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1.1  The Genetic Optimization System 
Engineering Tool (GOSET) 
 

 
The Genetic Optimization System Engineering Tool (GOSET) is a MATLAB® based 
code for solving optimization problems. In the course of its development, it was 
extensively used to solve a variety of engineering problems – particularly those 
related to magnetics, electric machinery, power electronics, and entire power and 
propulsion systems. It has been used to automatically design inductors, brushless dc 
motors, power supplies, and inverters and for the parameter identification of 
synchronous machines, induction machines, gas turbines, etc.  It is meant primarily as 
an engineering tool, although it is quite generic in its ability to solve both single-
objective and multi-objective optimization problems. Because it solves these 
problems using evolutionary algorithms it is very robust in its ability to seek global 
rather than local optimum, as well as in its ability to contend with functions that are 
not ‘friendly’ in that they are, for example, discontinuous. GOSET provides the 
means for the user to either be blissfully unaware of the algorithms and parameters 
used, or to become intimately involved in the exact algorithms as well as the 
parameters used in these algorithms. It also allows the user to either work from a text-
based environment or to utilize a graphical user interface. In short, it provides the user 
with a powerful tool for the automation of the engineering design process. 

 
 

 

1.2  System Requirements 
 
GOSET runs on MATLAB Version 6.5 Release 13 and up, and you can refer to the 
system requirements for corresponding versions of MATLAB.  
 
For the MATLAB 6.5.1 or later versions running on Microsoft Windows, DLL 
version of GOSET is also provided to improve the computational speed.  If you are 
using MATLAB 6.5 on Microsoft Windows, you can download the following file and 
install this functionality. 
 

http://www.mathworks.com/support/solutions/files/s33513/GenericDll_1p1.exe 
 

The detailed installation procedure is provided in the following link. 
  

http://www.mathworks.com/support/solutions/data/1-1ABRP.html?solution=1-1ABRP 
 



 

 - 9 -  

GOSET DLL version is marked by the letter ‘D’ in the GOSET version. For example, 
DLL version of ‘goset 2.x’ is ‘goset 2.xD’.  
 
 

 

1.3  Installing GOSET 
 

GOSET is MATLAB based toolbox and the installation is a simple process of adding 
the GOSET path to the MATLAB paths. 
 
It is strongly advised not to change the default folder name of GOSET. For the 
GOSET provided with this manual, the default folder name is ‘goset 2.x’ or 
‘goset 2.xD’ for the DLL version. 
 
 
Installation Instruction 
 
1. Copy the 'goset 2.x(D)' and 'goset 2.x examples' folders in a convenient 

place. 
 
2. In MATLAB menu, go to 'File' and select 'Set Path’.  
 

 
 

3. Then, click 'Add Folder' . 
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4. Locate 'goset 2.x(D)' folder and click 'OK' to add 'goset 2.x(D)' folder to 
the MATLAB search paths. 

 

 
 

5. Click 'Save' and 'Close' to finish. 
 

 
 

6. Now, you are ready to use GOSET. 
 
 
 



 

 - 11 -  

 
 
 
 
 
 
 
An Overview of Single-Objective 
Genetic Algorithms  
 

 
This section is devoted to a brief overview of Genetic Algorithms 
(GAs) focused on the canonical genetic algorithm.  

 
2.1 Introduction to genetic algorithms 
2.2 Canonical genetic algorithm 
2.3  Other genetic operators 

 

Chapter 2 
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2.1 Introduction to genetic algorithms 
 
Genetic algorithms are optimization methods that are inspired by biological evolution. 
GAs operate on a population of candidate solutions and apply the principle of 
survival of the fittest to evolve the candidate solutions towards the desired optimal 
solutions. 
 
In GAs, candidate solutions are referred to as individuals. The defining properties of 
these individuals (parameters) are encoded to chromosomes that consist of a string of 
genes. According to the representation rule, a gene can be a symbol from an alphabet 
(in a canonical GA), a binary number, integer, real-value, etc. A population refers to 
the group of individuals. 
 
The fitness of an individual is a metric that tells us how good each individual is as the 
solution to the given problem. Using a fitness function, individuals are assigned 
corresponding fitness values. The individuals with better fitness values are more like 
to survive and reproduce. 
 
With the representation rule and the fitness function determined for the given 
optimization problem, an initial population is randomly generated and fitness values 
are evaluated. Then a pair of parent chromosomes is selected from the current 
population. The probability of selection increases with increasing fitness. Genetic 
operators such as crossover and mutation are applied to these parent chromosomes to 
generate children. The children are used to create a new population, for which fitness 
values are evaluated and assigned. This process of selection, crossover, mutation, and 
fitness evaluation is repeated until a stopping criterion is satisfied. Each iteration of 
this procedure is called a generation.   
 
From the above description of a GA, it is clear that GAs are radically different from 
the classical optimization approaches. Some of the most significant differences are: 
 

• GAs operate encodings of the parameter values, not necessarily the actual 
parameter values 

• GAs operate on a population of solutions, not a single solution 
• GAs only uses the fitness values based on the objective functions and do not 

require derivative information or other knowledge 
• GAs uses probabilistic computations, not deterministic ones 
• GAs are efficient in handling problems with a discrete search space 
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2.2 Canonical genetic algorithm 
 
In this section, a canonical GA is introduced to illustrate the fundamental mechanisms 
of GAs.  A flow chart of canonical GA is shown in Figure 2.1. There in, the GA 
begins with an initialization step, followed by a repeated sequence of fitness 
evaluation, selection, crossover and mutation. 
 

 
          

Figure 2.1  Flow chart of a typical GA 
 

Initialization 
 

 In the initialization step, initial solutions are randomly generated and encoded into 
individuals according the predefined representation rule. Binary coding is employed 
in canonical GAs. The generation number k is set to 0 and the initial population is 
denoted P0. 

 
 

Fitness Evaluation 
 
The fitness value is a figure of merit for an individual. In the fitness evaluation step, 
each individual is assigned with its fitness value. Generally, higher fitness value 
corresponds to a more optimal individual. 
 

k = k+1 

START

Initialization 

END

STOP?

Selection

Crossover

Mutation

 Fitness evaluation

k = 0; P0 

Form mating pool Mk  

Form population Pk+1  

Form population Pk+1  

^ 
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Figure 2.2  Fitness evaluation  
 

Selection 
 
In nature, the individuals that are better suited to the environment are more likely to 
survive and reproduce. The selection operator emulates this situation by ensuring that 
individuals with larger fitness values are more likely to survive to reproduce. Among 
the several different selection methods, the roulette wheel and tournament selection 
algorithms are commonly used to form a mating pool Mk. 
 
a. Roulette wheel selection 
 
Roulette wheel selection is one of the most popular selection methods. Let’s assume 
that all the individuals are evaluated and assigned with their fitness values. Then one 
can imagine a roulette wheel with sections whose number is same as the number of 
individuals and whose areas are proportional to the fitness values of the 
corresponding individuals. Then the wheel is turned and a chromosome is selected 
and copied to the mating pool. This process is repeated until the mating pool is full. 
 

Winner19
76
44
27

8
53
31
76

Individuals with 
fitness values

Assign a piece 
proportional to 
the fitness value

Mating pool

  
Figure 2.3  Roulette wheel selection 

 
b. Tournament selection 
 
As the name states, two or more individuals are randomly chosen from the population 
and the one with better fitness value is selected and copied in the mating pool. This 
method is simpler than the roulette wheel method. 
 



 

 - 15 -  

 
Figure 2.4  Tournament selection 

 
 

Crossover 
 
Crossover emulates the reproduction of living organs by exchanging gene among the 
chromosomes. Crossover generates new individuals that share the characteristics of 
their parents. Crossover is performed on the mating pool Mk to form population 1

ˆ
+kP  

as a first step in forming the next generation Pk+1. The single-point crossover and the 
multiple-point crossover operators are list below. 
 
a. Single-point crossover 
 
A crossover point is randomly selected and the genes of the parents are exchanged 
after the crossover point as depicted in Figure 2.5.  
 

 Crossover point  

Parent 1  

Parent 2 0       1         1        0       1 

1       0         1        1       1 Child 1  

Child 2 0        1        1        1       1 

1        0        1        0       1 

 
Figure 2.5  Single-point crossover 

 
b. Multiple-point crossover 
 
Several crossover points are randomly chosen and the genes of the parents are 
exchanged in between the crossover points. Figure 2.6 illustrates two point crossover. 
 

 Crossover points   

Parent 1  

Parent 2 0       1         1        0       1 

1       0         1        1       1 Child 1  

Child 2 0        0        1        0       1 

1        1       1        1       1 

 
Figure 2.6  Multiple-point crossover 

Population  Randomly pick 
multiple individuals 

Winner 
 

Mating pool 
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Mutation 
 

In natural evolution, mutation occurs as the result of an error in copying the gene 
information. As an analogy to this, mutation in GA is a process of changing some 
genes in chromosomes randomly. The main role of mutation operator is to maintain 
the diversity of the population.  
 
In the canonical GA using binary representation, mutation operator flips the selected 
bit value as in Figure 2.7. The mutation operator is applied to 1

ˆ
+kP  which yield 1+kP  

 

Original chromosome       0   1   0   0   0   1   1   0   1   1 

Mutated chromosome 0   1   0   0   1   1   1   0   1   1

Mutation point

 
Figure 2.7  Mutation in binary-coded GAs 

 
 

2.3 Other genetic operators 
 
Selection, crossover and mutation are the primary genetic operators. However, other 
genetic operators have been developed to improve the performance of GAs. We 
introduce some of them that are employed in GOSET. 
 
Elitism 
 
Elitism is a mechanism to protect the best individual from being altered and lost by 
genetic operations. The simplest way to implement elitism is to pass the current best 
individual to the next population without any genetic operations. By using elitism, it 
is guaranteed that maximum fitness in the population will never decrease. 
 

 
Old population New population 

Best gene is preserved 

GA 
operators 

 
Figure 2.8  Elitism 
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Migration 
 
This operator works only when multiple-region (or multiple-population) scheme is 
employed. By setting the number of regions, n, greater than one, the population is 
divided into n different populations. Generally, these populations evolve without any 
interaction. Periodically, some of the individuals are redistributed and move from one 
region to other region.  

 

 
Region 1 

Region 3 

Region 2 

Randomly pick 
one and move 
to other region 

 
 

Figure 2.9 Migration operator 
 
Using multiple populations with migration can result in a better chance of finding the 
global optimum with less computation. 
 

 
Random search 
 
Random search is a way to extensively explore the neighborhood of the best 
individual for better solution by random mutation of the best individual. It can help 
reduce the time for the GA to converge to the optimal solution. 
 

 Pick the best
individual Randomly 

generate
mutants 

Pick the best 
mutant Compare and 

put the better one back
 

Figure 2.10  Random search 
 

As shown in Figure 2.10, the best individual is randomly perturbed to generate 
mutants. Then, the fitness values of the generated individuals are evaluated. If the 
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best among the mutants has better fitness value than that of the current best individual, 
then the current best individual is replaced by the new best individual. Otherwise, the 
original best individual is placed back to the population. 
 
 
Diversity Control 
 
For some optimization problems, there are multiple optimal solutions (multi-modal 
problems).  A naive application of GAs can result in convergence of the solutions to 
one optimal solution. Even in the problem with single optimal solution, it is not 
desirable for the many solutions exploring the same region in the solution space. 
Therefore, the diversity control is employed. By using diversity control, the under 
represented solutions are emphasized and similar solutions are penalized by adjusting 
their fitness values. 

 
  f 

 x 

 f 

 x   
(a) Without the diversity control 

 
  f 

 x 

 f 

 x   
(b) With the diversity control 

 
Figure 2.11  Diversity control 

 
Figure 2.11 shows the effect of diversity control. Each circle on the curve represents a 
solution and its fitness value is shown by the vertical bar below it. Most of the 
solutions are close to the first optimal solution in (a). With the high probability of 
selecting a solution near the first optimum, it is likely to end up having all the 
solutions near the first optimum. However, when the diversity control is used, the 
fitness function values of the overrepresented solutions in the first optimum are 
penalized as in (b) and underrepresented solutions in the second optimum are less 
penalized and have better chance to survive. 
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An Overview of  
Multi-Objective Optimization  
 

 
GOSET has the capability to perform multi-objective optimizations. 
A few fundamental notions on multi-objective optimization are 
introduced in this chapter. 

 
3.1 Multi-objective optimization problems 
3.2 GAs for multi-objective optimization 

problems 

Chapter 3 
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3.1 Multi-objective optimization problems 
 

Definition 
 
Multi-objective optimization problems involve more than one objective function. 
Each objective function is to be minimized or maximized. The general form of multi-
objective optimization problem can be formally defined as  

 

 
 
 
 

 
The fundamental difference between single-objective optimization and multi-
objective optimization is that in multi-objective optimization problem the desired 
result is a set of points that describe the best tradeoff between competing objectives 
rather than a single point representing the extrema of a single objective function. 
 
Pareto optimal solution 
 
In the single-objective optimization problem, the superiority of a solution over other 
solutions is clearly determined by comparing their objective function values. 
However, in multiple-objective optimization problem, the goodness of a solution has 
to be redefined.  
 
For this purpose, the concept of domination is introduced. Suppose there are two 
solutions x1 and x2. The solution x1 is said to dominate x2 (or x2 is dominated by x1), if 
the following two conditions are satisfied, 
 
 
 
 
 
 
As an illustration of the concept of domination, let’s consider two-objective 
optimization problem with f1 and f2. We want to maximize f1 and minimize f2. 
Assume there are five solutions as in Figure 3.1.   
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Dominance test conditions 
 

1. The solution x1 is no worse than x2 in all objectives. 
2. The solution x1 is strictly better than x2 in at least one objective. 
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First, compare the solution 1 and the solution 2. The solution 1 is better than the 
solution 2 for both of the objectives. Hence it is evident that the solution 1 dominates 
the solution 2. 
 
 

 
 

 
 
 
 
 
 
 

Figure 3.1  Dominance check example 
 

 
Now look at the solution 1 and solution 5. They have same f2 values, but solution 5 
has bigger f1 value than solution 1. Thus solution 5 dominates solution 1. As a final 
example, let’s check the dominance between the solution 1 and 4. The solution 4 is 
better for the first objective function, but the solution 1 is better for the second 
objective function. As neither solution satisfies the first condition for dominance test, 
we cannot say that either solution dominates the other. 
 
Given a set of solutions, the non-dominated solution set is a set of all the solutions 
that are not dominated by any members of the solution set. 
 

 
 
 
 
 
 
 

 
 

 
Figure 3.2   The Pareto-optimal front 

 
Each solution in the feasible decision space can be mapped to the feasible objective 
space. The non-dominated set of the entire feasible search space is called the Pareto-
optimal solution set. In Figure 3.2, a bold line in the feasible objective space is 

f2  

(minimize)

f1 (maximize) 
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called the Pareto-optimal front that is the set of all the points mapped from the 
Pareto optimal solution set. The Pareto-optimal front represents the best possible 
compromise between conflicting objectives. The Pareto-optimal front is the desired 
result of the multi-objective optimization. 

 

 
Diversity control 
 
There are multiple solutions for a given multi-objective optimization problem and any 
solution in the Pareto optimal solution set can be the best solution. Thus it is required 
to find not only as many Pareto-optimal solutions as possible, but also as diverse as 
possible solutions over the Pareto-optimal front.  

 
 
 

 
 
 
 
 
 

 
                 (a)                                                                      (b) 

 

                Figure 3.3  Different distributions of solutions 
 

In the Figure 3.3, there are five points in Pareto-optimal front for each case (a) and (b).  
While the solutions of (a) are concentrated on a specific part of the Pareto-optimal 
front, those of (b) are evenly distributed over the Pareto-optimal front. There are 
chances that the most appropriate solution for the given problem exists in the 
neglected portion of the Pareto-optimal front in case (a). Thus, it is very important to 
have diverse solutions. 
 
There are several different techniques used to control the diversity of solutions. The 
interested is referred to [Deb01] or [Car02]. 
 

 
3.2 Genetic algorithms for multi-objective 

optimization problem 
 
Genetic algorithm utilizes a population of solution candidates. It is possible for the 
genetic algorithms to find out multiple optimal solutions in one execution. Meanwhile, 

f1(x)   
(minimize) 

f2(x) 
(minimize) 

Pareto-optimal front 

f1(x)   
(minimize) 

f2(x) 
(minimize) 

Pareto-optimal front 
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a series of executions is required to find out multiple solutions in the classical 
optimization approaches. Therefore, genetic algorithms are highly suitable for solving 
multi-objective optimization problems. 
 
Schaffer [Sch84] implemented the first multi-objective genetic algorithm in 1984 to 
find a set of non-dominated solutions. However, it is not until mid 1990’s that the 
researchers became actively involved in this area.  
 
Several different multi-objective genetic algorithms have been developed over the 
years. The followings are some of those. 

 
• Vector Evaluated GA (Schaffer, 1984) 
• Non-Dominated Sorting GA (Goldberg, 1989) 
• Niched-Pareto GA (Horn et al., 1994) 
• Vector-optimized ES ((Frank Kursawe, 1990) 
• Multiple objective GA (Fonseca & Fleming, 1993) 
• Weighted-Based GA (Hajela and Lin, 1993) 
• Random Weighted GA (Murata & Ishibuchi, 1995) 
• Distance-based Pareto GA (Osyczka & Kundu., 1995) 
• Strength Pareto EA (Zitzler & Thiele., 1998) 
• Elitist NSGA (NSGA II) (Deb et al., 2000) 
• Pareto-archived ES (Knowles & Corne., 2000) 
• Rudolph’s elitist MOEA (Rudolph, 2001) 

 
Detailed description of these algorithms can be found in Deb [Deb01]. 
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Chapter 4 
 
 
 

 
GOSET Data Structures and  
Algorithm Execution  
 

 
4.1 Data structures 
4.2 Algorithm execution flow 
4.3 Execution of GOSET 
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4.1 Data Structures 
 

A large amount of information is involved in the genetic algorithm execution. To 
facilitate the information in an organized fashion, GOSET categorizes the 
information into the following three structures: 
   

MATLAB structure name Contents 

P Population information 
GAP Genetic Algorithm Parameters 
GAS Genetic Algorithm Statistics 

 
Table 4.1  Data structures 

 
We will begin our description of these with population information structure P. 
 
 
Structure: P 
 
Structure P contains all the information related to the current population. There are 
16 fields associated with this structure. Field names and their descriptions are list in 
the following table. 
 

