
Vectorizing Fitness Functions and Calling External
Functions from Matlab

Aaron M. Cramer

10/16/06

 While executing a genetic algorithm (GA), the fitness function is evaluated many times per
generation. By default, GOSET performs these evaluations using a for loop. By The MathWorks’ own
admission the performance of for loops in Matlab leaves something to be desired. The Matlab
documentation suggests that the matrix-oriented nature of Matlab makes matrix and vector calculations
more efficient than the equivalent calculations in a for loop. It is possible to improve the performance of
GOSET on certain problems by removing this for loop from the GA.
 One technique for removing this for loop is to vectorize the fitness function. In particular, there is
a field of the GAP structure called ev_bev. By default this block evaluation field has a value of false.
However, if it were feasible to calculate the fitness of each individual at the same time, with one function
evaluation, then this value should be set to true. Consider Rosenbrock’s problem,

 () () ()22
12

2
121 1001, xxxxxf −+−= (1)

The fitness function for this problem can be described using the function in Listing 1.

Listing 1 Scalar fitness function (scalarfitness.m)
function fitness = scalarfitness(x)

f = (1-x(1))^2+100*(x(2)-x(1)^2)^2;
fitness = 1/(f+0.001);

A script file like that shown in Listing 2 can be used to optimize the Rosenbrock function.

Listing 2 Scalar script (scalarscript.m)
tic;

GAP = gapdefault;

GAP.fp_ipop = 1000;
GAP.fp_npop = 1000;

% x1, x2
GAP.gd_min = [-10,-10];
GAP.gd_max = [10, 10];
GAP.gd_type = [2, 2];
GAP.gd_cid = [1, 1];

[fP,GAS] = gaoptimize(@scalarfitness,GAP,[],[],[],[]);

toc;

However, it is possible to perform all fitness function evaluations at one time using Matlab’s elementwise
arithmetic operators as shown in Listing 3.

Listing 3 Vector fitness function (vectorfitness.m)
function fitness = vectorfitness(x)

f = (1-x(1,:)).^2+100*(x(2,:)-x(1,:).^2).^2;
fitness = 1./(f+0.001);

This vectorized fitness function can be called using a script like that shown in Listing 4. Note that the block
evaluation field is set to true.

Listing 4 Vector script (vectorscript.m)

tic;

GAP = gapdefault;

GAP.fp_ipop = 1000;
GAP.fp_npop = 1000;

GAP.ev_bev = true;

% x1, x2
GAP.gd_min = [-10,-10];
GAP.gd_max = [10, 10];
GAP.gd_type = [2, 2];
GAP.gd_cid = [1, 1];

[fP,GAS] = gaoptimize(@vectorfitness,GAP,[],[],[],[]);

toc;

 Note that this technique requires that it is possible to express the fitness function in terms of vector
operations. This is possible for many fitness functions, and many tricks associated with performing this
vectorization exist. However, there are functions which may require a for loop to evaluate the fitness of
multiple individuals. It is possible to use ev_bev and write a for loop in the fitness function, but this does
not provide any savings. This effectively moves the for loop from GOSET’s evaluation function into the
fitness function, but both for loops will be equally slow. A more appropriate solution may be to move the
for loop into code that does not incur a performance penalty for executing for loops. One such
environment is a dynamic link library (DLL) written in C. It is possible to write a function in C that
evaluates the fitness of multiple individuals using a for loop (in C, not Matlab) that can be called from
GOSET using block evaluation. Consider the C file and its header file in Listings 5 and 6.

Listing 5 C implementation of fitness (rosenbrock.c)
#include "rosenbrock.h"

void populationFitness(unsigned int n, double *x, double *fitness)
{
 unsigned int counter;
 double f;

 for(counter = 0; counter < n; counter++)
 {
 f = (1.0 - x[2 * counter]) * (1.0 - x[2 * counter]) +
 100.0 * (x[2 * counter + 1] –
 x[2 * counter] * x[2 * counter]) *
 (x[2 * counter + 1] –
 x[2 * counter] * x[2 * counter]);
 fitness[counter] = 1.0 / (f + 0.001);
 }
}

Listing 6 C header file (rosenbrock.h)

__declspec(dllexport) void populationFitness(unsigned int, double*, double*);

To call this C function a fitness function like that shown in Listing 7 and a script file shown in Listing 8 can
be used.

Listing 7 DLL fitness function (dllfitness.m)
function fitness = dllfitness(x)

N = size(x,2);

fitness = NaN(1,N);

[x,fitness] = calllib('rosenbrock','populationFitness',N,x,fitness);

Listing 8 DLL script (dllscript.m)

tic;

GAP = gapdefault;

GAP.fp_ipop = 1000;
GAP.fp_npop = 1000;

GAP.ev_bev = true;

% x1, x2
GAP.gd_min = [-10,-10];
GAP.gd_max = [10, 10];
GAP.gd_type = [2, 2];
GAP.gd_cid = [1, 1];

if ~libisloaded('rosenbrock')
 loadlibrary('rosenbrock','rosenbrock.h');
end

[fP,GAS] = gaoptimize(@dllfitness,GAP,[],[],[],[]);

unloadlibrary('rosenbrock');

toc;

 To properly choose which of these methods is most efficient, it is necessary to consider several
questions. Does the performance penalty associated with the for loop outweigh the (usually low) cost of
loading and unloading the DLL? Are there many generations? Are there many individuals? There is a
performance penalty for each call to the DLL associated with making the function call. Is fitness evaluation
the dominant bottleneck in the algorithm? Making the fitness evaluation faster is useless if it was not the
problem to begin with. For example, in the simple problem presented above, each method had
approximately the same runtime. These considerations should lead to the proper strategy for fitness
evaluation.

