Clearly, slot induced torque ripple will not
be captured by this method; however the same can be said of the derivation in
Section 5.1.10 wherein the flux-linkage equations as expressed in a rotor reference
frame were assumed to be rotor position invariant.

5.2.1 Mathematical Development

In this section, three phase electric machinery with distributed windings
will be considered. The radius of the location of the stator windings and length of

the machine will be denoted rand L, respectively. The turns density of the x-
phase winding will be denoted N, (¢@,)where ‘x> may be ‘a’, ‘b’, or ‘c’ and

@ denotes the position along the stator as measured from the a-phase axis and

proceeding in the counterclockwise direction facing the front of the machine. The
turns density is such that turns out of the cross sectional diagram of the machine
facing the front of the machine are considered positive.

It is convenient to denote the winding function of each phase as the number
of times the winding for that phase spans flux in the direction of rotor to stator at a

particular point. The winding function of each phase is denoted W, (¢,)and

satisfies

dWys () _ )
dg, Nyxs (¢5) (5.2-1)

Thus, W, may be found simply by integrating N, to within a constant, where the
constant may be determined by noting that

27
[Wys (#5)dgs =0 (5.2-2)
0
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Equation (5.2-2) comes about because for every conductor in place in a given
direction there will be a conductor in the opposite direction. In terms of the winding
function, the magnetizing flux linking the x-phase may be expressed

2
/1xm =rL J.Wxs (¢S)Br (¢s)d¢s (5-2'3)
0

An expression for torque production may be obtained starting with the
Lorenz force equation, which states that the force acting on a single conductor in a
machine may be expressed

F =iLB (¢5) (5.2-4)

where | is the current out of the page, B, (¢ ) is the flux density referenced such that

flux flowing from the rotor to the stator is positive, and F is the force which will be
at right angles to the conductor and at right angles to the radial flux density and will
be in the counter clockwise direction relative to a line drawn from the center of the
machine to the conductor.

From (5.2-4), the total torque on the stator in the clockwise direction may
be expressed as

2z
Tes =rL j Br (¢s)Nabcs (¢s )T iabcsd¢s (5-2'5)
0
where
Nabcs (¢s) = [Nas (¢s) Nbs (¢s) Ncs (¢s)]T (5.2-6)
and
labes = [ias ibs ics]T : (5.2-7)

This must also be the negative of the torque on the rotor in the counter-clockwise
direction, denoted T, ; i.e.

Te =—Teg (5.2-8)

For certain winding distributions, including sinusoidal, the turns density may be
expressed as a linear function of the winding function as in (5.2-9).

N (9 = & [AWae (9) + 11 1 1 Fy9)] (5.2:9)

where P is the number of poles, A is a constant matrix, and
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Wabes (¢s) = [Was (¢s) Wbs (¢s) Wcs (¢s )]T ) (5.2-10)

and Fs(gs) is an arbitrary scalar function of stator position. The purpose of
introducing F3(gs) into (5.2-9) is as artifact which will enable the derivation to

handle the case wherein the machine turns density contains a sinusoidal fundamental
component plus a considerable triple N harmonic content — the usual case.
Substitution of (5.2-8)-(5.2-9) into (5.2-5) yields

2z AWapes (45) +

P
Te =-rL—
L1 1 R

T
2 J Br(¢s){ j iabcsd¢s (5-2'11)
0

Assuming that the machine is wye-connected whereupon the zero sequence current
is zero, the contribution of the F3(¢) term in (5.2-11) is zero. Next, comparing

(5.2-11) to (5.2-3), the torque may be expressed
__Por T
Te = _E/labcsA Tabes (5.2-12)

This is an interesting result in that it holds in the presence of magnetic saturation (as
did (5.1-104)) and hysteresis (wherein the derivation of (5.1-104) breaks down).

5.2.2 Sinusoidally Distributed Machines

As a special case, it is useful to consider a quasi-sinusoidally distributed
machine in which

sin(Pgs /2) 1
Nanes (#s) = N | sin(Pg /227 /3) |+| 1|N3 (3¢5) (5.2-13)
sin(Pgs /2+2713)| |1

where N is the peak turns density of the fundamental component of the winding

distribution and the N3(3¢)term represent triplen harmonics in the winding

function. This is a good representation of a number of practical machines. Applying
(5.2-1)-(5.2-2) to (5.2-13)

cos(Pgs /2) 1
Wabcs(¢s):(2Npk/P cos(Pgs /2—-27/3) |+|1 W5(345)  (5.2-14)
cos(Pgg/2+2713)| |1
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where the W3(3¢5) term arises from the application of (5.2-1)-(5.2-2) to the
N3 (3¢s) term in (5.2-13). Comparing (5.2-9), (5.2-13), and (5.2-14) it is apparent
that for this winding distribution A is given by

0 2 -2
A= % 2 0 2 (5.2-15)
2 -2 0

In this type of machine, it is often convenient to work in terms of qdO variables.
Transforming (5.2-12) to the arbitrary reference using the transformation defined by
(2.X-X) and (2.X-X)

P - -1,
To = om0 ] AT, (0) Higaos 5216

which reduces to

3P . .
Te = Ef(ldm'qs "Iqm'ds) (5.2-17)

which is very similar to (5.1-104) except that it is terms of the magnetizing flux
linkages. If the common case wherein

Ags = Agm + Lis (*)igs (5.2-18)
Ads = Adm + Lis (*)igs (5.2-19)

where L (e) denotes that the leakage inductance may be a function (of, for example,

stator current magnitude or magnetizing flux magnitude), but is identical for the g-
and d-axis, then (5.2-17) and (5.1-104) can be readily shown to be entirely
equivalent.
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Author’s Note (To Himself)
You may want to add problems.
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