P.[Field name] Description 

P.fithandle Handle to the fitness function  

P.size The number of individuals in the population 

P.mfit Unconditioned fitness function values  (P.nobj × P.size)  

P.fit Fitness function values (1 × P.size) 

P.eval 
Fitness evaluation flag (1 × P.size) 

0 : fitness is not evaluated 
1 : fitness is evaluated 

P.age Age of each individual of the population in generations 

P.ngenes Number of genes in all chromosomes of an individual 

P.min GAP.gd_min 

P.max GAP.gd_max 

P.type GAP.gd_type 

P.chrom_id GAP.gd_cid 

P.normgene Normalized gene values (P.nobj × P.size) 
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P.gene Gene values (P.nobj × P.size) 

P.region Geographic region (1 × P.size) of an individual 

P.pen Penalty function (1 × P.size) which is used for diversity 
control 

 
Table 4.2  Data structure of the population  

 
 
 
Structure: GAP 
 
Structure GAP has all the parameters about genetic operations. There are 67 fields 
associated with GAP. They are listed below with their description and default values   
 

GAP.[Field name] Description Default 
Fundamental parameters 

GAP.fp_ngen Number of generations to evolve 100 

GAP.fp_ipop Number of chromosomes in initial population  100 

GAP.fp_npop Number of chromosome in normal population 100 

GAP.fp_nobj Number of objectives 
Argument 

for 
gapdefault 

GAP.fp_obj Objective to optimize  
Note: 0 for multi-objective optimization 

1: fp_nobj =1 
0: fp_nobj >1 

Diversity control parameters 

GAP.dc_act 
Diversity control usage flag 
 

0 : non-active          1 : active 
 

1 

GAP.dc_alg Diversity control algorithm used in selection 4 

GAP.dc_spc 
Diversity control space 
 

1 :  Parameter  space (or solution space)          
2 :  Fitness function space 
 

1 

GAP.dc_mnt Minimum threshold for algorithm 1 0.02 

GAP.dc_mxt Maximum threshold for algorithm 1 0.1 

GAP.dc_ntr Number of trials for algorithm 2 3 

GAP.dc_mnb Minimum number of bins relative to population size for 
algorithm 2 0.5 

GAP.dc_mxb Maximum number of bins relative to population size for 
algorithm 2 2 

GAP.dc_dc Diversity control distance constant for algorithm 3 and 4 0.001 

GAP.dc_nt Diversity control test population size for algorithm 4 50 



 

 - 28 -  

Scaling parameters 

GAP.sc_alg 

Scaling algorithm 
 

0 : none 
1 : offset so minimum fitness is zero 
2 : linear scaling (most fit individual GAP.sc_klin more 

likely to be selected than average fit) 
3 : linear scaling (most fit individual GAP.sc_klin more 

likely to be selected than median fit) 
4 : linear scaling (most fit individual GAP.sc_klin more 

likely to be selected than least fit) 
5 : sigma truncation 
6 : quadratic scaling 
 

1 

GAP.sc_kln Scaling factor for linear scaling algorithms 10 

GAP.sc_cst Scaling constant for sigma truncation 2 

GAP.sc_kmxq 
Maximum scaling factor for quadratic scaling (most fit 
individual GAP.sc_kmxq more likely to be selected than 
median fit) 

10 

GAP.sc_kmnq 
Minimum scaling factor for quadratic scaling (least fit 
individual GAP.sc_kmnq more likely to be selected than 
median fit) 

0.01 

Selection algorithm parameters 

GAP.sl_alg 
Selection algorithm 
 

1 : Roulette wheel        2 : Tournament    3 : Custom 
 

2 

GAP.sl_nts Number of individuals used in a tournament 4 

GAP.sl_cah Custom algorithm handle [ ] 

Death algorithm parameters 

GAP.dt_alg 

Selection algorithm 
 

1 : Replace parents            2 : Random replacement 
3 : Tournament on fitness   4 : Tournament of age 
5 : Custom                            6 : Random among 1-4 
 

2 

GAP.dt_nts Number of individuals used in a tournament 4 

GAP.dt_cah Custom algorithm handle [ ] 

Mating and crossover parameters 
GAP.mc_pp Percentage of population replaced by children 0.6 

GAP.mc_fc Fraction of chromosomes involved in crossover  1 

GAP.mc_alg 

Crossover algorithm 
 

1 : Single point crossover 
2 : Scalar simple blend crossover 
3 : Vector simple blend crossover 
4 : Scalar simulated binary crossover 
5 : Vector simulated binary crossover 
6 : Randomly apply above algorithms 
 

4 

GAP.mc_gac Number of generations between changing algorithms for 
random crossover algorithm. 3 

GAP.mc_ec Tightness of distribution (ηc) for algorithms 4 and 5 2 
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Mutation parameters 
GAP.mt_ptgm Probability of a total gene mutation 0.001 
GAP.mt_prgm Probability of a relative partial gene mutation 0.002 
GAP.mt_srgm Standard deviation of relative partial gene perturbation 0.3 
GAP.mt_pagm Probability of a absolute partial gene mutation 0.002 
GAP.mt_sagm Standard deviation of absolute partial gene mutation 0.1 
GAP.mt_prvm Probability of relative vector mutation  0.002 
GAP.mt_srvm Standard deviation of relative vector mutation 0.3 
GAP.mt_pavm Probability of absolute vector mutation  0.002 
GAP.mt_savm Standard deviation of absolute vector mutation 0.1 
GAP.mt_pigm Probability of integer gene mutation 0.008 

Gene repair parameters 

GAP.gr_alg 
Gene repair algorithm 

1 : evaluate an individual at a time 
2 : evaluate all the individual in a population 

1 

Migration parameters 

GAP.mg_nreg Number of geographic regions the population is distributed 1 

GAP.mg_tmig Time between migrations in generations 0 

GAP.mg_pmig Probability of an individual to migrate  0 

Evaluation Parameters 

GAP.ev_bev 
Block evaluation flag (1 × P.size) 

0 : evaluate an individual at a time 
1 : evaluate all the individual in a population 

0 

GAP.ev_are 
Fitness reevaluation option 
 

0 : evaluate the unevaluated chromosomes only 
1 : always reevaluate 
 

0 

GAP.ev_ssd 
Supplementary data passing  
 

0 : pass only gene values and optional data if exist 
1 : pass also age, region No. and previous fitness value 
 

0 

Elitism parameters 

GAP.el_act Elitism activation flag 1 

GAP.el_fgs Fraction of generations to pass before starting elitism 0 

GAP.el_fpe Fraction of population protected as elite state for multi-
objective optimization 0.5 

Random search parameters 

GAP.rs_fgs Fraction of generations to pass before starting random 
search 0.5 

GAP.rs_fps Fraction of total population size used in random search 0.1 

GAP.rs_srp Standard deviation used in relative perturbation 0.3 

GAP.rs_sap Standard deviation used in absolute perturbation 0.1 
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GAP.rs_frp Fraction of the time that relative random perturbations are used. 
Absolute random perturbation is used for the rest of the time. 0.7 

GAP.rs_fea Fraction of generations on which to execute the algorithm 0.2 

Reporting parameters 

GAP.rp_lvl 

Reporting level 
 

-1 : no reporting 
 0 : text reporting only 
 1 : plots and text reporting 
 

1 

GAP.rp_gbr Generation between reports 5 

GAP.rp_crh Custom reporting function handle [ ] 

Objective plot parameters 

GAP.op_list List of objectives to make objective plots for  [1] 

GAP.op_style Style for each objective      0 : logarithmic       1 : linear [1 1 … 1] 

GAP.op_sign 
Sign of fitness for each objective 
 

-1 : negative                    1 : positive/mixed 
 

[1 1 … 1] 

Pareto plot parameters 

GAP.pp_list List of 2 or 3 objectives to be used in Pareto plot [ ] 

GAP.pp_xl x-axis label 'Objective 1' 

GAP.pp_yl y-axis label 'Objective 2' 

GAP.pp_zl z-axis label 'Objective 3' 

GAP.pp_title Pareto plot title 'Solution Space' 

GAP.pp_style Style for each objective      0 : logarithmic       1 : linear [1 1 … 1] 

GAP.pp_sign 
Sign of fitness for each objective 
 

-1 : negative                    1 : positive/mixed 
 

[1 1 … 1] 

GAP.pp_axis Axis limits for Pareto plot [ ] 

Distribution plot parameters 

GAP.dp_type Distribution plot type     1: plot individuals   2: plot histograms 2 

GAP.dp_np Maximum no. of individuals to plot for type 1 100 

GAP.dp_res Number of bins in distribution plot for type 2 20 

Gene definition parameters 

GAP.gd_min Minimum value of gene (P.ngenes × 1 ) 

GAP.gd_max Maximum value of gene (P.ngenes × 1 ) 

GAP.gd_type Types of genes (P.ngenes × 1) 
1 : integer         2 : linear        3 : logarithmic      

GAP.gd_cid Chromosome ID of gene (P.ngenes × 1 ) 
Used for multiple chromosome case 

These fileds 
must be 

defined by 
the user 

 
 

Table 4.3  Data structure of GAP 
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Default values for GAP are defined in gapdefault.m. Thus the user can load the 
gapdefault and then redefine only the required fields, instead of defining all the 
fields. In the multi-objective optimization problems, default values for GAP can be 
initialized by using the number of objectives as the argument of GAP. For example, if 
there are 4 objectives, using gapdefault(4) returns the appropriate GAP. 
 
 
Structure: GAS 
 
The best fitness values, median fitness values, average fitness values, and best 
chromosomes over the generations are stored in GAS. Current generation number and 
the number of total objective function evaluations are also stored. 
 
 

GAS.[Field name] Description 

GAS.cg Current generation number 

GAS.medianfit 
The median fitness values of each objective 
( No. of objectives × No. of generations ) 

GAS.meanfit 
The average fitness values of each objective 
( No. of objectives × No. of generations ) 

GAS.bestfit 
The best fitness values of each objective 
( No. of objectives × No. of generations ) 

GAS.bestgenes 
The best gene values for each objective over the generations  
(No. of genes × No. of generations × No. of objectives ) 

GAS.ne The number of the total objective function evaluations 

 
Table 4.4  Data structure of GAS 

 
 
 

4.2 Algorithm Execution flow 
 

The algorithm execution flow of GOSET is depicted in Figure 4.1. Together with the 
short description of each step, the related GOSET function names are listed. 
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Figure 4.1   Algorithm execution of GOSET 

 
Initialization 
 
In this step, the initial population is randomly generated and data structures P,GAP, 
and GAS are initialized. When the population does not exist, the initial population of 
size GAP.ipop is randomly generated. Then the fitness value for each individual is 
evaluated. The other data structures are also initialized accordingly. If the steady-state 
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population size GAP.npop is smaller than the initial population size GAP.ipop, then 
the population size is reduced to GAP.npop by discarding inferior chromosomes. 
 
 

Genetic operators 
 
Various genetic operators act on the current population to generate new population. 
The detailed descriptions on these operators are in Chapter 5. 
 
 
Post-processing 
 
Once the new population has been generated, the best fitness value, the average 
fitness value, and the gene values of the best individual are stored in the data 
structure GAS. 
 
 

Report plot 
 
At the completion of the genetic operations, GOSET reports the information on the 
new population in the gene distribution plot and/or the Pareto plot. In the gene 
distribution plot, the normalized gene values of the individuals are plotted and also 
the best fitness value, the average fitness value, the average fitness value, and the 
worst fitness value over the generations are plotted. In the Pareto plot, the population 
is plotted in objective function space. 
 
 

 

4.3 Execution of GOSET 
 
When using GOSET from a MATLAB script, GOSET is initiated by gaoptimize.m 
that has the following syntax. 
 
 
 
 
 
 
 
 
 
 
 

 

 

[fP,GAS]=gaoptimize(objhandle,GAP,D,GAS,iP,GUIhdl) 
[fP,GAS]=gaoptimize(objhandle,GAP,D,GAS,iP) 
[fP,GAS]=gaoptimize(objhandle,GAP,D) 
[fP,GAS]=gaoptimize(objhandle,GAP) 
 
[fP,GAS,bI]=gaoptimize(objhandle,GAP,D,GAS,iP,GUIhdl) 
[fP,GAS,bI]=gaoptimize(objhandle,GAP,D,GAS,iP) 
[fP,GAS,bI]=gaoptimize(objhandle,GAP,D) 
[fP,GAS,bI]=gaoptimize(objhandle,GAP) 
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There are 12 arguments for gaoptimze.m which needs to be defined before 
executing GOSET.  
 

 
objhandle objhandle is the handle of the m-file for the fitness function.  
 
GAP  GAP is the structure of genetic algorithm parameters. 
 
D  D is the optional data for the fitness function. 
 
GAS GAS is the structure of genetic algorithm statistics. If this does 

not yet exist, pass an empty matrix ‘[ ]’ 
 
iP iP is the initial population (a structure). If not used, pass an 

empty matrix ‘[ ]’ 
 
GUIhdl GUIhdl is the handle used for GUI.  
 

The outputs of gaoptimize.m are Pout and GAS. 
 
fP fP is the final population (a structure). 
 
GAS GAS is the structure of genetic algorithm statistics. 

 
bI bI is the best individuals or non-dominated solution array. 

 
 
It is easy to verify that gaoptimize.m follows the algorithm execution flow given in 
Figure 4.1. As the gaoptimize.m has a simple modularized structure, it can be 
modified easily so that the users can experiment with their own routine. 

 
For the detailed description about running GOSET, refer to Chapter 7 that contains 
step-by-step illustrations of using GOSET in the command line mode and the GUI 
mode for several different optimization problems. 
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Chapter 5 
 

 
GOSET genetic operators 
 
 

In this section, the genetic operators used in GOSET are explained 
in detail. 

 
5.1  Objective Weighting 
5.2  Diversity control 
5.3  Scaling 
5.4   Selection 
5.5   Death 
5.6   Mating and crossover 
5.7   Mutation 
5.8   Gene repair 
5.9   Migration 
5.10 Fitness evaluation 
5.11 Elitism 
5.12 Random search 
5.13 Trim GA 
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5.1 Objective weighting 
 
In the multi-objective optimization problem, there are more than one fitness values for each 
individual. objwght.m randomly generates a normalized weighting vector to be used for 
scalarization of the objective function values. 
 
In the multi-objective optimization problem (P.nobj > 1), it is possible to use only one 
objective function value for fitness evaluation. If the objective function number to be used is 
specified in GAP.fp_obj, then the output weight vector owv has all zero values except for 
the element corresponding to the objective function specified by GAP.fp_obj. 
 

 
5.2 Diversity control 
 
Four different diversity control algorithms are available to maintain the diversity of the 
solutions in GOSET. These routines generate a fitness weight value for each individual. These 
fitness weight values constitute the fitness penalty vector (P.pen) that is used for determining 
an aggregated fitness P.fit in the scaling process. Individuals with many other individuals 
close to them are assigned a small fitness weight value (thereby reducing the effective fitness) 
and those with small number of neighboring individuals are assigned with fitness weight value 
near unity (thus, penalizing the fitness less).  
 
The diversity control can be applied to either the parameter (or decision) space or the fitness 
function (or objective) space. For the diversity control in the parameter space, use GAP.dc_spc 
= 1 and GAP.dc_spc = 2 is for the diversity control in the fitness function space. 
 
 

a. Diversity control algorithm 1 (GAP.dc_alg = 1) 
 

In this approach, the number of neighboring individuals of each individual is counted. 
The neighboring individuals are those within the threshold distance which is 
determined as  
 

Threshold distance = (mean distance between points) α×  , 
 
where α = (GAP.dc_mnt+rand Χ(GAP.dc_mxt-GAP.dc_mnt)). 

 
Then the fitness weight of an individual is the reciprocal of the counted number of 
individuals. Figure 5.1 illustrates this method with three examples. 
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a 
b 

4
1 afor penalty =  

2
1 bfor penalty =  1

1
1 cfor penalty ==  

c 

Threshold 
distance 

 
 

Figure 5.1  Illustration of diversity control method 1 in 2D space. 
 

While very systematic, one major drawback of this approach is the necessity of 
evaluating the distance between all the individuals which requires a computation time 
proportional to the square of the population.  

 
 
b. Diversity control algorithm 2 (GAP.dc_alg = 2) 

 
This approach is based on the idea that individuals with similar gene values have 
similar weighted sum of their gene values for any weight vector. In this method, first 
an integer weight vector is generated at random, where the element value come from 
the integer set {1, 2, … P.ngenes}. Then the weighted sum of the normalized genes 
for each individual is evaluated. Individuals with similar weighted sum values are 
grouped and put into bins based on the weighted sum. The total number of bins are 
randomly chosen from {(GAP.dc_mnb × GAP.fp_npop), … (GAP.dc_mxb × 
GAP.fp_npop)}. For the individuals in a specific bin, their fitness penalty weights 
become the reciprocal of the number of individuals in that bin.  
 
Since it is possible that two individuals with drastically different gene values have 
similar weighted sum for some weight vector, this procedure is repeated GAP.dc_ntr 
times and the largest fitness penalty weight is chosen as the final fitness penalty weight 
for each individual. This reduces the chance of assigning an individual a smaller fitness 
penalty weight than appropriate. 
 
Figure 5.2 shows an illustration of the diversity control algorithm mentioned above. 
For example, if we look at the bin No. 1, there are two individuals. So the penalty 
value for the individuals in bin No. 1 is ½, and likewise, the penalty value of the 
individual in bin No. 5 is ¼.  
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Random weight 

vector X 

Group individuals 
according to their 

weighted sum 

Bin No.        1           2           3           4           5  
 

Figure 5.2  Illustration of diversity control method 2. 
 
 

Although this approach is not as systematic as the first approach, the computation time 
is proportional to the population size, not the square of the size. 
 

 
c. Diversity control algorithm 3 (GAP.dc_alg = 3) 

 
The idea of this diversity control algorithm is similar to the diversity algorithm 1. 
Instead of using the count of solutions in a neighborhood, the sum of infinity norm 
between a solution and all the other solutions is used to determine the penalty value. 
The fitness penalty weight for k’th individual is express as 
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where di,k is the infinity norm between k’th and i’th individual, that is, the maximum 
absolute gene difference between k’th and i’th individual and dc is the distance 
constant (GAP.dc_dc) which controls the size of the neighborhood. If a small dc is 
used, then the effective size of the neighborhood is also small. Thus only the solutions 
with many neighboring solutions that are very close to them are penalized severely and 
most of other solutions are not penalized. As the dc increases, the effective size of the 
neighborhood increases and the penalty level also increases. 
 
The fitness penalty weight in the algorithm 3 can take continuous value rather than 
discrete value as in the algorithm 1. As with the algorithm 1, the distance evaluation 
between all the individuals requires a computation time proportional to the square of 
the population. 
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d. Diversity control algorithm 4 (GAP.dc_alg = 4) 
 

This approach is identical to the diversity control algorithm 3. However, only 
GAP.dc_nt individuals among the population are randomly selected for the distance 
evaluation. The random selection of the individuals is performed for each different 
individual. This reduces the computational load at the cost of some inaccuracy in the 
distance measurement. The fitness penalty weight for k’th individual is express as 
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where di,k is the infinity norm between k’th and i’th individual, dc is the distance 
constant (GAP.dc_dc) 

 
 

5.3 Scaling 
 
In the early stage of the evolution, if there are few individuals with very large fitness values, 
then these strong individuals will dominate the entire population very quickly which can lead 
to convergence to some local optimum without thorough exploration of the search space. This 
is called as premature convergence. Towards the end of the evolution, when the population is 
almost converged with most of the individuals sharing similar fitness values, then the 
competition among individuals is weak and the evolution process slows down. As a remedy to 
both these problems, scaling can be employed to maintain the appropriate evolution pressure 
throughout the evolution process. Scaling is also useful in the multi-objective optimization 
problems that have different scales in the objective functions. 
 
As the first step in the scaling operation, the fitness values are scaled using one of the six 
scaling methods. After scaling, all negative fitness values are clipped to zero, and then the 
objective function weight vector (GAP.owv) is applied to scalarize the fitness values (P.mfit) 
in the multi-objective optimization. Finally, the penalty vector (P.pen) is applied and the 
scalarized the fitness values are penalized to yield the aggregated fitness values  (P.fit) that 
are used in the selection operation. 
 
Several different scaling methods are available in GOSET. Options include no-scaling, offset 
scaling, standard linear scaling, modified linear scaling, mapped linear scaling, sigma 
truncation, and quadratic scaling. These methods are described below.  
 

a. No scaling (GAP.sc_alg = 0) 
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Scaling is not applied and the actual fitness value is used as shown in Figure 5.3. This 
option is primarily intended for fitness functions that have been carefully constructed 
so that no scaling is necessary. 
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Figure 5.3  No scaling 
 
 
b. Offset scaling (GAP.sc_alg = 1) 
 

In this method, fitness values are mapped linearly such that the minimum fitness value 
is mapped to 0 and the maximum value is mapped to  fmax ! fmin . 
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Figure 5.4  Offset scaling 
 
 
c. Standard linear scaling (GAP.sc_alg = 2) 
 

In this method, a linear scaling is used in such a way that the average fitness is not 
modified and the maximum fitness is GAP.sc_kln times the average fitness value. 
 

f = original fitness 
f’= scaled fitness 
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Figure 5.5  Standard linear scaling 
 
 

d. Modified linear scaling (GAP.sc_alg = 3) 
 
In this method, a linear scaling is applied in such a way that the median fitness is not 
modified and the maximum fitness is GAP.sc_kln times the median fitness value. 
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Figure 5.6  Modified scaling 
 
 

e. Mapped linear scaling (GAP.sc_alg = 4) 
 

This method is another linear scaling that maps the maximum fitness to GAP.sc_kln 
and the minimum fitness to 1. 

 
f’ 

 fmin  fmax 

1 

f’=af+b 
k 

f  

 

f = original fitness 
f’= scaled fitness 
 
 

GAP.sc_kln=
+⋅−=

−
−

=

k
afb
ff

ka

1

1

min

minmax
 



 

 - 42 -  

 

Figure 5.7  Mapped linear scaling 
 
 
f. Sigma truncation (GAP.sc_alg = 5) 
 

In the sigma truncation method, all the fitness values smaller than (favg ! GAP.sc_cst 

× fstd ), where favg is the average fitness value and the fstd is the standard deviation of the 
fitness values,  are mapped to negative values and therefore disregarded later by 
clipping to zeros. It is useful when there are a few individuals with very small fitness 
value and most individuals have large fitness values. 
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Figure 5.8  Sigma truncation scaling 
 
 

g. Quadratic scaling (GAP.sc_alg = 6) 
 
This algorithm emphasizes the large fitness value and deemphasizes the small fitness 
value. The maximum fitness value is mapped to GAP.sc_kmxq, the average fitness 
value to 1, and the minimum fitness value to GAP.sc_kmnq. The quadratic scaling is 
the only nonlinear scaling method in GOSET. 
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Figure 5.9  Quadratic scaling 
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5.4  Selection 
 
The selection operators choose individuals from the population to constitute a mating pool for 
reproduction. When the multiple regions are used, selection operations are confined to each 
region. For each region, the selection operator picks same number of chromosomes as those in 
the current region and moves them to the mating pool for that region. 
 
There are two pre-defined selection operators that the user can choose from. They are roulette 
wheel selection and tournament selection.  
 

a. Roulette wheel selection 
 

Each individual is assigned with the selection probability that is proportional to the 
aggregate fitness value (P.fit).  Then individuals are chosen based on the selection 
probability. It is more likely that the better individual is chosen and copied to the 
mating pool which mimics principle of the survival of the fittest. 

 
b. Tournament selection 

 
GAP.sl_nts number of individuals are randomly chosen from the population and 
their aggregate fitness values (P.fit) are compared. Then the individual with the best 
fitness value is selected to be in the mating pool. 

 
Illustrations of these selection operators are in the section 2.2. 
 
 
 

Custom algorithm 
 

In the case that the user wants to use his/her own selection algorithm, the custom algorithm 
handle GAP.sl_cah can be defined as long as the algorithm follows certain format. The 
details regarding the custom algorithm can be found in the Appendix B. 

 
 
5.5  Death 
 
Death operator determines which individual is to die and replaced by the children. The 
followings are possible options for the death operators. 
  

a. Replacing parents 
 
Parents are replaced by their own children. 
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b. Random selection 

 
The parents to be replaced are randomly chosen. 
 

c. Tournament on fitness 
 
The parent to be replaces is determined via the tournament based on the aggregate 
fitness value. GAP.dt_nts number of parents are randomly chosen for a tournament 
and the one with worst aggregate fitness value is marked for death. 
 

d. Tournament on age 
 
The parent to be replaces is determined via the tournament based on the age. Among 
the randomly chosen  GAP.dt_nts number of parents, the oldest one is marked for 
death. 
 

e. Custom algorithm 
 
User defined custom death algorithm is used. The custom function handle is assigned 
to GAP.dt_cah. Refer to the Appendix B for the details on the format of the custom 
algorithm. 
 

f. Random algorithm 
 
If this option is selected, the death algorithm is randomly chosen among the first four 
death algorithms at each generation. 
 

5.6  Mating and crossover 
 
There are three different crossover operators in GOSET. All the crossover operation is 
performed on the normalized gene values and the actual gene values are updated based on the 
crossovered normalized gene values. 
 
These crossover operations are followed by gene repair process for illegal genes. That is, if a 
gene value lies outside of the allowed range [0, 1] after the crossover operation, that gene value 
is automatically fixed using the generapair routine.  
 
 

a. Single point crossover 
 
This crossover operator is similar to the crossover operator in binary-coded GAs. In 
multiple chromosome setting, single point crossover occurs in each chromosome. The 
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following example shows a single point crossover operation on individuals with two 
chromosomes. 

 
 Crossover points 

Parent 1 

Parent 2 

0.83  0.21 0.55
1 2 

0.98  0.26

0.42  0.17 0.34 0.24  0.77 Child 2 

Child 1 
1 2 

1 2 1 2 

0.42  0.17 0.55 

0.83  0.21 0.34 0.98  0.77

0.24  0.26

 
Figure 5.10  Single point crossover with two chromosomes 

 
 

b. Simple blend crossover 
 

In the simple blend crossover, the children are generated from the weighted sum of 
their parents. It is implemented so that the gene values of the two children have same 
distance from the average value of the gene values of the parents. Figure 5.11 
illustrates how simple blend crossover works. Filled circles represent the gene values 
of parents positioned at p and q respectively, and white circles represent those of 
children. The gene values of children can take any values between (3p-q)/2 and (3q-
p)/2 and they are equally distanced from the center of p and q. 
 

 

Parents 

Children 

(3p-q)/2 

p q

(3q-p)/2 

(p+q)/2

 
Figure 5.11 

 
Depending on whether the each gene value in a chromosome is blended using same 
ratio or each gene value is blended independently, there are scalar simple blend 
crossover and vector simple blend crossover. 
 
Scalar simple blend crossover 
 
In the scalar simple blend crossover operation, each gene position has different ratio of 
blending. For example, two parents  
 

Parent 1 = [ 0   0.8   0.3 ]  and  Parent 2 = [ 1  0.2  0.5 ] 
 

 can generate  
 

Child 1 = [ 0.25   0.95   0.4]  and  Child 2 =   [ 0.75  0.05   0.4 ] 
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via scalar simple blend crossover. The first gene values moved 25% of their distance 
towards the average value of them. The second gene, -25%.  And the third gene, 50%. 
 
Vector simple blend crossover 
 
In the vector simple blend crossover operation, all the genes are blended using same 
ratio. For example, two parents  
 

Parent 1 = [ 0   0.8   0.3 ]  and  Parent 2 = [ 1  0.2  0.5 ] 
 

 can generate  
 

Child 1 = [ 0.25   0.65   0.35]  and  Child 2 =   [ 0.75  0.35   0.45 ]. 
 
For all three genes, the parent gene values are blended in such a way that they moved 
25% of the distance between them towards their average values.  

 
 

c. Simulated binary crossover 
 

As the name suggests, the simulated binary crossover operator mimics the behavior of 
the single-point crossover operator in binary-coded genetic algorithm. Detailed 
description of the simulated binary crossover operator is beyond the scope of this 
manual and only the basic concepts are introduced here. Interested readers are referred 
to [p109, Deb01] 
 

1 0 1 0 0 1 1 

0 1 0 1 1 0 1 

Crossover point Value 

83 

45 

64 Avg. 

Parent 1 

Parent 2 Child 2 

Child 1 1 0 1 0 

0 1 1 0 1 0 1 

1 0 1 
Value 

85 

43 

64 Avg.  
 

Figure 5.12  Single point crossover example 
 

Figure 5.12 illustrates an example of the single point crossover operation on the binary 
chromosomes. Note that the average values are same before and after the crossover 
operation. Hence, the amount of increase in one chromosome is same as the decrease 
in another chromosome and the children are equally distanced from the center point of 
the parents.  

 
Each point of the chromosome has the same probability to be selected as a crossover 
point. And the crossover in the lower bit results in children closer to the parents point. 
Thus the values of children are more like to be near the values of parents. With these 
investigations, the single point crossover can be simulated in real-coded genetic 
algorithms by using the probability density for the children as in Figure 5.13. 
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Figure 5.13  Simulated binary crossover 
 

In Figure 5.13, it is assumed that the parents are positioned at 0.3 and 0.6. The 
distribution index ηc is a non-negative real number that controls the spread of the 
children. If the distribution index ηc is large, the probability of generating children that 
are closer to the parents are higher. As the distribution index ηc becomes smaller, it is 
allowed to create solutions that are far from the parents. 

 
As in the simple blend crossover, there are scalar simulated binary crossover and 
vector simulated binary crossover depending on whether the each gene value is 
crossovered using same ratio or each gene value is crossovered independently. 

 
 

d. Random crossover 
 

When GAP.mc_alg is set to 6, GOSET chooses a mating crossover algorithm randomly 
among the five methods described above. They are 
 

 Single point crossover 
 Scalar simple blend crossover 
 Vector simple blend crossover 
 Scalar simulated binary crossover 
 Vector simulated binary crossover. 

 
For every GAP.mc_gac generation, the crossover algorithm changes randomly. 

 
 
 
 
 

5.7 Mutation 
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The mutation operators of GOSET can be categorized into three types as described in this 
section. All the mutation operations are applied to the normalized gene value and the actual 
gene values are updated based on the mutated normalized gene values. 
 
 

a. Total mutation 
 

With the probability of GAP.mt_ptgm, each gene value can be replaced by a new 
randomly generated gene value within the prescribed range that is defined by P.max 
and P.min. For the integer type gene, the gene value takes any integer value within the 
allowed range. 
 
In the following figure, let us assume that the real-typed third gene is mutated. As the 
mutation is applied to the normalized gene values, each gene has a value between 0 
and 1. 

 

Original chromosome     0.23   0.18   0.72    0.51    0.88

Mutated chromosome

Mutation point

0.23   0.18   0.43    0.51    0.88

Randomly generated 
new gene value

Discard original
gene value

 
 

Figure 5.14  Total mutation 
 

 
b.  Partial mutation 

 
Two types of partial mutations are employed. They are the relative partial mutation and 
the absolute partial mutation. Integer genes are not involved in the partial mutations. 

 
These mutation operations are followed by gene repair process(generepair) for 
illegal genes.  
  
Relative partial mutation 
 
With the probability of GAP.mt_prgm, each gene value is perturbed by certain fraction 
of the current gene value. The amount of perturbation is obtained using a Gaussian 
random variable with standard deviation of σrgm(GAP.mt_srgm).  
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Original chromosome     0.23   0.18   0.72   0.51   0.88

Mutated chromosome

Mutation point

0.23   0.18   0.68   0.51   0.88

  1 + N(0,σrgm) 

 
Figure 5.15  Relative partial mutation 

 
The figure 5.15 illustrates a relative partial mutation on the third gene, when the 
Gaussian random variable N(0,σrgm) has a value -0.055. 
 
 
Absolute partial mutation 

 
With the probability of GAP.mt_pagm, each gene value is added with a Gaussian 
random variable with zero mean and standard deviation of σagm(GAP.mt_sagm).  
 

 

Original chromosome     0.23   0.18   0.72   0.51   0.88

Mutated chromosome

Mutation point

0.23   0.73   0.68   0.51   0.88

  N(0,σagm)

 
Figure 5.16  Absolute partial mutation 

 
The figure 5.16 illustrates a relative partial mutation on the third gene, when the 
Gaussian random variable N(0,σagm) has a value 0.55. 

   
 

c. Vector mutation 
 

Vector mutation is very similar to the partial mutation. However, the vector mutation 
changes the each and every gene of the individual undergoing mutation. Integer genes 
do not participate in the vector mutations. 
 
These mutation operations are also followed by gene repair process for illegal genes as 
in the partial mutation.  
 
 



 

 - 50 -  

Relative vector mutation  
 

Each individual undergoes relative vector mutation with the probability of 
GAP.mt_prvm. Every gene value of the individual is perturbed by certain fraction of 
the current gene value. The amount of perturbation is obtained using  

 
Random vector = ),0( rvmdir Nv σ⋅  

 
where dirv  is a normalized random vector )1( ×ngenesP  specifying the direction of 
perturbation and ),0( rvmN σ  is a Gaussian random variable with mean 0 and standard 
deviation GAP.mt_srvm. 

 
 Original chromosome     0.23   0.18   0.72   0.51   0.88

Mutated chromosome 0.24   0.15   0.78   0.60   0.81

1 + Random vector 

 
 

Figure 5.17  Relative vector mutation 

 
The figure 5.17 illustrates a relative vector mutation when the random vector is given 
as 

[ 0.03  –0.15  –0.08  0.18  –0.08 ]. 
 

 
Absolute vector mutation 
 
Each individual undergoes absolute vector mutation with the probability of 
GAP.mt_pavm. If an individual mutates, each and every gene value of the individual is 
added with a random vector  
 

Random vector = ),0( mGAP.mt_savNvdir ⋅ , 
 

where dirv  is a normalized random vector )1( ×ngenesP  specifying the direction of 
perturbation and ),0( avmN σ  is a Gaussian random variable with mean 0 and standard 
deviation GAP.mt_savm. 

 
 Original chromosome     0.23   0.18   0.72   0.51   0.88 

Mutated chromosome 0.22   0.20   0.73   0.51   0.87 

Random vector 

 



 

 - 51 -  

 

Figure 5.18  Absolute vector mutation 
 

The figure 5.18 illustrates an absolute vector mutation with the random vector  
 

[ –0.01    0.02     0.01     0.0    –0.01 ]. 
 
 

d. Integer mutation 
 

Integer mutation is applied only to integer genes. Each gene is mutated to a randomly 
generated integer within the allowed range with the probability of GAP.mt_igm. 

 
5.8 Gene repair 
 
Sometimes the gene values generated by the matingcrossover operator or the mutation 
operator are infeasible and they fall outside of the specified range. In that case, they need to be 
repaired to have valid gene value. Two different gene repair algorithms are available to 
maintain the feasibility of the solutions in GOSET. This routine is called within the 
matingcrossover and mutation operators. 
 
 

a. Hard limiting algorithm 1 (GAP.gr_alg = 1) 
 

When the processed gene value lies outside of the allowed range, i.e. [0, 1], the hard 
limiting method maps a gene value to the nearest boundary value. For example, if a 
resultant gene value is 1.2, it is adjusted to 1, and if it is -0.4, it is adjusted to 0. 

 
 
b. Ring mapping algorithm 2 (GAP.gr_alg = 2) 

 
When the processed gene value lies outside of the allowed range, i.e. [0, 1], the ring-
mapping maps a gene value to the modulus after division by 1. For example, if a 
resultant gene value is 1.2, it is adjusted to 0.2, and if it is -0.1, it is adjusted to 0.9. 

 

 
5.9 Migration 
 

Migration is meaningful only when there are multiple regions defined, that is, 
GAP.mg_nreg > 1. This operator selects some individuals in the population and 
moves them to different regions. Each individual is migrated with the probability of 
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GAP.mg_pmig. The parameter GAP.mg_tmig determines the frequency of applying 
the migration operator and the migration interval is randomly chosen between 
0.5×GAP.mg_tmig and 1.5×GAP.mg_tmig. For example, if GAP.mg_tmig is set to 4, 
then the possible migration intervals are 2, 3, 4, 5, and 6 generations. 
 

 
5.10   Fitness evaluation 

 

In this step, the fitness values of all individuals are evaluated. GAP.ev_bev determines 
whether to evaluate the fitness of an individual at a time (GAP.ev_bev = 0) or to 
evaluate the fitness of the entire population at once (GAP.ev_bev = 1). 
 
When an individual is moved from the previous generation without any change, the 
fitness value of the individual does not change and there is no need to evaluate the 
fitness again. In this case, GOSET can evaluate only the unevaluated individuals by 
setting GAP.ev_are = 0. Setting GAP.ev_are = 1 will force GOSET evaluate all 
individuals. 
 
Evaluation of the fitness usually requires only the gene values of the individual 
(P.gene). If the optional data D is specified for the gaoptimze function call, then the 
optional data is also passed to the fitness function. On top of this, other information 
like age(P.age), previous fitness function values(P.mfit), and region(P.region) 
can be send to the fitness function by setting GAP.ev_ssd = 1. The order of the 
information passed to the fitness function is P.gene, P.age, P.mfit, P.region, and 
D. 
 
There are many different ways to define a valid fitness function for a given 
optimization problem. One fundamental rule is that the better gene should have more 
positive fitness function value than those of inferior genes.  

 
As an example, let’s look at the minimization problem of Powell function. The Powell 
function [CHO96] is described as 
 

4
41

4
32

2
43

2
214321 )(10)2()(5)10(),,,( xxxxxxxxxxxxf −+−+−++= . 

 
It is the minimization problem and the smaller function value is better. Hence, we can 
simply take the negative of f(x) as the fitness function. The following is the fitness 
evaluation routine in m-file for the problem of minimizing Powell function with -f(x) 
as the fitness function. 
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function fv = powell(x) 
 
x1 = x(1); 
x2 = x(2); 
x3 = x(3); 
x4 = x(4); 
 
f = (x1 + 10*x2)^2 + 5*(x3 - x4)^2 + (x2 - 2*x3)^4 + 10*(x1-x4)^4; 
 
fv = -f; 
 

 
The Powell function always takes the nonnegative value, and thus the inverse of f(x) 
can be another valid fitness function. A small positive value is added to the 
denominator to avoid the possible singularity at the optimum point. In this case, the 
last line of above m-file is replaced by the following line. 

 
 
fv = 1/(0.001+f); 

 
 
5.11   Elitism 

 
Elitism is a device to insure that the fittest individual in a population is preserved 
unless a better fit individual is found. 

 
Single-objective optimization case 

 
 

Pick the best
chromosome 
 

 

Old population New population 

Genetic 
operation

 

Put the better 
chromosome back 

 
 

Figure 5.19  Elitism for the single-objective optimization 
 

Elitism in the single objective optimization is straightforward. The best individual of 
the population Pk and the best individual of the population after the genetic operations 
performed are compared. The better of the two becomes a member of the next 
population. As this operation is confined within a region, the best one of each region is 
preserved for the multi-region case. 
Even in the multi-objective optimization case, there are cases that it is desirable to use 
only one specific fitness function value for elitism. This can be done by setting 
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GAP.fp_obj to the number indicating a specific objective function. The elitism, then, 
performs in the same way as with the single-objective optimization using only one 
objective function value. 
 
 

Multi-objective optimization case 
 
In the multi-objective optimization case, the objective of elitism is to preserve non-
dominated solutions. Thus, it is necessary to retain multiple individuals.  
 
First, the old population and the modified population in the same region are combined, 
and the non-dominating solutions are found.  
 
As the number of non-dominated solution can increase, the number of non-dominated 
solutions is limited to  
 
Maximum No. of non-dominated solutions = GAP.el_fpe × (No. of individuals in the region). 

 
If the reserved space for the non-dominating solutions is enough for the non-
dominating solutions just found, then some individuals corresponding to dominated 
solutions are randomly removed from the population and replaced by non-dominated 
solutions. If the reserved space cannot accommodate all the non-dominated solutions, 
then the appropriate number of non-dominated solutions are chosen using a diversity 
control algorithm and placed in the population for the next generation. 

 
 

Pick 
non-dominated 
individuals 
 

 

 

Old population New population 

Genetic 
operations

 
 

Pick non-dominated
individuals 

4.1  Yes 

4.2  No 

Fit in the 
reserved 
space? 

Make space 
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the population

 Diversity 
control 

Apply niching 
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number of 
individuals 
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Figure 5.20  Elitism for the multi-objective optimization 
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5.12   Random search 
 

Random search operator is specialized for a local search. It can reduce the convergence 
time significantly near the optimum point. In the initial stage of the evolution when the 
active exploration is desirable, it is unnecessary to apply random search. The parameter 
GAP.rs_fgs specifies the point of starting the random search. If GAP.rs_srp = 
0.2, then the random search is inactive for the first 20 percent of entire generation. At 
each generation with the active random search, the random search occurs with the 
probability given by GAP.rs_fea.  
 
Given the best solution, random search operator generates mutants of the best 
chromosome. Mutants are generated in the same way as the relative vector mutation 
based on GAP.rs_srp and the absolute vector mutation with GAP.rs_sap. The 
relative vector mutation is chosen with the probability of GAP.rs_frp and the 
absolute vector mutation is chosen with the probability of (1−GAP.rs_srp). The 
number of the generated mutants is determined by the parameter GAP.rs_fps that 
specifies the fraction of the total population size, that is 
 

The number of mutants = GAP.rs_fps × Size of the population. 
 
Then the best solution among the mutants is found and this solution replaces the 
existing best only if this solution is better than the existing best solution.  
 

 

5.13   Trim GA 
 

The trimga operator uses the Nelder-Mead simplex algorithm to perform a 
deterministic optimization using the best individual from a GA as a starting point. The 
goal is to find a better solution in the vicinity of the obtained GA solution. The 
trimga only works with single-objective optimization problems. Gene range 
constraints are enforced by subtracting infinitity from the fitness function when the 
gene range goes outside of the prescribed limits. This is a stand alone routine and is not 
the part of the evolution process.  
 
A sample call is 

  
[x,f] = trimga(GAP,P,D) 

 
 or 
 
  [x,f] = trimga(GAP,P) 
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where the inputs are the genetic algorithm parameter structure GAP the population 
structure P and optional data structure D, and where the outputs are x the revised 
solution, and f the revised fitness function value.   
 
 
 
 

 
 
 

References 
 
[CHO96] E. K. P. Chong and S. H. Żak, An Introduction to optimization, Wiley-Interscience, 

1996 
  
[Deb01] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & 

Sons, Inc., 2001 
  



 

 - 57 -  

Chapter 6 
 

 
 
GOSET  
Graphical User Interface (GUI) 
 
 

In this section, the GOSET GUI is introduced. GOSET GUI provides 
an intuitive and convenient method to use GOSET. 

 
6.1  GOSET GUI 
6.2  Main Window 
6.3  Menu bar 
6.4  Evolution status, output report  

and start/stop/continue buttons 
6.5  Main menu 
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6.1 GOSET GUI 
 
GOSET has the built-in graphic user interface (GUI) that provides an intuitive interface for the 
user. With the GOSET GUI, the user has total control over GOSET without having to 
remember parameter names or consult the documentation.  
 
GOSET GUI also provides extra features that help the user to utilize GOSET more efficiently. 
Some of them are listed below.  
  

Stop & Continue: 
 

 GOSET can be stopped at any time of the evolution process. The user may 
want to change some parameters, check the best chromosome value, or 
manipulate with the current population. The evolution process also can be 
resumed from the point it was stopped. 

 
Project save & load:  
 

 The current population and all the parameters can be saved for later use. When 
the saved project is loaded, the evolution process can be resumed as if it is 
continued from the moment the project was saved. 

 
View & save setting:  
  

 Current parameter settings for GA operators, gene definitions and fitness 
function information can be viewed. It is also possible to save these 
information in a text file. 

 
Best chromosome value display:  
 

 The actual values of the best chromosome together with the gene description 
can be viewed. 

 
Mouse-on help: 
 

 For the most GUI objects, mouse-on help is provided for efficient documentation. 
 
 Example 

 
 

Flexibility in the optional data for the fitness function: 
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 For the optional fitness function data, a vector with actual numerical elements, 
a variable name in the workspace or a ‘.mat’ file name containing the 
appropriate data can be used.  

 
6.2 Main window 
 

The GOSET GUI can be initiated by typing ‘goset’ in the MATLAB command 
window. If the GOSET GUI does not start, refer to Section 1.3 to check if the GOSET 
is properly installed.  

 

  
 

Figure 6.1   Main window of GOSET GUI 
 
 

The main window of GOSET GUI is shown in Figure 6.1.  There are five sections in 
the main window: 

 
 Menu bar 
 Evolution status display 
 Output report option 
 Start/Stop/Continue buttons 
 Main menu 

Main menu 

Output  
Report 

Menu bar 

Evolution  
Status 

Start\Stop 
\Continue 
Buttons 
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We will look at each part of the GOSET GUI in the following sections. 
 

6.3 Menu bar 
 

The menu bar, shown below, is located at the top of the main GOSET GUI window.  
 

 

         
 

Figure 6.2   Menu bar of the GOSET GUI 
 
 
The menu bar has the following menus. 

 
 File 
 Setting 
 Option 
 Help 

 
 

a. File menu 
 
File menu has submenu as in Figure 6.3.  

 

 
 

Figure 6.3   File menu of GOSET GUI 
 
 

Save current project: Store all the information of current generation including 
the population information and the parameters of 
genetic operators. 

 
Load saved project:  Load a previously saved project.  
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Recent files:   Five most recently accessed fitness function files are 

listed. They can be loaded directly by clicking them. 
 
Exit GOSET:   Close GOSET GUI. The shortcut key is Ctrl+Q. 

 
 

b. Setting menu 
 

Parameter settings of the current project can be viewed and the default settings can be 
loaded. Figure 6.4 shows the setting menu. 
 

 
 

Figure 6.4   Setting menu of GOSET GUI 
 

View setting: Display the fitness function information, gene parameters, 
parameters of GA operators as in the following figure.  

  

        
 

Figure 6.5  Setting Viewer 
 

 Selecting ‘Fitness function’, ‘Gene parameters’, and ‘GA 
operators’ will display corresponding information.  

 ‘Export to text file’ button on the upper right corner of the 
setting window saves all these information to a text file.  

 
 
Load default setting: Load default setting for GA operators. The fitness 

function, gene parameters are unchanged. 
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c. Tools menu 

 
The tools menu has two submenus ‘Trim GA’ and ‘Extra user routine’ as in Figure 6.6. 
 

   

Figure 6.6   Option menu 
 

Trim GA: Perform a deterministic optimization using the best solution found 
by GA. The found solution can be included as a current population 
member. 

 

   
Figure 6.7   Trim GA mode 

 
 
Extra user routines: Define M-files to be executed before and after the GA. 
 

 
 

Figure 6.8   User routine input box 
 

d. Help menu 
 

There are two submenus ‘About GOSET’ and ‘Forced Exit’ in Help menu as shown in 
Figure 6.9. 
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Figure 6.9  Help menu 
 

About GOSET: Display information on GOSET. 
 
Forced Exit:  Forcefully terminate GOSET GUI when the exit does not 

working.  
 
 

6.4 Evolution status, output report, and 
start/stop/continue buttons 

 
a. Evolution status display section 

 
Evolution status display section shows the current generation number, the best fitness 
value, and the average fitness value. It also has a progress bar visualizing the evolution 
process with the completion percentage. 
 

 
 

Figure 6.10   Evolution status 
 

b. Output report option 
 

The level of output report, the report interval and the computation time report flag can 
be set according to the need of the user. The plot of current generation and gene value 
of the best individual can be displayed. 

 

 
 

Figure 6.11   Output report option 
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Report level: Define the output report level. There are three options in the 

report level. 
 

None:  output report is not given. 
 
Text only: Text report of the generation number, the best fitness 

value, average fitness value, median fitness value, 
and the number of evaluations in the MATLAB main 
window. 

 
Example 

Statistics for generation 46 
Best fitness = -0.12645 
Mean fitness = -3.0653 
Median fitness = -1.6876 
Number of evaluations = 2928 

 
Text and plot: Together with text report in the MATLAB main 

window, the plot is displayed and updated every 
generation as defined by the plotting parameters. 

  
Report interval: Set the number of generations between reports. 
 
Report computation time: When checked, the time spent on each GA 

operation is displayed. If the report level is set 
to ‘None’, the computation time is not reported. 

   
 Example 

Absolute computation times for generation 56 
OWV: 0.00e+000 DC: 3.20e-002 SCALE: 0.00e+000 
SELECT: 0.00e+000 MC: 3.10e-002 MUT: 0.00e+000 
MIGRATE: 0.00e+000 EVAL: 1.50e-002 ELITE: 0.00e+000 
RS: 0.00e+000 STAT: 0.00e+000 REPORT: 4.70e-002 
   
Relative computation times for generation 56 
OWV: 0.00 DC: 25.60 SCALE: 0.00 
SELECT: 0.00 MC: 24.80 MUT: 0.00 
MIGRATE: 0.00 EVAL: 12.00 ELITE: 0.00 
RS: 0.00 STAT: 0.00 REPORT: 37.60 

 

Plot current: Display the plot of current generation as defined in the plotting 
parameters. 

 
Display best: Show the gene number, its description and the actual value of it 

as in Figure 6.12. 
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Figure 6.12   Gene values of the best chromosome  

 
c. Start/stop/continue buttons 
 

Start, stop and continue buttons are enabled and disabled depending on the situation, as 
shown in Figure 6.13. 

 

 
Figure 6.13   Status of buttons 

 
For example, when the GOSET is stopped before reaching the last generation, the start 
and the continue buttons are enabled. If the continue button is pressed, the evolution 
process is resumed from where it is stopped. If the start button is pressed, all the 
evolution result accumulated up to that point will be discarded and the GA starts from 
the generation number 1. 

 
 
 

6.5 Main menu 
 

The fitness function information, the definition of the genes, plotting parameters and 
all the genetic operator parameters are defined in the main menu. 

 
There are 14 buttons in the main menu section. When each button is pressed, the 
corresponding parameter input box will appear. In most case, it is clear what to do with 
these input fields. Therefore, we will look at only a part of the main menu section. 

 
 

a. Fitness function button 

Initial state Pause state 

Evolution state 
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The fitness function button and the fitness function name field are shown in Figure 
6.14.  
 

 
 

Figure 6.14   Fitness function button 
 

 
Fitness function button:   Open the fitness function parameter input box 

shown below. 
 

 
 

Figure 6.15   Fitness function input box 
 

 Fitness function file and the optional data for the 
fitness function are defined.  

 
Optional fitness function data field can take a vector 
with numerical elements, a variable name in the 
MATLAB workspace, or the ‘.mat’ file name that 
has the data vector. 

 
Mode of optimization:  For the single objective optimization problem, ‘S’ is 

displayed. And ‘M’ is shown for the multi-objective 
optimization problem. 

 
Fitness function name:   Display current fitness function file name. 
 
 

 
b. Gene parameters   

 
The total number of genes and their descriptions, maximum values, minimum values, 
gene types, and the chromosome number are defined.  

Fitness function name 

Mode of optimization 

Fitness function button 
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Figure 6.16   Gene parameters input box 
 

When a gene number is selected using the slide bar, its gene description, minimum and 
maximum values, type and chromosome ID are shown in the following fields. Gene 
description can be used to specify what each gene is representing. 

 
 

c. Fundamental parameters   
 
The total number of generations for evolution, the initial population size, the regular 
population size, the number of objective functions and the objective function number 
to be used in the optimization are defined.  

 
 

Figure 6.17  Fundamental parameters input box 
 

For multi-objective optimization, use value 0 in the objective function to optimize. 
Even if there are multiple objectives, a specific objective function can be used for the 
optimization, in which case, it becomes single-objective optimization problem. 
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d. Diversity control 
 
Diversity control has ON/OFF toggle switch and the user can decide whether to use the 
diversity control operator or not. 

 
 

 
 

Figure 6.18  Diversity control ON/OFF button 
 

In the parameter input box, the diversity algorithm and other parameters are defined. 
The diversity control can be applied to either the parameter space or the fitness 
function space. 
 

 
 

Figure 6.19  Diversity control input box 
 

 
e. Elitism 

 
Elitism has the ON/OFF toggle switch to activate or deactivate it as in the diversity 
control. 
 

             
 

 

Figure 6.20  Elitism ON/OFF button 
 
 

ON/OFF toggle 

ON/OFF toggle 
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Chapter 7 
 

 
 
Tutorial Lessons 
 
 

In this section, some optimization problems are considered with 
step-by-step guidance to familiarize the users with GOSET.  Each 
problem is solved using both the command line approach and 
the GUI approach.  

 
7.1 Rosenbrock’s banana function 
7.2 Tanaka problem 
7.3 Power diode curve fitting 
7.4 Transfer function fit 
 
 



 

 - 70 -  

7.1 Rosenbrock’s banana function 
 
Problem description 
 
Rosenbrock’s function [p.55, CHO96] is a real-valued function given in the following: 
 
 

. 
 
We want to find the minimizer of the function f(x1, x2). Rosenbrock’s function and its level 
sets are depicted in Fig. 7.1. Due to the shape of level sets that resemble bananas, it is also 
referred to as the banana function. The global optimizer of Rosenbrock’s function is at (1, 1) 
where the function has its value 0. 
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Figure 7.1  Rosenbrock’s function                               Figure 7.2  Level sets  
 
 
 
Before using GOSET, the fitness function for the given problem needs to be defined as an 
mfile. There are many different ways to define a valid fitness function. As it is a minimization 
problem and the Rosenbrock’s function value is non-negative, one simple way is to take the 
inverse as the fitness function. A small positive value is added to the denominator to prevent 
the singularity of the fitness function value at the minimizer. The following mfile banana.m 
defines a fitness function for Rosenbrock’s function. 
 

2 2 2
1 2 2 1 1( , ) 100( ) (1 )f x x x x x= − + −  
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The above mfile is located in the folder ‘Rosenbrock’ under ‘goset 1.0x examples’ folder. 
 

a. Command line approach 
 
With the fitness function defined, we are now ready to use GOSET to find the 
minimizer of the Rosenbrock’s function.  

 
First of all, GAP and other parameters related to the population need to be determined.  
 

GAP = gapdefault; 

GAP.fp_ngen = 200; % Total generation number 

GAP.fp_ipop = 100; % Initial population size 

GAP.fp_npop = 100; % Population size 

GAP.op_style = 0;  % Logarithmic scale for objective plot 

 
gapdefault is used to define GAP and only some parameters are redefined.  For the 
detailed information regarding the default setting of GAP, refer to gapdefault.m. 

 
The values of x1 and x2 become the gene values, and their minimum, maximum values 
are defined as  
 

GAP.gd_min  = [  -2   -1  ]; 

GAP.gd_max  = [   2    3  ]; 

 
The types of the genes are given in the vector, 
 

GAP.gd_type = [   2    2  ];. 
 
And employing only one chromosome for all the genes results in the following 
chromosome ID vector 
 

GAP.gd_cid = [   1    1  ];. 
 
All the parameters are defined in the MATLAB workspace, and thus we can execute 
GOSET by  
 

% BANANA.M 
% Rosenbrock's Banana Function 
 
function f = banana(x) 
 
f1 = 100*(x(2) - x(1)^2)^2 + 5*(1 - x(1))^2; 
f = 1/(0.001 + f1); 
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[P,GAS]= gaoptimize(@banana,GAP); 
 

All the above commands are in the script file ‘runme.m’ located in the same folder as 
‘banana.m’, so type ‘runme’ in the main window to start GOSET. 
 
Observe that the fitness function handle name is ‘@banana.’ 
 
As the default value for the report level is set to GAP.rp_lvl = 1, a plot will appear to 
show the normalized objective function values and the fitness function values as the 
GOSET evolves over the generations. Figure 7.3 is the report plot after 200 
generations. 
 

 
 

Figure 7.3  Report plot for Rosenbrock’s function 
 

There is also the text report displayed in the MATLAB main window. For this example 
the text report is:  
 

Statistics for generation 1 
Best fitness = 16.3028 
Mean fitness = 0.19982 
Median fitness = 0.0074076 
Number of evaluations = 100 
. 
. 
. 
 
Statistics for generation 200 
Best fitness = 999.9466 
Mean fitness = 304.7056 
Median fitness = 199.2891 
Number of evaluations = 12687 
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The generation number and the best, mean, and median fitness values together with the 
number of evaluations are reported. 
 
The best gene values can be found by checking the last element of  GAS.bestgenes.  

 
>> GAS.bestgenes(:,200) 
 
ans = 
 
    1.0003 
    1.0005 

 
The resultant minimizer found by GOSET turned out to be very close to the actual 
minimizer (1, 1). 
 
 

b. GUI approach 
 
The procedure for GUI approach is very similar to that of command line approach. The 
main difference is that the parameters are defined in the GUI window, not in the 
MATLAB command window or a script M-file.  
 
To start the GOSET GUI, type ‘goset’ in the MATLAB command window.  
 

 
 

Then the GOSET GUI window will appear. 
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Fitness function selection 
 
The first step is choosing the fitness function. Click ‘Fitness function’ button in the 
main menu. 
 

 
 
Then, click browse button. 
 

 
 
After locating the fitness function ‘banana.m’, select it and click ‘open.’ 
 

 
 
Click ‘Apply’ button to finish selecting the fitness function. 
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Parameter input 
 
Once the fitness function is chosen, we are ready to define gene parameters. Select 
gene parameters button. 
 

 
 
The default value for the gene number is 3. There are 2 gene values in this problem, so 
change the gene number to 2. 
 

 
 
Then, for each gene, the minimum, maximum, gene type, and chromosome ID number 
need to be defined. Gene description can also be assigned if necessary. For the first 
gene, move the slider bar to so the number at the right of ‘Parameters of the gene 
#’ is 1 and type information as in the following figure 
 
 

Slider bar 



 

 - 76 -  

 
 
For the second gene, use the slider bar again to select 2nd gene and enter the 
appropriate information as in the following figure and click apply. 
 

 
 
 

Then select fundamental parameters button in the main menu. 
 

 
 
 
In the input fields, insert parameter values as in the following and click apply. 
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The last parameters to be adjusted are the plotting parameters, so click it. 
 

 
 

Set the plot scale for the objective plot to 0 (logarithmic scale), select ‘Gene value’ for 
the distribution plot type and click apply. 
 

 
 

 
For the plotting and text report, select the report level to ‘Text and plot.’ 
 

 
Starting GOSET 
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Now, we are ready to start the GOSET and click the start button. 
 

 
 
As in the command line approach, the report plot and text will be shown and refreshed 
in every GAP.rp_gbr generation. The evolution status section in the GUI window also 
shows the current generation number, best fitness value, average fitness value and the 
progress bar. 
 

 
 
 
GOSET can be stopped at any time by clicking stop button. Try it. 
 

 
 
 
The simulation is now stopped and the user can do all kinds of things with the data 
structures generated in the Matlab workspace. You can change parameters for genetic 
operators.  or check the actual value of the best gene in the current generation by 
clicking ‘Display best’ button in the output report section. 
 
Let’s try and click ‘Display best’ button. 
 

 
 
Then the following window will pop up to list the gene numbers, gene descriptions and 
their actual values. 
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GOSET can resume the optimization process using the continue button. 
 

 
 
 
The following is the final report plot after 200 generations. 
 

 
 
 

The best chromosome at the last generation has the gene values that are very close to 
the actual optimum point (1, 1). 
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7.2 Tanaka Problem 
 
Problem description 
 
One of the most important features of GOSET is the capability to handle multi-objective 
optimization problems. As a multi-objective optimization problem, Tanaka problem [TAN95] 
is considered in this section. The Tanaka problem is a constrained optimization problem with 
two objectives to be minimized: 
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Figure 7.4   The feasible objective space and the Pareto-optimal fronts of Tanaka problem. 

 
In this problem, the variable space is also the objective space. The feasible objective space and 
the Pareto-optimal front are shown in Figure 7.4. 
 
In the first step, the fitness function for the given problem needs to be defined in a m-file. 
There are two objectives to be minimized and they all have positive values. And the fitness 
function values are defined to be the negative of the objective function values. Infeasible 
solutions are assigned with the value -10 to reduce the chance of surviving in the population. 
The following mfile tanaka.m defines a fitness function for Tanaka problem. 
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a. Command line approach 
 

First of all, GAP and other parameters related to the population need to be defined as in the 
following, 

 
GAP = gapdefault(2); % default setting for two objectives 

GAP.fp_ngen = 200; % Total generation number 

GAP.fp_ipop = 200; % Initial population size 

GAP.fp_npop = 200; % Population size 

GAP.fp_obj = 0;  % Multi-objective problem 

GAP.sc_alg = 6;  % Quadratic scaling 

GAP.op_list = [];  % Do not show distribution plot 

GAP.pp_list = [1, 2]; % List of parameters for Pareto plot 

GAP.pp_sign = [-1,-1]; % Sign of fitness for each objective 

GAP.pp_axis = [0 1.25 0 1.25]   % axis limits for Pareto plot 

GAP.dp_np = 200; % Max no. of population to plot for type 1 

 

GAP.gd_min  = [  0   0  ]; 

GAP.gd_max  = [  pi  pi ]; 

GAP.gd_type = [  2   2  ]; 

GAP.gd_cid  = [  1   1  ]; 

 

where the gapdefault(2) is used to define default GAP for the problem with two 
objectives and the maximum number of population for plotting GAP.dp_np is set to 200 to 
display all the individuals in the population. 

% Tanaka problem (1995) 
 
function [f] = tanaka(x) 
 
C1 = x(1)^2+x(2)^2-1-0.1*cos(16*atan(x(1)/x(2))) >= 0; 
C2 = (x(1)-0.5)^2+(x(2)-0.5)^2 <= 0.5; 
 
if C1 & C2    
    f(1,1) = -x(1); 
    f(2,1) = -x(2); 
else 
    f(1,1) = -10; 
    f(2,1) = -10; 
end 
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Then gaoptimize is called to perform optimization: 
 
[P,GAS]= gaoptimize(@tanaka,GAP); 

 
The fitness function handle is ‘@tanaka.’ The script file ‘runme.m’ in the folder ‘Tanaka’ 
has all the above commands and executing ‘runme’ will start the evolution to solve Tanaka 
problem. 

 

 
 

Figure 7.5  Pareto plot for Tanaka problem 
 

The distribution plot is turned off by using null matrix ‘[]’ for GAP.op_list, and only the 
Pareto plot is displayed as in Figure 7.5. 
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Figure 7.6  Final population plot with the non-dominated solutions in black circles 
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The final population after 200 generation is plotted on the feasible objective space with the 
non-dominated solutions in black circles in Figure 7.6. Comparison of this figure with 
Figure 7.4 demonstrates the performance of GOSET with respect to multi-objective 
optimization problems. 

 
b. GUI approach 

 
As in the previous example, the beginning of GUI approach starts with choosing the 
fitness function. 
 
Fitness function selection 
 
In the GOSET GUI window, go to fitness function browse menu and locate the fitness 
function ‘tanaka.m’ and select it. 
 

 
 

Parameter input 
 
Gene parameters are needed to be typed as in the following illustrations. 
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Fundamental parameters are set as in the following. There are two fitness functions, so the 
number of objective function is set to 2 and the objective function to optimize is set to 0 
for multi-objective optimization. 

 

  
 
 

For the scaling algorithm, Quadratic scaling is used with the default scaling parameters. 
 

  
 

Plotting parameters are set to display only the Pareto plot as in the following. Axis limits 
are also given to fix the range of plotting and the maximum number of individuals for 
plotting is set to 200. 
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For plotting the Pareto plot, check the output level setting if it has been set to ‘Text and 
plot.’ 

  
 
 

User routines 
 
GOSET GUI allows the user to execute user routines before and after the GA optimization 
process. In the menu bar, select ‘Option’ and then click ‘Extra user routines’. 

 

  
 

Then the following user routine menu pops up. 
 

  
 

Click ‘Browse’ button to choose the mfiles executed before and after GA. In this example, 
‘tanaka_pre.m’ and ‘tanaka_post.m’ are chosen respectively. 
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‘tanaka_pre.m’ plots the feasible objective space and the Pareto optimal front of Tanaka 
problem and ‘tanaka_post.m’ plots the final population with the non-dominated 
solutions in black circles. 
 
 
Starting GOSET 
 
When the GOSET is started, the mfile ‘tanaka_pre.m’ is first executed to display the 
Pareto optimal front of Tanaka problem in Figure 7.6. Observe the Pareto plot to see how 
the solutions are distributed throughout the Pareto front over the generations. At the end of 
the GOSET run, ‘tanaka_post.m’ is executed and a figure with final solutions will be 
shown as in Figure 7.7. 

 
 
7.3 Power diode curve fitting 
 
Problem description 
 
In this section, GOSET is applied to power diode curve fitting. The diode of interest is a part 
of Fuji Electric 6MBI 30L-060 which is commonly used for an inverter for motor drivers and 
AC-DC servo drive amplifiers. The configuration of Fuji 6MBI 30L-060 is shown in Figure 
7.7 and its characteristics are listed in Table 7.1 
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Figure 7.7  Circuit schematic of the IGBT module  
 

 
 

Fuji 6MBI 30L-060 Device Characteristics 
Description Rating 
Collector-Emitter Voltage 600V 
Gate-Emitter Voltage ±20V 
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Collector Current – Continuous 30A 
Collector Current – 1ms Pulse 60A 
Maximum Power Dissipation 120W 
Operating Junction Temperature 150°C 
Thermal Resistance – IGBT Junction to Case 1.04°C/W (Max) 
Thermal Resistance – Diode Junction to Case 2.01°C/W (Max) 

 

Table 7.1  IGBT Module device characteristics 
 
 
 

The voltage versus current (V-I) curve of the Power diode is measured using the hardware 
configuration shown in Figure 7.8 
 

 
Figure 7.8  Hardware Test Configuration for Diode V-I characteristic 

  
 
 

Voltage (V) Current (A) Voltage (V) Current (A) Voltage (V) Current (A) 

0.3130 0 1.2178 6.0040 1.5160 18.0660 
0.4145 0 1.2548 7.0870 1.5358 19.0300 
0.5154 0 1.2844 8.0360 1.5527 19.9480 
0.6140 0.0400 1.3122 9.0000 1.5716 21.0100 
0.7120 0.1495 1.3412 10.0520 1.5885 22.0200 
0.8056 0.3915 1.3654 11.0290 1.6065 23.0800 
0.8942 0.8345 1.3888 11.9900 1.6229 24.0400 
0.9649 1.4103 1.4134 13.0640 1.6389 25.0000 
1.0405 2.3180 1.4345 14.0280 1.6565 26.0500 
1.1092 3.4680 1.4570 15.0860 1.6720 27.0000 
1.1722 4.8340 1.4768 16.0510 1.6880 27.9700 

 
Table 7.2 Measured voltage and current of the power diode 
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Figure 7.9 Voltage versus current for power diode 
 
 
The V-I data set measured at 36 points is listed in Table 7.2 and it is depicted in Figure 7.9. 
Using the measured V-I date set (vk, ik), k = 1, . . . ,n, a model of the power diode is going to be 
developed. It is assumed that the voltage is expressed as the function of the current in the 
following way 

cbiaiv )(+=  
 

where the parameter a, b, and c are to be identified using GA. 
 

A fitness function candidate is  
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where vk and ik are measured voltage and current in kth point. This fitness function is coded to 
mfile diode.m as in the following. 
 

 
 
 

% DIODE.M 
% IGBT diode V-I curve fitting fitness function 
 
function f = diode(parameters,data) 
 
% assign genes to parameters 
a = parameters(1); 
b = parameters(2); 
c = parameters(3); 
 
v = a*data.i + (b*data.i).^c; 
error = abs(1-v./data.v); 
f = 1.0/(1.0e-3 + mean(error)); 
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a. Command line approach 
 

In the first step, the voltage and current measurement data is defined and saved for later 
use. 
 

data.v =[.313,.4145,.5154,.614,.712,.8056,.8942,.9649,1.0405,1.1092,1.1722, ... 

  1.1811,1.2178,1.2548,1.2844,1.3122,1.3412,1.3654,1.3888,1.4134,1.4345, ...  

  1.4570,1.4768,1.4955,1.5160,1.5358,1.5527,1.5716,1.5885,1.6065,1.6229,1.6389, ... 

  1.6565,1.6720,1.6880,1.7054]; 

 

data.i=[0,0,0,.040,.1495,.3915,.8345,1.4103,2.318,3.468,4.834,5.032,6.004,7.087, ... 

  8.036,9,10.052,11.029,11.990,13.064,14.028,15.086,16.051,17.007,18.066,19.030, ... 

  19.948,21.01,22.02,23.08,24.04,25,26.05,27,27.97,29.02]; 

 
save 'data.mat' data 

 
To save some chores, you can load the stored ‘data.mat’ from the directory ‘…/GOSET/ 
goset 1.05 examples/power diode curve fit/’. 

 
load data 

 
The default values are used for GAP except for the mating crossover algorithm and the 
total generation number for evolution. 

 
GAP = gapdefault;  % load the default values for GAP 
GAP.mc_alg = 2;  % Scalar simple blend crossover 
GAP.fp_ngen = 200;  % Total number of generation to evolve 
 

 The range, type and chromosome ID vectors are defined as 
 

GAP.gd_min  = [     1e-6    1e-6    1e-6  ]; 
GAP.gd_max  = [     1e+3    1e+3    1e+3  ]; 
GAP.gd_type = [     3       3       3     ]; 
GAP.gd_cid  = [     1       1       1     ];. 

 
The range of each gene is from 10-5 to 103 and the logarithmic gene type is used. As the 
necessary parameters are all defined, execute the GOSET. 

 
[P,GAS]= gaoptimize(@diode,GAP); 

 
Execute the script ‘runme.m’ to start GOSET. After 200 generations, the best individual bI 
or (GAS.bestgenes(:,200)) has the following parameter values. 
 

a = 0.0091 
b = 0.5066 
c = 0.1363 

 
These parameters yield the best fitting V-I curve expressed as 
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1363.0)5066.0()0091.0( iiv += . 

 
The plots of measured data and the estimated curve are shown in Figure 7.10. The 
estimated curve fits very closely to the measured data. 
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Figure 7.10 Plot of measured data and the estimated curve using GOSET 
 
 

B. GUI approach 
 
With an assumption that the previous two examples gave enough chance to learn how to start 
GOSET GUI, how to enter parameter values, etc., only the parts where changes need to be 
made will be described. 
 
In the fitness function window, browse and select the fitness function ‘diode.m.’ The 
optional data for fitness function is set to ‘data.mat’ which is located in the same folder as 
‘diode.m’. 
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The gene parameters are defined next. As there are three parameters to be identified, the total 
number of gene is set to 3. For each gene, the minimum gene value is set to 1e-5, the 
maximum gene value to 1000, gene type to logarithmic and the chromosome ID to 1. Gene 
description can be specified, if desired. The first gene is names as ‘a’ in the following figure. 
 

 
 
In the fundamental parameter input window, the total generation number for evolution is set to 
200. 
 

 
 
For the comparison between the measured data and the estimated curve, an m-file named 
‘plotcurve.m’ is provided in the ‘power diode curve fitting’ folder. To execute this 
m-file, go to the extra user routine menu 
 

 
 
and set ‘Mfile to execute after GA’ to ‘plotcurve.m’ 
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Now the GOSET can be started. When the evolution process is over, ‘plotcurve.m’ is 
executed and a comparison plot similar to the Figure 7.10 will be shown. 
 
 
 

7.4 Transfer function fitting 
 
Problem description 
 
In this section, GOSET is employed to estimate the transfer function given the transfer 
function values. The transfer function values are admittances looking into the d-axis of 
brushless DC motor.  

 
The admittances measured at 60 different frequencies are listed in Table 7.3 and plotted in 
Figure 7.11. 
 

Freq.(Hz)  fk Admittance Yk Freq.(Hz)  fk Admittance Yk Freq.(Hz) fk Admittance Yk 
20 0.2754 + 0.2059i 224 0.0126 + 0.0533i 2516 0.0013 + 0.0062i 
23 0.2470 + 0.2106i 253 0.0108 + 0.0478i 2839 0.0012 + 0.0056i 
25 0.2299 + 0.2116i 286 0.0094 + 0.0428i 3203 0.0011 + 0.0050i 
29 0.1992 + 0.2100i 322 0.0082 + 0.0385i 3615 0.0010 + 0.0045i 
32 0.1794 + 0.2066i 364 0.0072 + 0.0345i 4079 0.0009 + 0.0040i 
37 0.1517 + 0.1987i 410 0.0063 + 0.0310i 4603 0.0008 + 0.0036i 
41 0.1336 + 0.1914i 463 0.0056 + 0.0278i 5195 0.0008 + 0.0033i 
47 0.1117 + 0.1798i 523 0.0049 + 0.0249i 5862 0.0007 + 0.0029i 
53 0.0948 + 0.1685i 590 0.0044 + 0.0223i 6615 0.0006 + 0.0027i 
59 0.0815 + 0.1579i 666 0.0040 + 0.0201i 7465 0.0006 + 0.0024i 
67 0.0679 + 0.1452i 751 0.0035 + 0.0180i 8424 0.0005 + 0.0021i 
76 0.0565 + 0.1326i 848 0.0032 + 0.0162i 9506 0.0005 + 0.0019i 
85 0.0480 + 0.1219i 957 0.0029 + 0.0145i 10728 0.0004 + 0.0017i 
96 0.0401 + 0.1108i 1079 0.0026 + 0.0130i 12106 0.0004 + 0.0016i 

109 0.0333 + 0.0999i 1218 0.0023 + 0.0117i 13661 0.0004 + 0.0014i 
123 0.0280 + 0.0903i 1375 0.0021 + 0.0105i 15416 0.0003 + 0.0012i 
138 0.0238 + 0.0818i 1551 0.0019 + 0.0095i 17397 0.0003 + 0.0011i 
156 0.0201 + 0.0735i 1750 0.0017 + 0.0085i 19632 0.0003 + 0.0010i 
176 0.0171 + 0.0661i 1975 0.0016 + 0.0076i 22154 0.0003 + 0.0009i 
199 0.0146 + 0.0593i 2229 0.0014 + 0.0069i 25000 0.0002 + 0.0008i 

 

Table 7.3  Admittances of the brushless DC motor in the d-axis 
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Figure 7.11  Magnitude and phase plot of admittance data 
 

It is assumed that the transfer function of the admittance has the form 
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where n is the order of the transfer function, a-s and τ-s are the parameters to be identified. 
 
The fitness function F is defined as 
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where m is the number of admittance data set and kk fjs π2= .  
 
In the example, the order of the transfer function to be estimated is assumed to be n = 6. The 
following is the fitness function m-file. 
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a. Command line approach 

 
The transfer function values at 60 different frequencies are defined first in the workspace. 
 

f = [ 20 23 25 29 32 37 41 47 53 59 67 76 85 96 109 123 138 156 176 199 ... 

224 253 286 322 364 410 463 523 590 666 751 848 957 1079 1218 1375 ... 

1551 1750 1975 2229 2516 2839 3203 3615 4079 4603 5195 5862 6615 ... 

7465 8424 9506 10728 12106 13661 15416 17397 19632 22154 25000]; 

 

% frequency vector in s-domain 

data.s = 1j*2*pi*f; 

data.t = [ 0.2754+0.2059i  0.2470+0.2106i  0.2299 + 0.2116i  0.1992 + 0.2100i ... 
       0.1794 + 0.2066i  0.1517 + 0.1987i  0.1336 + 0.1914i  0.1117 + 0.1798i ... 
       0.0948 + 0.1685i  0.0815 + 0.1579i  0.0679 + 0.1452i  0.0565 + 0.1326i ... 
       0.0480 + 0.1219i  0.0401 + 0.1108i  0.0333 + 0.0999i  0.0280 + 0.0903i ... 
       0.0238 + 0.0818i  0.0201 + 0.0735i  0.0171 + 0.0661i  0.0146 + 0.0593i ... 
       0.0126 + 0.0533i  0.0108 + 0.0478i  0.0094 + 0.0428i  0.0082 + 0.0385i ... 
       0.0072 + 0.0345i  0.0063 + 0.0310i  0.0056 + 0.0278i  0.0049 + 0.0249i ... 
       0.0044 + 0.0223i  0.0040 + 0.0201i  0.0035 + 0.0180i  0.0032 + 0.0162i ... 
       0.0029 + 0.0145i  0.0026 + 0.0130i  0.0023 + 0.0117i  0.0021 + 0.0105i ... 
       0.0019 + 0.0095i  0.0017 + 0.0085i  0.0016 + 0.0076i  0.0014 + 0.0069i ... 
       0.0013 + 0.0062i  0.0012 + 0.0056i  0.0011 + 0.0050i  0.0010 + 0.0045i ... 
       0.0009 + 0.0040i  0.0008 + 0.0036i  0.0008 + 0.0033i  0.0007 + 0.0029i ... 
       0.0006 + 0.0027i  0.0006 + 0.0024i  0.0005 + 0.0021i  0.0005 + 0.0019i ... 
       0.0004 + 0.0017i  0.0004 + 0.0016i  0.0004 + 0.0014i  0.0003 + 0.0012i ... 
       0.0003 + 0.0011i  0.0003 + 0.0010i  0.0003 + 0.0009i  0.0002 + 0.0008i ] 
 
 

Then data.s and data.t are saved in ‘data.mat’ for later use. 
 

save 'data.mat' data 
 

The ‘data.mat’ also can be directly loaded from ‘…/GOSET/goset 2.3 
examples/Transfer function fit/’. 

 

% TFFIT.M 
% Transfer function fitting fitness function 
function f=tffit(parameters,data) 
 
a   = parameters(1:6); 
tau = parameters(7:12); 
 
tpred = zeros(size(data.s)); 
for i = 1:6, 
   tpred = tpred+a(i)./(tau(i)*data.s+1); 
end 
 
terror = data.t-tpred; 
error = norm(terror./abs(data.t))/length(tpred); 
f = 1.0/(1.0e-12+error); 
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load data 
 

The default values are used for GAP and the total generation number for evolution is set to 
1000. 

 
GAP = gapdefault;  % load the default values for GAP 

GAP.fp_ngen = 1000;  % Total number of generation to evolve 

 

 The parameter range, type and chromosome ID vectors are defined as 
 
GAP.gd_min  =  [ 1.0e-8 1.0e-8 1.0e-8 1.0e-8 1.0e-8 1.0e-8... 

                 1.0e-8 1.0e-8 1.0e-8 1.0e-8 1.0e-8 1.0e-8 ]; 

GAP.gd_max  =  [ 1.0e+1 1.0e+1 1.0e+1 1.0e+1 1.0e+1 1.0e+1 ... 

                 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 ]; 

GAP.gd_type =  [ 3  3  3  3  3  3  3  3  3  3  3  3 ]; 

GAP.gd_cid  =  [ 1  1  1  1  1  1  1  1  1  1  1  1 ]; 

 

The first six elements correspond to the parameter a, and the rest are for τ. GOSET is 
ready to go.  

 
[P,GAS]= gaoptimize(@tffit,GAP); 
 
To start GOSET, execute the script ‘runme.m’ with all the commands described above. 
 
After 1000 generations, the best individual (GAS.bestgenes(:,1000)) has the 
following parameter values. 

 
a = [ 0.00074282873079  0.00020824030313  0.00000009385065 ... 
      0.00079650808510  0.42038798793770  0.00597311661588 ] 
 
tau = [ 0.00002657084427  0.00000001815644  0.00000011416888 ... 

0.00008665847926  0.00586600530356  0.00038902284811 ] 
 
These parameters yield the transfer function  
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Figure 7.12  Plot of the magnitude and phase of the measured transfer function data  
and the transfer function obtained using GOSET 
 

The magnitude and phase plot of the data set and the estimated transfer function are shown 
in Figure 7.12. The solid red line is for the transfer function estimated using GOSET and 
the blue x’s are the measured transfer function values. The estimated transfer function fits 
the measured data very closely. 
 
 

B. GUI approach 
 

In the first step, select the fitness function file and the optional data file. 
 

 
 

Then, the gene parameters are defined as in the following figures. Total number of gene is 
12. First six genes correspond to the parameters a1,…,a6 and their maximum and minimum 
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values are set to 10 and 10-8, respectively. Rest of the genes are for parameter τ1,…,τ6 and 
the maximum and minimum values are set to 1 and 10-8.  The gene type is logarithmic for 
all genes.  
 

               
 

The fundamental parameters are set as in the following  
 

 
 
 

Setting the plot scale to 0 makes the fitness function axis logarithmic. 
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For the comparison plot after the evolution, ‘plotcurve.m’ is selected in the ‘Mfile to 
execute after GA’. 

 

 
 
 

The gene distribution at 1000 generation and the fitness values throughout the evolution 
are shown in Figure 7.13 

 

 
 

Figure 7.13  Gene distribution and the fitness history 
 

At the end of the evolution, a comparison plot similar to Figure 7.12 will appear.  
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Appendix A.  GOSET function list 
 
Initialization gapdefault  contains default parameter values for GAP 
 downsize  reduce the population size to a desired number 
 gainit    initialize the genetic algorithm 

unrndinit   initialize a population randomly 
 gasetup   sets up a population of chromosomes   
 
 
Genetic operators gaoptimize  GOSET main routine  
   objwght  generate weight vector for multi-objective functions 
 divcon  prevent crowding of the chromosomes 
 scale   determine the scaled fitness 

select  select chromosomes for reproduction 
death   determine parents to be replaced by children 

 matingcrossover exchanges genes between chromosomes 
 mutate  randomly change some gene values 
 generepair  fix gene value after crossover and mutation 
 migrate  move chromosomes from one region to another 
 updateage  update the age of all individuals 

evaluate  evaluate the fitness values of chromosomes 
 elitism  preserve best chromosomes 

randsearch  search the vicinity of the best chromosomes 
updatestat   update the statistic information of GAS structure 
normgene   updates the normalized genes based on raw genes   
rawgene    updates the raw genes based on normalized genes 
nondom  find the non-dominated solutions 
trimga  perform a deterministic optimization  

 
 
Plotting  reportplot  plots current population 

distplot  plots the distribution of the genes  
paretoplot  plots the population in the objective space 
 

 
GUI related  goset   GOSET GUI 
    
 
Misc.   contents  contains general information of GOSET 
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Appendix B.  GOSET function reference 
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contents 
 
Purpose Contain general information regarding GOSET  
 
Syntax contents 
 
Arguments None 
 
Value  None 
 
Description contents.m has descriptions on data structures P, GAS and functions of 

GOSET and upgrade information 
 
See Also gapdefault
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death 
 
Purpose determine parents that are replaced by the children 
 
Syntax Dlist = select(Pin,Plist,GAP) 
 
Arguments Pin      structure of current population    
 Plist   parent list generated from select algorithm 
 GAP      structure of genetic algorithm parameters 
 
Value Dlist     death list 
 
Description   Death operator determines which individual is to die and replaced by the 

children. The followings are possible options for the death operators. 
  

Replacing parents (GAP.dt_alg = 1) 
 

 Parents are replaced by their own children. 
 

Random selection (GAP.dt_alg = 2) 
 

 The parents to be replaced are randomly chosen. 
 

Tournament on fitness (GAP.dt_alg = 3) 
 

The parent to be replaces is determined via the tournament based on the 
aggregate fitness value. GAP.dt_nts number of parents are randomly chosen 
for a tournament and the one with worst aggregate fitness value is marked for 
death. 

 
Tournament on age (GAP.dt_alg = 4) 

 

The parent to be replaces is determined via the tournament based on the age. 
Among the randomly chosen GAP.dt_nts number of parents, the oldest one is 
selected and marked for death. 

 
Custom algorithm (GAP.dt_alg = 5) 

 

User defined custom death algorithm is used. The handle of the custom 
function is assigned to GAP.dt_cah. The custom function must have the 
following format 
 
 D_list = f(region,size,age,mfit,fit) 
 
 D_list    indices of the individuals to be replaced by children 
 region    the region number  
 size number of individuals for the death list  
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 age     vector describing ages of the individuals in population 
 mfit array with raw fitness values of the individuals  in the region 
 fit vector with aggregate fitness values of individuals in the region 
 
As an example of a custom algorithm, the random death algorithm is written 
as an mfile called ‘customdeath.m’ which is shown below. 
 

 
 
This mfile must exist in the same folder as the fitness function file or in the 
GOSET folder. Then the custom file handle GAP.dt_cah is set to 
@customdeath. 
 

 
Random algorithm (GAP.dt_alg = 6) 

 

If this option is selected, the death algorithm is randomly chosen among the 
first four death algorithms at each generation. 

% Custom death algorithm example – random death algorithm 
function dlist = customdeath(region,size,region_age,region_mfit,region_fit) 
 
% Randomly select death list 
regionsize=length(region_age); 
randomlist = randperm(regionsize); 
 
dlist = randomlist(1:size); 
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distplot 
 
Purpose Plot the distribution of the genes in the individuals 
 
Syntax distplot(fignum,P,objective,GAP,[region]) 
 
Arguments fignum figure number 
  P  structure of current population 

objective objective function number to show in the plot 
GAP  structure of genetic algorithm parameters 
region plot only the individuals in this specified region (optional) 

 
Value  None 
 
Description distplot shows the distribution of the genes of the individuals. It is called 

within the reportplot and plotted together with the fitness history. 
 

 
 

Figure B.1 
 

                               
 

Figure B.2 
 

There are two types of distribution plot. Setting GAP.dp_type to 1 will show 
the first type of distribution plot which displays the normalized gene values as 
in Figure B.1. In this case, there are four genes in each individual. The top 25 
percent of the individuals are marked by blue cross (+), the next 25 
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percentiles are plotted as green X (x), then the next 25 percentiles are in 
yellow square ( ), and the last 25 percentiles are drawn as the red 
diamonds( ). The gene values of the best individual of each region are 
connected by the blue solid line. For multi-region scheme, there are multiple 
blue solid lines which represent the best individuals in multiple regions. 
 
The second type (GAP.dp_type = 2) of distribution plot shows the 
histogram of the normalized gene values as in Figure B.2. The number of bars 
for the histogram can be set using GAP.dp_res. In Figure B.2, the number of 
bars is set to 5 (GAP.dp_res = 5). The gene values of the best individual of 
each region are indicated by green horizontal lines. For each gene values, 
there are as many green lines as the number of regions. 
 
For both of the distribution plot, only a part of the population can be displayed 
by setting the parameter GAP.dp_np that determines the maximum number of 
individuals to plot. Only GAP.dp_np individuals are randomly chosen from 
the population and displayed. The positions of green lines represent the 
normalized gene values of the best individual. 

 
See also reportplot, paretoplot 
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divcon 
 
Purpose Compute penalty function values for maintaining diversities of the population 
 
Syntax Ppen = divcon(Pin,GAP) 
 
Arguments Pin structure of current population    
  GAP structure of genetic algorithm parameters 
 
Value  Ppen penalty function vector 
 
Description Maintaining genetic diversity in the population is important especially in the 

multi-objective optimization problem. Diversity control algorithms are 
employed so that the under represented individuals are emphasized and 
similar individuals are penalized by degrading their fitness values.   

 
 Diversity control can be applied to either the parameter (solution) space or the 

fitness function space. Setting GAP.dc_spc = 1 causes the diversity control 
in the parameter space and setting GAP.dc_spc = 2 causes the diversity control 
in the fitness function space. 

 
Presently, four different diversity control algorithms are used in GOSET.  

 
 

Diversity control algorithm 1 
  
This algorithm is chosen by setting GAP.dc_alg = 1. For each individual, 
the distances with all other individuals are evaluated. Then the number of 
individuals, whose distance from the individual of interest is smaller than the 
threshold distance, is counted. The threshold distance is randomly determined 
as a value between the minimum threshold (GAP.dc_mnt) and the maximum 
threshold (GAP.dc_mxt). That is, 
 

Threshold distance = average distance among the individual Η α  
 

where α =(GAP.dc_mnt+randΗ(GAP.dc_mxt-GAP.dc_mnt)). Then the 
penalty function value of an individual is defined as the reciprocal of the 
counted number of individuals. 

 
 
Diversity control algorithm 2 

 
This algorithm is chosen by setting GAP.dc_alg = 2. To overcome the 
problem of the computational load in the first method, this algorithm uses a 
weighted sum of gene values for diversity control. For an arbitrary weight 
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vector whose element number is same as gene number in an individual, the 
weighted sum of each individual is evaluated. Then the modulus after 
dividing the weighted sum by 1 is taken. If the gene values of individuals are 
very similar, then the modulus of the weighted sum must be also similar. Then 
the individuals are grouped according to the modulus values and put into a 
corresponding bin. The number of bins, that is the number of groups, is 
randomly determined as the following 
 

No. of bins = round (α⋅Number of individual), 
 
where α = GAP.dc_mnb+rand(GAP.dc_mxb-GAP.dc_mnb). Then the 
interval [0,1] is divided into (No. of bins) equally distanced subintervals. The 
penalty value of an individual is the reciprocal of the total number of 
individuals in the same bin. 
 
However, even with different gene values, individuals may have similar 
modulus for some weight vectors. In such cases, the penalty value does not 
reflect the actual proximity of gene values. Hence, the procedure is repeated 
GAP.dc_ntr times and the largest penalty function value is chosen as the 
final penalty function value for each individual.  

 
 

Diversity control algorithm 3 
 

This algorithm is chosen by setting GAP.dc_alg = 3. The idea of this 
diversity control algorithm is similar to the diversity algorithm 1. The sum of 
infinity norm between the solutions is used to determine the penalty value as 
shown in the following formula 
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where di,k is the infinity norm between k’th and i’th individual and dc is the 
distance constant (GAP.dc_dc) which controls the size of the neighborhood. 
As the distance constant dc increases, the effective size of the neighborhood 
increases and the penalty level also increases. 
 
 
Diversity control algorithm 4 

 
This algorithm is chosen by setting GAP.dc_alg = 4. It is identical to the 
diversity control algorithm 3 except the fact that only a part of the population, 
that is, for each individual, GAP.dc_nt individuals are randomly chosen and 
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used in the distance evaluation. The following formula is used to calculate the 
fitness penalty weight for k’th individual. 
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where di,k is the infinity norm between k’th and i’th individual, dc is the 
distance constant (GAP.dc_dc) 
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downsize 
 
Purpose Reduce the population to a desired size 
 
Syntax Pout = downsize(Pin,Newsize) 
 
Arguments Pin         structure of current population    
  Newsize   the size of the new population 
 
Value  Pout         structure of downsized population 
 
Description This function reduces the size of the population to a desired number based on 

the (cumulative) rank of the individual. 
 
In the multiple region (multi-population) case, the number of individuals in a 
region is determined such that the ratio of individuals among regions is 
maintained. For example, suppose a population with 100 individuals that are 
distributed in 3 different regions as in the following table. If we want the new 
population to have only 50 individuals, then the number of individuals in the 
new populations becomes the half of the number of individuals in the original 
population as shown in Table B.1. 
 

Region 1 2 3 total 
No. of individuals in Pin 30  50 20 100 
No. of individuals in Pout 15  25 10 50 

 

Table B.1 
 

The selection of the individuals is based on the rank in single objective case. 
In the multi-objective case, cumulative rank is used to pick the individuals for 
the new population. Consider a 3-objective optimization problem in Table B.2.  
If we have four individuals and need to reduce the size to two, then individual 
A and D are selected according to the cumulative rank. 
 

Rank in each objective  Individual I II III 
Cumulative 

Rank 
A  3 1 1 5 
B 4 4 2 10 
C 2 3 4 9 
D 1 2 3 6 

  

Table B.2 
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elitism 
 
Purpose Preserve the best individuals 
 
Syntax Pout = elitism(Pin,Porg,GAP,GAS) 
 
Arguments Pin structure of current manipulated population    
  Porg structure of original population 
  GAP structure of genetic algorithm parameters 
  GAS structure of genetic algorithm statistics 
 
Value  Pout structure of output population 
 
Description Elitism is activated by setting GAP.el_act = 1. The starting point of elitism 

can be using the parameter GAP.el_fgs that specifies the fraction of the 
population. For example, if GAP.el_fgs = 0.25 with the total generation 
number of 100, then the elitism is effective starting from 25th generation. 

 
In single objective optimization problems, the best individual in each region 
of the processed population and the best one in the original population are 
compared. If the best individual of the processed population is worse than that 
of the original population, then the best one in the processed population is 
replaced by the best one in the old population. In multi-objective optimization 
problem, it is guaranteed that a limited number of non-dominated individuals 
of the population are preserved up to certain number. The maximum number 
of preserved non-dominated individuals is determined by (population size Η 
GAP.el_fpe). 
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evaluate 
 
Purpose Evaluate the fitness of chromosomes  
 
Syntax [mfit,es,une] = evaluate(Pin,GAP,cne,D) 
 
Arguments Pin structure of current population    
  GAP structure of genetic algorithm parameters 
  cne current number of evaluations performed  
  D an optional data structure used for fitness evaluation 
 
Value  mfit multi-objective fitness 
  es evaluation status of each member of population 
  une  updated number of evaluations 
 
Description evaluate assigns individuals with fitness values obtained from the fitness 

function defined by P.fithandle. 
 
When GAP.ev_are is set to 0, this function only updates the individuals 
whose fitness values have not been evaluated. When  GAP.ev_are = 1, the 
fitness value of all the individuals are evaluated.  
 
Also GAP.ev_bev determines whether to pass all the individuals to the 
fitness evaluation function at the same time (when set to 1) or to evaluate one 
individual at a time (when set to 0). The fitness function must be written to 
handle the vector evaluation. 
 
Normally, the only gene values are passed to the fitness function. If the 
supplementary data flag GAP.ev_ssd = 1, then the age(P.age), previous 
fitness values(P.mfit) and the region(P.region) are also sent to the fitness 
function.  

 
D is the optional data structure that is required for evaluating the fitness 
function and it is passed to the fitness function if it is defined when the 
gaoptimize is called.  
 
The passed data and its order are listed in the following table.  
 

Optional data D GAP.ev_ssd Data and its order passed to the fitness function 
0 P.gene, D exists 1 P.gene, P.age, P.mfit, P.region, D 
0 P.gene does not exist 1 P.gene, P.age, P.mfit, P.region 
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gainit 
 
Purpose Initialize the genetic algorithm 
 
Syntax [GAP,GAS,Pout]=gainit(numargin,@fitfun,D,GAP, 

GAS,iP,GUIhdl) 
 
Arguments numargin number of argument of the GAOPTIMIZE   

@fitfun name of the m-file that evaluates the fitness   
D  optional data needed by fitness function 
GAP  structure of genetic algorithm parameters 
GAS  structure of genetic algorithm statistics 
iP  optional initial population 
GUIhdl handle used for GUI (Pass empty matrix ‘[]’ when not in use) 

 
Value  GAP  structure of genetic algorithm parameters 

GAS  structure of genetic algorithm statistics 
Pout  structure of the population 

 
Description gainit initializes the genetic algorithm by setting up the population. If the 

optional initial population is passed, gainit only evaluates the fitness of the 
population. Otherwise gasetup is called to generate initial population, and 
the fitness is evaluated. If the size of the initial population (GAP.fp_ipop) is 
larger than the steady state population (GAP.fp_ipop), the population size is 
reduced. In the last step, gainit generates a report on initial evaluation. 

 
See Also gasetup 
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gaoptimize 
 
Purpose Perform function optimization using GOSET 
 
Syntax [Pout,GAS]=gaoptimize(@fitfun,GAP,D,GAS,iP,GUIhdl) 
 
Arguments @fitfun name of the m-file that evaluates the fitness   

GAP  structure of genetic algorithm parameters 
D  optional data required by fitness function 
GAS  structure of genetic algorithm statistics 
iP  optional variable with initial population 
GUIhdl handle used for GUI (Use empty matrix when not in use) 

 
Value  Pout  structure of final population 

GAS  structure of genetic algorithm statistics 
 
Description As the main function of GOSET, it performs the function optimization using 

GOSET. The structure of gaoptimize.m is modularized. Thus users who 
want to experiment their own operator, can easily modify this function.  
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gapdefault 
 
Purpose Assigns default values to the genetic algorithm parameters used in GAP 
 
Syntax GAP = gapdefault(nobj) 
 

Arguments nobj  number of objectives 
 
Value  GAP structure of genetic algorithm parameters 
 
Description This function returns the structure of genetic algorithm parameters GAP with 

their default values. The user can load the gapdefault and then redefine 
only the required fields, instead of defining all the fields. 
 
The following Table B.3 shows the default values defined in gapdefault. 
 
 

Fundamental parameters 
GAP.fp_ngen = 100 GAP.fp_ipop = 100 
GAP.fp_npop = 100 GAP.fp_nobj = nobj 
GAP.fp_obj  = 1 for single objective / 0 for multi-objective 

Diversity control parameters 
GAP.dc_act = 1 GAP.dc_alg = 4 
GAP.dc_spc = 1 GAP.dc_mnt = 0.02 

GAP.dc_mxt = 0.1 GAP.ntr    = 3 
GAP.dc_mnb = 0.5 GAP.dc_mxb = 2.0 
GAP.dc_dc  = 0.001 GAP.dc_nt  = 50 

Selection algorithm parameters 
GAP.sl_alg = 2 GAP.sl_nts = 4 
GAP.sl_cah = []  

Death algorithm parameters 
GAP.dt_alg = 2 GAP.dt_nts = 4 
GAP.dt_cah = []  

Mating and crossover parameters 
GAP.mc_pp  = 0.6 GAP.mc_fc  = 1.0 
GAP.mc_alg = 4 GAP.mc_gac = 3 
GAP.mc_ec  = 2  

Mutation parameters 
GAP.mt_ptgm = 0.001 GAP.mt_prgm = 0.002 
GAP.mt_srgm = 0.3 GAP.mt_pagm = 0.002 
GAP.mt_sagm = 0.1 GAP.mt_prvm = 0.002 
GAP.mt_srvm = 0.3 GAP.mt_pavm = 0.002 
GAP.mt_savm = 0.1 GAP.mt_pigm = 0.008 

Migration parameters 
GAP.mg_nreg = 1 GAP.mg_tmig = 0 
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GAP.mg_pmig = 0  
Evaluation Parameters 
GAP.ev_bev = 0 GAP.ev_are = 0  
GAP.ev_ssd = 0  

Scaling parameters 
GAP.sc_alg = 1 GAP.sc_klin = 10 
GAP.sc_cst = 2 GAP.sc_kmxq = 10 
GAP.sc_kmnq = 0.01  

Gene repair parameter 
GAP.gr_alg = 1  

Elitism parameters 
GAP.el_act = 1 GAP.el_fgs = 0.0 
GAP.el_fpe = 0.5  

Random search parameters 
GAP.rs_fgs = 0.5 GAP.rs_fps = 0.1 
GAP.rs_srp = 0.3 GAP.rs_sap = 0.1 
GAP.rs_frp = 0.7 GAP.rs_fea = 0.2 

Reporting parameters 
GAP.rp_lvl = 1 GAP.rp_gbr = 5 
GAP.rp_crh = []  

Objective plot parameters 
GAP.op_list = [1] GAP.op_style = 1 
GAP.op_sign = 1  

Pareto plot parameters 
GAP.pp_list  = [] GAP.pp_xl = ‘Objective 1’ 
GAP.pp_style = 1 GAP.pp_yl = ‘Objective 2’ 
GAP.pp_sign  = 1 GAP.pp_zl = ‘Objective 3’ 
GAP.pp_title =‘Solution space’ GAP.pp_axis = [] 

Distribution plot parameters 
GAP.dp_type = 2 GAP.dp_np = 100 
GAP.dp_res = 20  

Gene description parameters 
GAP.gd_min  : user defined GAP.gd_max : user defined 
GAP.gd_type : user defined GAP.gd_cid : user defined 

  
Table B.3  Default values of GAP defined in gapdefault.m 

 
For the full description regarding these parameters, refer to first section of 
GOSET data structures and algorithm execution or gapdefault.m.  The m-
file gapdefault.m also has default values of the GAP listed in Table B.3. 
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gasetup 
 
Purpose Set up a population of chromosomes 
 
Syntax [P,GAS] = gasetup(popsize,GAP,@fitfun,[D]) 
 
Arguments popsize number of individuals in the population   

GAP  structure of genetic algorithm parameters 
@fitfun name of the m-file that evaluates the fitness   
D  optional data needed by fitness function 
 

Value  P  structure of the population 
GAS  structure of genetic algorithm statistics 

 
Description gasetup is called within gainit when the initial population does not exist. 

It sets up the population data structure P based on the assigned maximum 
value, minimum value, type, and the chromosome ID of each gene and by 
defining initial values using unrndinit. 

 
The initial evaluation of the fitness function is also included and the statistic 
structure GAS is returned together with the population data structure P.  

 
See Also gainit, unrndinit 
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generepair 
 
Purpose correct the gene value to be feasible 
 
Syntax [rgene] = generepair(gene,GAP) 
 
Arguments gene  an individual, vector of normalized gene values   

GAP  structure of genetic algorithm parameters 
 

Value  rgene repaired gene values 
 

Description generepair is called within matingcrossover and mutate to 
correct any resultant genes which lie outside the specified range. The 
parameter GAP.gr_alg controls the repair method.  
 
By default, GAP.gr_alg is set to 1 for hard limiting method that clips 
any illegal gene value to the boundary value. For example, if a 
resultant gene value is 1.2, it is adjusted to 1, and if it is -0.4, it is 
adjusted to 0.  
 
By setting it to 2, ring mapping method is applied and the modulus 
after division by 1 is used as the repaired value. For example, if a 
resultant gene value is 1.2, it is adjusted to 0.2, and if it is -0.1, it is 
adjusted to 0.9. 
 
In situations where the limit of a variable is a physical limit which also 
happens to be the location of the optimum solution, the hard limiting 
method results in significantly better performance. 
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 goset 
 
Purpose Start GOSET GUI (Graphic User Interface) 
 
Syntax goset 
 
Arguments none 
 
Value none 
 
Description goset initiates the GOSET GUI window as in the Figure B.3.  
 

 

 
 

Figure B.3  GOSET GUI main window 
 
 

For the detailed description of GOSET GUI, refer to Chapter 6. 
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matingcrossover 
 
Purpose Perform mating and genetic crossover on a population 
 
Syntax Pout = matingcrossover(Pin,Plist,PLsize, 

Dlist,GAP,GAS) 
 
Arguments Pin       structure of current population   
  Plist      parent list from selection operator 

PLsize  size of the parent list 
Dlist      death list from death operator  
GAP       structure of genetic algorithm parameters 
GAS       structure of genetic algorithm statistics 

 
Value  Pout       structure of the population after crossover 
 
Description Perform crossover operations on a population. Three different types of 

crossover methods are used in GOSET; single point crossover, simple blend 
crossover, and simulated binary crossover.  
 
The parameter GAP.mc_pp specifies the mating crossover probability, that is, 
the fraction of the population replaced by children. The fraction of the 
chromosome undergoes crossover is determined by GAP.mc_fc. 
All crossover operation is region specific and parents that are selected from 
one region reproduce children into the same region. Also all the crossover 
operations are chromosome-ID specific. Hence genes of different 
chromosome ID are treated separately and the crossover operators are applied 
independently. 
 

The mating crossover methods are determined by GAP.mc_alg as in the 
following table. 

 
GAP.mc_alg Mating Crossover method 

1 Single point crossover 

2 Scalar simple blend crossover 

3 Vector simple blend crossover 

4 Scalar simulated binary crossover 

5 Vector simulated binary crossover 

6 Random algorithm 

 
Let’s discuss the mating crossover methods one by one. 

 
Single point crossover 
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This crossover operator is similar to the crossover operator in binary-coded 
GAs. A crossover point is randomly selected and the gene values after that 
point are swapped between two parent chromosomes.  
 
If  P1 and P2 are the parent chromosomes with n genes and c is the crossover 
point, then the children chromosomes are 

 
]  [  and  ]  [ ):(;1)1:1(;22):(;2)1:1(;11 nccncc PPCPPC −− ==  

 
where P1;(a:b) is a vector whose elements are gene values from a’th to b’th 
positions of P1. 
 
 

Scalar simple blend crossover 
 
Scalar simple blend crossover generates the children from the weighted sum 
of their parents by the following steps; 
 

STEP 1 : For i’th gene, choose a random number ]1 ,1[−∈iu  
 
STEP 2 : Calculate the average of the parents 
 

2
;2;1 ii

i

PP
m

+
=  

 
STEP 3 : Calculate the amount of change 
 

iiii PPu ;2;1 −⋅=δ  

 
STEP 4 : Compute the offspring 
 

iiiiii mCmC δδ −=+= ;2;1  and   
 

Note that each gene in the same chromosome is crossovered with the 
different amount of change. 

 
 

Vector simple blend crossover 
 
Vector simple blend crossover is similar to the scalar simple blend crossover. 
The only difference is that all genes in the same chromosome are crossovered 
with the same amount of change as in the following steps 
 

STEP 1 : Choose a random number ]1 ,1[−∈u  
 
STEP 2 : Calculate the average of the parents 
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STEP 3 : Calculate the amount of change 
 

iii PPu ;2;1 −⋅=δ   

 
STEP 4 : Compute the offspring 
 

iiiiii mCmC δδ −=+= ;2;1  and    

 
Note that all genes in the same chromosome are crossovered with the 
same amount of change. 

 
 
 

Scalar simulated binary crossover 
 

Scalar simulated binary crossover generates the children by the following 
steps; 
 

STEP 1 : For i’th gene, choose a random number ]1 ,0[∈iu  
 
STEP 2 : Calculate the spread factor 
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                where ηc is the distribution tightness parameter GAP.mc_ec. 
 

  STEP 3 : Compute the offspring 
 

].)1()1[(5.0
],)1()1[(5.0

;2;1;2

;2;1;1

iiiii

iiiii

CCC
CCC

ββ
ββ

++−=
−++=  

 
Note that each gene in the same chromosome can be recombined with 
different spread factor. 

 
 

Vector simulated binary crossover 
 

Vector simulated binary crossover is identical as scalar simulated binary 
crossover except that the spread factor is same for all the genes in the same 
chromosome. 
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The following describes the vector simulated crossover; 
 

STEP 1 : Choose a random number ]1 ,0[∈u  
 
STEP 2 : Calculate the spread factor beta 
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⎩
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  STEP 3 : Compute the offspring 
 

].)1()1[(5.0
],)1()1[(5.0

212

211

CCC
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ββ
ββ

++−=
−++=  

 
 

Random crossover 
 

For every GAP.mc_gac generation, a mating crossover methods are randomly 
selected from the five mating crossover methods described above. 
 
 

See Also generepair 
 

 
Reference    K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John 

Wiley & Sons, Chichester, UK, 2001 
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migrate 
 
Purpose Change the region of individuals 
 
Syntax Pout = migrate(Pin,GAP,cg) 
 
Arguments Pin structure of population before migration 
  GAP structure of genetic algorithm parameters 
  cg current generation number 
 
Value  Pout structure of population after migration 
 
Description This function works only when there are multiple regions. If the migration 

occurs, some individuals are selected and moved to other regions. The 
migration interval is randomly chosen from the integer values between 
0.5×GAP.tmig and 1.5×GAP.tmig. For example, if GAP.tmig = 6 then, 
the migration interval can be any integer from 3 to 9. Each individual is 
selected and migrated with the probability of GAP.pmig. The target region is 
chosen randomly among GAP.nreg number of regions. 
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mutate 
 
Purpose Perform mutation on a population of chromosomes 
 
Syntax Pout = mutate(Pin,GAP) 
 
Arguments Pin structure of population before mutation 
  GAP structure of genetic algorithm parameters 
 
Value  Pout structure of the population after mutation 
 
Description This function applies genetic mutation on the population. Four different 

mutation algorithms are applied sequentially in the order of total mutation, 
partial mutation, vector mutation, and integer mutation.  

 
These mutation operations are performed on the normalized gene values. 
When a gene value lies outside of the allowed range after mutation, then its 
value is corrected using generepair routine. 

 
 

Total mutation 
 

Each gene can be mutated to any value within the predetermined range with 
the probability of GAP.mt_ptgm. Thus, the mutated genes have no 
relationship to their previous value. 
 
 
Partial mutation 

 
Each gene can be perturbed with respect to its current value by using a 
random value generated using a Gaussian random variable. The mutated gene 
value is related to the original gene value.  

 
Relative gene mutation 
 
In the relative gene perturbation, with the probability of 
GAP.mt_prgm, each gene value is perturbed by certain fraction of the 
current gene value. The amount of perturbation is determined using a 
Gaussian random variable with standard deviation of GAP.mt_srgm. 
 
The relative gene mutation on j’th gene in k’th individual can be 
expressed as 

)),0(1(,;,; rvmkjngkjng NPP σ+⋅=  
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where ),0( rvmN σ  is a Gaussian random variable with mean 0 and 
standard deviation rvmσ (GAP.mt_srgm). 
 
Absolute gene mutation 
 
In the absolute gene perturbation, each gene value is added with a 
Gaussian random variable with standard deviation of GAP.mt_sagm. 
The probability of absolute gene perturbation is defined in 
GAP.mt_pagm. 
 
The absolute gene mutation on j’th gene in k’th individual can be 
expressed as 

)),0(1(,;,; rvmkjngkjng NPP σ+⋅=  
 

where ),0( rvmN σ  is a Gaussian random variable with mean 0 and 
standard deviation rvmσ (GAP.mt_srgm). 
 

 
 
Vector mutation 
 
This function is similar to partial mutation except the fact that all the genes of 
an individual are involved.  
 

Relative vector mutation 
 
Each individual undergoes the relative vector mutation with the 
probability of GAP.mt_prvm. Every gene value of the individual is 
perturbed by certain fraction of the current gene value. The relative 
vector mutation on the k’th individual can be expressed as 
 

)),0(1(;; rvmdirkngkng NvPP σ⋅+⋅=  
 

where dirv  is a normalized random vector )1( ×ngenesP  specifying the 
direction of perturbation and ),0( rvmN σ  is a Gaussian random 
variable with mean 0 and standard deviation rvmσ (GAP.mt_srvm). 
 
Absolute vector mutation  
 
Each individual undergoes absolute vector mutation with the 
probability of GAP.mt_pavm. The absolute vector mutation on the 
k’th individual can be expressed as 
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),0(;; avmdirkngkng NvPP σ⋅+=  
 
where dirv  is a normalized random vector )1( ×ngenesP  specifying the 
direction of perturbation and ),0( avmN σ  is a Gaussian random 
variable with mean 0 and standard deviation avmσ (GAP.mt_savm). 

 
 

Integer mutation 
 
Each integer gene can be mutated to any integer value within the 
predetermined range with the probability of GAP.mt_pigm. 

 
See Also generepair 
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nondom 
 
Purpose Find the set of non-dominated solutions for multi-objective optimization 
 
Syntax Nd = nondom(O,flag) 
 
Arguments O a matrix of objective function values whose dimension is  

(Number of objective functions) by (Number of solutions) 
flag 1 indicates that the lager objective value is better  

0 indicates that the smaller objective value is better 
 
Value Nd a row vector with dimension equal to the number of solutions whose  

elements are 1 if the solutions are non-dominated and 0 if they are 
dominated 

 
Description nondom is used to identify the non-dominated solutions among the solutions 

using the objective function value matrix. The method proposed by Kung et al. 
is employed.  

 

Kung et al.’s method of identifying the non-dominated solution set 

 
Step 1  Sort the population according to the descending order of importance in the first 

objective function and name the population as P 
 
Step 2  Front(P) 

IF   |P| = 1, 
Return P as the output of Front(P) 

ELSE 
 T = Front ( P(1: [ |P|/2 ]) ) 
 B = Front ( P( [ |P|/2 – 1 ] : |P|) ) 
 

IF   the i-th non-dominated solution of B is not dominated by 
any non-nominated solution of T,  

 

M=T ∪{i}  
Return M as the output of Front(P) 

END 
 
Note  1.  |•| is the number of the elements 

2.  P( a : b ) means all the elements of P from index a to b, 
3.  [•] is an operator gives the nearest smaller integer value. 
 

 
 

It is a recursive algorithm, and it may not be easy to visualize. However, it is 
the most computationally efficient method known at the time this manual is 
written. 
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Examples Suppose we have the following objective function value matrix with two 
objectives and five solutions , 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

47615
28964

O . 

 
Then Nd = nondom(O,1) returns 
 

Nd = [ 0  0  1  1  0 ]. 
 
Reference    K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & 

Sons, Chichester, UK, 2001, pp. 38-39 
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normgene 

 
Purpose Update the normalized gene values based on the raw gene values 
 
Syntax Pout = normgene(Pin) 
 
Arguments Pin structure of population before updating the normalized gene values 
 
Value  Pout structure of population after updating the normalized gene values 
 
Description normgene updates the normalized gene values (P.normgne) based on the 

actual gene values (P.gene). The raw gene value is mapped to a value 
between 0 and 1 according to the type of the gene (P.type). Note that only 
the population members who have not been evaluated are updated. 

 
The following table shows how normgene maps the raw gene value to the 
normalized gene values on j’th gene of the m’th chromosome for different 
types of gene. 
 

Gene type Ptype Operation 
Integer & 

linear 1, 2 )/()( min;max;min;,;g,;ng jjjkjkj PPPPP −−=    

Logarithmic 3 
)ln()ln(
)ln()ln(

min;max;

min;,;g
,;ng

jj

jkj
kj PP

PP
P

−

−
=  

 
Table B.4  

 
Examples With the following parameters 

 
P min  = [ 0  1  10 ],  P max  = [ 10  2  1000 ],  and P type = [ 1  2   3 ], 

 
if a chromosome with normalized gene values is 
 

Pg;k = [ 5  1.5   500 ], 
 

then the corresponding chromosome with actual gene values is 
 

Png;k = [ 0.5   0.5  0.8495 ]. 
 

See Also rawgene 
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objwght 

 
Purpose Create an objective weight vector for use in multi-objective optimization 
 
Syntax owv = objwght(GAP) 
 
Arguments GAP structure of genetic algorithm parameters  
 
Value  owv normalized weight vector for scalarization of the multi-objective  

function values 
 
Description objwght generates a normalized weight vector to be used for scalarization of 

the fitness function values in the multi-objective optimization problem.  
 
In the single-objective optimization problem where GAP.fp_nobj = 1, there 
is only one objective function. Thus objwght returns owv = 1 
 
Even in the multi-objective optimization problem (GAP.fp_nobj > 1), it is 
possible to use one objective function value for fitness evaluation. The 
objective function number to be used is specified in GAP.fp_obj. Then the 
output weight vector owv has all zero values except for the element 
corresponding to the objective function specified by GAP.fp_obj. 
 

Example Consider a multi-objective optimization with three objectives f1,  f2  and  f3. A 
possible weight vector is 

 
owv = [ 0.2  0.7  0.1 ]. 

 
Then the fitness value is calculated as 
 

Fitness  =  0.2 f1 + 0.7 f2 + 0.1 f3. 
 

If  GAP.fp_obj = 2, then objwght generates 
 

owv = [ 0  1  0 ]. 
 

Hence the fitness value is calculated as 
 

Fitness  =  f2. 
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paretoplot 

 
Purpose Plot two objective functions in 2D objective space 
 
Syntax paretoplot(fignum,P,GAP,[region]) 
 
Arguments fignum figure number 

P  structure of current population  
GAP  structure of genetic algorithm parameters 
region  an optional integer argument specifies the region of which the 

chromosomes are plotted 
 
Description paretoplot generates 2D plot of 2 objective functions or 2D plot of 3 

objective functions as in Figure B.4. It is called within reportplot. 
 
 

                
 

      Figure B.4   2D and 3D Pareto plots  
 
 When the view angle is adjusted for the better observation in the case of 3D 

plot, it is maintained throughout the evolution process. 
 
See also reportplot, distplot 
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randsearch 
 
Purpose Perform a random search in the vicinity of the best individual in each region 

for better individual 
 
Syntax Pout = randsearch(Pin,GAP,GAS,D) 
 
Arguments Pin structure of current population    
  GAP structure of genetic algorithm parameters 
  GAS structure of genetic algorithm statistics 
  D an optional data structure if needed for fitness evaluation 
 
Value  Pout structure of the population after the random search 
 
Description randsearch explores the neighborhood of the best individual for better 

solution by random mutation of the best individual. By extensively exploring 
the vicinity of the best individual, it helps the GA to converge to the optimal 
solution faster. 
 
There are two different random search operations. They are the relative 
random search that uses the relative vector mutation and the absolute random 
search that employs the absolute vector mutation. At each generation, only 
one of the two random search operations is active. 
 
Random search starts at (GAP.rs_fgs × GAP.fp_ngen)’th generation and 
(GAP.rs_fps × GAP.fp_npop) individuals are randomly generated using 
relative vector mutation with the standard deviation of GAP.rs_srp or 
absolute vector mutation with the standard deviation of GAP.rs_sap. The 
choice between the two random mutations is dependant on the value 
GAP.rs_frp.  GAP.rs_frp is the probability that the absolute mutation is 
used and thus the probability that the relative mutation is utilized is (1-
GAP.rs_frp).  
 
After generating the mutants, the fitness values of the mutants are evaluated. 
If there exists an individual whose fitness is better than that of the current best 
individual, then the current best is replaced by the new individual. 
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rawgene 
 
Purpose Update the raw gene values based on the normalized gene values 
 
Syntax Pout = rawgene(Pin) 
 
Arguments Pin structure of population before updating raw gene values 
 
Value  Pout structure of population after updating raw gene values 
 
Description rawgene updates the actual gene values (P.gene) based on the normalized 

gene values (P.normgene). The normalized gene value is mapped to a 
value in the predefined range according to the type of the gene (P.type). 
Note that only the population members who have not been evaluated are 
updated. 

 
The following table shows how rawgene maps the normalized gene value to 
the actual gene values on j’th gene of the k’th chromosome for different types 
of gene. 
 

Gene type Ptype Operation 

Integer 1 
])[( min;,;ngmin;max;,;g jkjjjkj PPPPP +⋅−=    

where [ ] is the round -up operator 
Real 2 jkjjjkj PPPPP min;,;ngmin;max;,;g )( +⋅−=  

Logarithmic 3 ( )( ))ln()ln()ln(exp min;,;ngmin;max;,;g jkjjjkj PPPPP +⋅−=  
 

Table B.5 
 

Examples With the following parameters 
 

P min  = [ 0  1  10 ],  P max  = [ 10  2  1000 ],  and P type = [ 1  2   3 ], 
 
if a chromosome with normalized gene values is 
 

Png;k = [ 0.5   0.5   0.5 ], 
 

then the corresponding chromosome with actual gene values is 
 

Pg;k = [ 5   1.5  100 ]. 
 
See Also normgene 
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reportplot 
 
Purpose Plot the distribution of the genes of the chromosomes, the fitness history and 

Pareto plot 
 
Syntax reportplot(GAP,GAS,Pk,GUIhdl) 
 
Arguments GAP      structure of genetic algorithm parameters   
  GAS      structure of genetic algorithm statistics 

P      structure of  the current population 
GUIhdl handle for GOSET GUI  

 
Value  None 
 
Description Plots the distribution of the genes of the chromosomes with the fitness history 

as in Figure B.5 or the Pareto plot as in Figure B.6   
  
 

          
 

Figure B.5  Gene distribution plot                 Figure B.6  2D Pareto plot 
 

It is also possible to use a custom plotting routine on top of the 
distribution/fitness history plot and the Pareto plot by defining custom report 
plot handle GAP.rp_crh. The custom report plotting routine must have the 
following format without output return value. 
 
 f(P,GAP) 
 

   P structure of current population    
   GAP structure of genetic algorithm parameters 

 
 
See also distplot, paretoplot 
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scale 
 
Purpose Update scaling parameters and computes the scaled and aggregated fitness 
 
Syntax F = scale(Pin,GAP) 
 
Arguments Pin structure of the input population 

GAP structure of genetic algorithm parameters 
 

Value  F scaled and aggregated fitness 
 
Description scale generate the scaled and aggregated fitness value (P.fit) based on 

the current GAP and the current population. Scaling operator is applied 
independently to each region in the multiple region case. 
 
Given the current fitness values, each fitness values (P.fit) is penalized by 
multiplying the penalty function value (P.pen) generated from the diversity 
control routine. Then the maximum (fmax), minimum (fmin), average (favg), 
media (fmed) and standard deviation (fstd) of the penalized fitness value of the 
population in each region are found. 
 
Depending on the value of scaling algorithm parameter GAP.sc_alg, 
different scaling method is used as in Table B.6.  
 
 

Scaling 
algorithm 
number  

(GAP.sc_alg) 

Scaling 
method 

Operation 
 

 f = original fitness     f’ = scaled fitness 
 

0 None 

 

 fmin  fmax 

 fmin 

f’=af+b 
 fmax 

f

f’

 

 

0
1

=
=

b
a  

 

1 Offset 
scaling 

 

 fmin  fmax 

fmax -fmin 
f’=af+b 

0 
f

f’

 

min

1
fb

a
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=  
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2 
Standard 

linear 
scaling 

 

 fmin  fmax 
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3 
Modified 

linear 
scaling 
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4 
Mapped 
linear 

scaling 
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1
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5 Sigma 
truncation
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b

fstd - fstd +kfstd f’=af+b
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0

f
 

GAP.sc_cst=

⋅−−=
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k
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6 Quadratic 
scaling 
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Table B.6  Scaling algorithms 
 
 

If GAP.sc_alg = 0, scaling is not used.  
 
If GAP.sc_alg = 1, offset scaling is used and fmin is mapped to 0 and fmax is 
mapped to |fmax - fmin|.  
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When GAP.sc_alg = 2, the fitness values are mapped so that the scaled 
fitness values also have same average fitness value as the original fitness 
value  and the maximum fitness value is GAP.sc_kln times larger then favg .  
 
The case of GAP.sc_alg = 3 is similar to the case of GAP.sc_alg = 2, 
except that median fitness value is used instead of average fitness value.  
 
With GAP.sc_alg = 4, fitness values are linearly scaled such that fmin is 
mapped to 1 and fmax is mapped to GAP.sc_kln. 
 
Sigma truncation is applied when GAP.sc_alg = 5. All the fitness values 
smaller than ( favg ! GAP.sc_cst Η fstd ), where favg is the average fitness 
value and the fstd is the standard deviation of the fitness values,  are mapped to 
negative values and therefore disregarded later by clipping to zeros. It is 
useful when there are few individuals with very small fitness value and most 
individuals have large fitness value. 
 
If GAP.sc_alg = 6, quadratic scaling is used. This algorithm emphasizes 
the large fitness value and deemphasizes the small fitness value. The 
parameters of a quadratic function is found such that fmax is mapped to 
GAP.sc_kmxs,  favg to 1 and fmin to GAP.sc_kmns., Then other fitness 
function values are mapped according to this quadratic function. 
GAP.sc_kmns is set to less than 1. 
 
After applying the above scaling, all the negative fitness values are set to 
zeros, the fitness values are divided by the sum of all the fitness values. These 
final fitness values become the scaled fitness values that represent selection 
probabilities. 
 
As the last step, the aggregate fitness values P.fit for chromosomes are 
obtained by summing all the objective functions using the objective function 
weight vector GAP.owv.  

 
 
Examples Given the fitness function vector P.mfit with three objective functions and 

five chromosomes as the following, 
 

P.mfit = ⎥
⎦

⎤
⎢
⎣

⎡
− 3333.325.6205.714

1111.11101054  

 
If the penalty vector is  
 

P.pen = [ 0.5    0.8    0.6    0.8    0.9], 
 
then the penalized fitness becomes 
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⎥
⎦

⎤
⎢
⎣

⎡
− 351267

108642  

 
If we apply standard linear scaling with the scaling factor (GAP.sc_klin) 
of 2, we have a = 1.5, b = -3 for the first objective and a = 0.5385, b = 1.9385 
for the second objective to yield  

⎥
⎦

⎤
⎢
⎣

⎡
3.55384.63088.40001.2923-5.7077

129630 . 

 
To make the fitness values non-negative, any negative fitness values are set to 
zero, that is,  

⎥
⎦

⎤
⎢
⎣

⎡
3.55384.63088.400005.7077

129630 . 

 
Then the fitness values are normalized by dividing the fitness value by the 
sum of the fitness value of the corresponding objective. 

 

⎥
⎦

⎤
⎢
⎣

⎡
0.15940.20770.376800.2560

4.03.02.01.00  

 
With the objective function weight [0.4 0.6], the aggregate fitness values are 
found to be 

P.fit = [ 0.1536    0.0400    0.3061    0.2446    0.2557 ] 
 
 

Reference D. E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning, 
Addison Wesley Publishing Company, January 1989 
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select 
 
Purpose Select chromosomes from the population and form a mating pool 
 
Syntax Pout = select(Pin,GAP) 
 
Arguments Pin structure of current population    
 GAP structure of genetic algorithm parameters 
 
Value Pout structure of the population 
 
Description Selection operator picks chromosomes from the current population to 

construct a mating pool for reproduction. When multiple regions are used, 
selection is applied within each region. That is, if there are m chromosomes in 
a region, the selection operator picks the chromosome only from that region 
until m spaces of the mating pool are filled. There are two different selection 
methods in GOSET that one can choose from. They are roulette wheel 
selection and tournament selection. 

 
 In the selection operation, the aggregate fitness values (P.fit) are divided by 

the sum of the aggregate fitness value to yield the normalized aggregate 
fitness values.  

 
 

Roulette wheel selection 
 
Setting GAP.sl_alg = 1 will activate roulette wheel selection. In the 
roulette wheel selection, the probability of an individual to be selected to the 
mating pool is proportional to the aggregate fitness (P.fit).  

 

 
Tournament selection 
 
Tournament selection is used if GAP.sl_alg is set to 2. In the tournament 
selection, GAP.sl_nts individuals are randomly chosen, and their aggregate 
fitness values (P.fit) are compared and the individual with best fitness value 
is selected to the mating pool. This procedure is repeated until the mating pool 
is occupied.  
 
Illustrations of these selection operators are in Chapter 2. 

 
 
  Custom selection 
 

Custom selection routine can be used instead of the two existing selection 
algorithms. This is specified by setting GAP.sl_alg to 3 and setting 
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GAP.dt_cah with the handle of the custom function. The custom function 
must have the following format 
 
 P_list = f(region,size,age,mfit,fit) 
 
 P_list    indices of the individuals to become parents 
 region    the region number  
 size     number of individuals for the death list  
 age         vector describing ages of the individuals in population 
 mfit    array with raw fitness values of the individuals  in the region 
 fit    vector of aggregate fitness values of individuals in the region 
 
As an example of a custom algorithm, the Roulette wheel selection algorithm 
is written as an mfile called ‘customselect.m’ which is shown below. 
 

 
 
This mfile must be in the same folder as the fitness function file or in the 
GOSET folder. Then the custom file handle GAP.sl_cah is set to 
@customselect. 

  

% Custom select algorithm example – Roulette wheel selection algorithm 
function plist = customselect(region,size,region_age,region_mfit,region_fit) 
 
% determine the mating probability 
Matprob = region_fit/sum(region_fit); 
 
% create a mapping function for selection 
map=cumsum(matprob); 
% now do the selection 
for i=1:size, 
    choice=rand; 
    j=1; 
    while (choice > map(j)) 
        j=j+1; 
    end 
    plist(i)=j; 
end 
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trimga 
 
Purpose Randomly initialize the gene values and the regions of the individuals 
 
Syntax [x,f]=trimga(GAP,P,[D]) 
 
Arguments GAP  structure of genetic algorithm parameters 

P  structure of a population 
D  optional data required by fitness function 

 
Value  x  revised solution 
  f  revised fitness function of the revised solution 
 
Description The trimga operator uses the Nelder-Mead simplex algorithm to perform an 

deterministic optimization using the best individual from a GA as a starting 
point. The goal is to find a better solution in the vicinity of the obtained GA 
solution. The trimga only works with single-objective optimization problems. 
Gene range constraints are enforced by subtracting infinitity from the fitness 
function when the gene range goes outside of the prescribed limits. This is a 
stand alone routine and is not the part of the evolution process.  

 
 By using GUI, the user can execute trimga to refine the solution and include 

it in the current population for further evolution with ease. 
 

 

   
 

Figure B.7   Using Trim GA in GUI mode 
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unrndinit 
 
Purpose Randomly initialize the gene values and the regions of the individuals 
 
Syntax Pout = unrndinit(Pin,GAP) 
 
Arguments Pin structure of current population    
  GAP structure of genetic algorithm parameters 
 
Value  Pout structure of the population 
 
Description unrndinit randomly generates chromosomes of the initial population. 

 
First, the normalized gene values are randomly assigned as in the following,  
 

=kjngP ,; rand 

 
where kjngP ,;  represents the normalized gene value of j’th gene in the k’th 
individual and rand is MATLAB function that generates a random number 
between 0 and 1. 
 
For the integer type gene, the normalized gene values are assigned with a 
discretized value between 0 and 1 such that they can represent correct integer 
values when mapped to actual gene values, that is, 

 

1levels
)levels(

,; −
×

=
rand fix

kjngP       

   
where 1levels min;max; +−= jj PP , and fix is a MATLAB function that rounds 
a number towards zero. 
 
After this step, the actual gene values are determined according to their types 
by using rawgene. 
 
If multi-regions are used, the chromosomes are distributed into regions by 
 

)( GAP.nregrand ceil ×=regP  
 

where ceil is a MATLAB function that rounds a number towards positive 
direction. 
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updateage 
 
Purpose Update the age of the each individual in the population 
 
Syntax Newage = updateage(P) 
 
Arguments P       structure of current population    
 
Value  Newage    vector of new ages 
 
Description The age of each individual in the population is updated. The age of the 

individual survived from the previous generation increase by one, and the age 
of the new individual is set to one. 
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updatestat 
 
Purpose Update the statistic information of GAS 
 
Syntax GAS = updatestat(GAS,Pin) 
 
Arguments Pin structure of current population    
  GAS structure of genetic algorithm statistics 
 
Value  GAS structure of genetic algorithm statistics 
 
Description The current average fitness value, the median fitness value, the best fitness 

value, and the gene values of the best individual are added to GAS.meanfit, 
GAS.medianfit, GAS.bestfit, and GAS.bestgenes respectively. 
The number of total evaluation is updated to GAS.ne. 
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Appendix C. GOSET parameter list
P.[  ] Description 
P.fithandle Handle to the fitness function  
P.size The number of individuals in the population 
P.mfit Unconditioned fitness function values 
P.fit Fitness function values  
P.eval Fitness evaluation flag       0 : fitness is not evaluated     1 : fitness is evaluated 
P.age Ages of the individuals in generation number  
P.ngenes Number of genes in all chromosomes of an individual 
P.min Minimum value of gene 
P.max Maximum value of gene  
P.type Types of genes         1 : integer     2 : linear     3 : logarithmic    
P.chrom_id Chromosome ID of gene (used for multiple chromosome case) 
P.normgene Normalized gene values  
P.gene Gene values  
P.region Geographic region  of an individual 
P.pen Penalty function which is used for diversity control 
 
 

GAP.[  ] Description Default 
Fundamental parameters 
GAP.fp_ngen No. of generations to evolve 100 
GAP.fp_ipop No. of chromosomes in initial population  100 
GAP.fp_npop No. of chromosome in the population 100 
GAP.fp_nobj No. of objective functions nobj 
GAP.fp_obj Objective to optimize (0 for Multi-objective optimization) 1 / 0 
Diversity control parameters 

GAP.dc_act 
Diversity control usage flag 

0: non-active          1: active 1 
GAP.dc_alg Diversity control algorithm  4 
GAP.dc_spc 

Diversity control space 
1 : Parameter space        2 : Fitness function space  1 

GAP.dc_mnt Minimum threshold for algorithm 1 0.02 
GAP.dc_mxt Maximum threshold for algorithm 1 0.1 
GAP.dc_ntr No. of trials for algorithm 2 3 
GAP.dc_mnb Min no. of bins relative to pop. size for algorithm 2 0.5 
GAP.dc_mxb Max no. of bins relative to pop. size for algorithm 2 2 
GAP.dc_dc Diversity control distance const (Algorithm 3 & 4) 0.001 
GAP.dc_nt Diversity control test pop. size (Algorithm 4) 50 
Scaling parameters 

GAP.sc_alg  

 

Scaling algorithm 
 

0 : none  
1 : offset so minimum fitness is zero 
2 : lin. scaling (favg → favg, fmax → GAP.sc_klin×favg) 
3 : lin. scaling (fmed → fmed, fmax → GAP.sc_klin×favg) 
4 : lin. scaling (fmin → 1, fmax → GAP.sc_klin) 
5 : sigma truncation   
6 : quadratic scaling 
 

1 

GAP.sc_kln Scaling factor for linear scaling algorithms 10 
GAP.sc_cst Scaling constant for sigma truncation 2 
GAP.sc_kmxq Max scaling factor for quadratic scaling (fmax→GAP.sc_kmxq) 10 
GAP.sc_kmnq Min scaling factor for quadratic scaling (fmin→GAP.sc_kmnq) 0.01 
Selection algorithm parameters 
GAP.sl_alg 

Selection algorithm  
1: Roulette wheel          2: Tournament 2 

GAP.sl_nts No. of individuals used in a tournament 4 
GAP.sl_cah Function handle for the custom selection algorithm [ ] 
Death algorithm parameters 
GAP.dt_alg 

Death algorithm  
1: replace parents              2: random replacement 
3: tournament on fitness    4: tournament on age 
5: custom algorithm           6: random among 1 - 4 

2 

GAP.dt_nts No. of individuals used in a tournament 4 
GAP.dt_cah Function handle for the custom death algorithm [ ] 
Mating and crossover parameters 
GAP.mc_pp Percentage of pop. replaced by children 0.6 
GAP.mc_fc Fraction of chromosomes involved in crossover  1 

GAP.mc_alg 

Crossover algorithm 
1 : Single point crossover 
2 : Scalar simple blend crossover  
3 : Vector simple blend crossover 
4 : Scalar simulated binary crossover  
5 : Vector simulated binary crossover 
6 : Random algorithms 

4 

GAP.mc_gac No. of gen. btw changing Algs for random crossover Alg 3 
GAP.mc_ec Tightness of distribution (ηc) for crossover algorithms 4 and 5 2 
Mutation parameters 
GAP.mt_ptgm Probability of a total gene mutation 0.001 

GAP.mt_prgm Probability of a relative partial gene mutation 0.002 
GAP.mt_srgm Standard deviation of relative partial gene perturbation 0.3 
GAP.mt_pagm Probability of a absolute partial gene mutation 0.002 
GAP.mt_sagm Standard deviation of absolute partial gene mutation 0.1 
GAP.mt_prvm Probability of relative vector mutation  0.002 
GAP.mt_srvm Standard deviation of relative vector mutation 0.3 
GAP.mt_pavm Probability of absolute vector mutation  0.002 
GAP.mt_savm Standard deviation of absolute vector mutation 0.1 
GAP.mt_pigm Probability of integer gene mutation 0.008 
Gene repair  parameters 

GAP.gr_alg 

 

Gene repair algorithm 
 

1 : Hard limiting 
2 : Ring mapping 

 

1 

Migration parameters 
GAP.mg_nreg No. of geographic regions the population is distributed 1 
GAP.mg_tmig Time between migrations in generations 0 
GAP.mg_pmig Probability of an individual to migrate  0 
Evaluation parameters 
GAP.ev_bev Block evaluation      0 : evaluate an individual      

 1 : evaluate all the individual  0 

GAP.ev_are 
Fitness reevaluation option 

0: evaluate only the unevaluated      1: evaluate all 0 

GAP.ev_ssd Supplementary data  
0: Pass P.gene      1: pass P.age, P.mfit, P.region 0 

Elitism Parameters 
GAP.el_act Elitism activation flag 1 
GAP.el_fgs Fraction of generation to pass before starting random search 0 
GAP.el_fpe Fraction of pop. protected as elite for multi-objective optimization 0.5 
Random search parameters 
GAP.rs_fgs Fraction of generation to pass before starting random search 0.5 
GAP.rs_fps Fraction of total population size used in random search 0.1 
GAP.rs_srp Standard deviation used in relative perturbation 0.3 
GAP.rs_sap Standard deviation used in absolute perturbation 0.1 
GAP.rs_frp 

Fraction of time that relative random perturbations are used.  
Absolute random perturbation is used for the rest of the time. 0.7 

GAP.rs_fea Fraction of generations on which to execute the algorithm 0.2 
Reporting parameters 
GAP.rp_lvl Reporting level    -1: no report     0: text only    1: plot & text 1 
GAP.rp_gbr Generation between reports 5 
GAP.rp_crh Function handle for custom reporting algorithm [ ] 
Objective plot parameters 
GAP.op_list List of objectives to make objective plots for  [1] 
GAP.op_style Style for each objective      0: logarithmic   1: linear [1 … 1] 
GAP.op_sign Sign of fitness for each objective     -1: neg   1: pos/mixed [1 … 1] 
GAP.dp_type Distribution plot type    1:  plot individuals   2:  plot histograms 2 
GAP.dp_np Maximum number of individuals to plot 100 
GAP.dp_res Number of bins in distribution plot for type 2 20 
Pareto plot parameters 
GAP.pp_list List of 2 or 3 objectives to be used in Pareto plot [ ] 
GAP.pp_xl x-axis label 'Objective 1' 
GAP.pp_yl y-axis label 'Objective 2' 
GAP.pp_zl z-axis label 'Objective 3' 
GAP.pp_title Pareto plot title ‘Solution space’ 
GAP.pp_style Style for each objective    0: logarithmic   1: linear [1 … 1] 
GAP.pp_sign Sign of fitness for each objective   -1: neg   1: pos/mixed [1 … 1] 
GAP.pp_axis Axis limits for Pareto Plot [ ] 
Gene definition parameters 
GAP.gd_min Row vector of minimum gene values 
GAP.gd_max Row vector of maximum gene values 
GAP.gd_type Row vector of gene types    1: integer   2: linear   3: logarithmic 
GAP.gd_cid Row vector of chromosome ID number 

Defined by 
the user 

USNA Beowulf parameters 
GAP.pe_act Parallel evaluation flag to use USNA Beowulf  0 
GAP.pe_tout Maximum expected fitness evaluation time in second 60 
ACSL simulation parameters 
GAP.acsl_act ACSL simulation flag 0 
GAP.acsl_fn ACSL filename for PRX and CMD files [ ] 
GAP.acsl_pn ACSL parameter name vector [ ] 
GAP.acsl_ts ACSL runtime table size 3000 
 

GAS.[  ] Description 
GAS.cg Current generation number 
GAS.medianfit The median fitness values of each objective 
GAS.meanfit The average fitness values of each objective 
GAS.bestfit The best fitness values of each objective 
GAS.bestgenes The best gene values for each objective over the generations  
GAS.ne The number of the total objective function evaluations 

 
 
 
 
 
 
 
 
 

 
Abbreviation list    No.: Number     Min: Minimum     Max: Maximum     Pop.: population     Gen.: Generation     Alg: Algorithm    Neg: Negative    Pos: Positive 
 
████ : Only applicable to USNA Beowulf version (GOSET v2.3p)
 


