

GOSET*
For Use with MATLAB®

United States
Naval Academy

Purdue University
School of Electrical and
Computer Engineering

* Genetic Optimization System Engineering Tool

Manual
Version 2.3

Last updated 8-17-2007

Acknowledgements 6

Chapter 1. Introduction 7

1.1 The Genetic Optimization System Engineering Tool (GOSET)
1.2 System requirements
1.3 Installing GOSET

Chapter 2. An Overview of Single-Objective Genetic Algorithms 13

 2.1 Introduction to genetic algorithms
 2.2 Canonical genetic algorithm
 2.3 Other genetic operators

Chapter 3. An Overview of Multi-Objective Optimization 21

3.1 Multi-objective optimization problems
3.2 GAs for multi-objective optimization problems

Chapter 4. GOSET Data Structures and Algorithm Execution 27

 4.1 Data structures
 4.2 Algorithm execution flow

4.3 Execution of GOSET

Chapter 5. GOSET Genetic Operators 39

 5.1 Objective weighting
5.2 Diversity control
5.3 Scaling
5.4 Selection
5.5 Death
5.6 Mating and crossover
5.7 Mutation
5.8 Gene repair
5.9 Migration
5.10 Fitness evaluation

Contents

5.11 Elitism
5.12 Random search
5.13 Trim GA

Chapter 6. GOSET Graphical User Interface 59

 6.1 GOSET GUI
 6.2 Main window

6.3 Menu bar
6.4 Evolution status, output report, start/stop/continue buttons
6.5 Main menu

Chapter 7. Tutorial lessons 73

 7.1 Rosenbrock’s function
 7.2 Tanaka problem
 7.3 Power diode curve fitting
 7.4 Transfer function fit

Appendix 105

A. GOSET function list
B. GOSET function reference

 C. GOSET parameter list

Acknowledgements

The GOSET software package is a direct result of two research awards from the Office of
Naval Research. The software itself had its beginnings prior to any formal research support,
at that time it was known as ENEGAT (ESAC Non-Encoded Genetic Algorithm Toolbox).
Later, a substantial revision and expansion of the software were made under Office of Naval
Research (ONR) support through the effort “Polytopic Model Based Stability Analysis and
Genetic Design of Electric Warship Power Systems,” contract N00014-02-1-0990. In this
regard I sincerely appreciate the support of both Katherine Drew, our program manager at
ONR, and Ed Zivi, a Professor at the US Naval Academy, whose support of the vision of this
effort was critical. Contractually, another important source of this effort was the effort
“National Naval Responsibility for Naval Engineering: Education and Research for the
Electric Naval Engineer,” contract N00014-02-1-0623. This award paid for the development
of this manual, as well as a short course to go with it. I would like to express our appreciation
to Sharon Beerman-Curtin for supporting the pedagogical and technology transfer efforts.

I also thank all of the students who helped me write the GOSET package. Brandon and Brant
Cassimere, Chunki Kwon, Jim Cale, and Brian Kuhn all served as guinea pigs in the use of
GOSET as it was developed. Dionysius Aliprantis played a key role for getting me interested
in genetic algorithms in the first place. Stan Żak, a fellow faculty member and close
collogue, helped sustain my interest and our research group with his scholarship and
enthusiasm. Benjamin Loop contributed routines relating to the identification of non-
dominated solutions as well as simulated binary crossover algorithms. Finally, I would
especially like to express my thanks to Yonggon Lee, a Ph.D. Student and later Postdoc at
Purdue University, who is responsible for putting together this manual, as well as for writing
the graphical user interface for GOSET.

 Scott D. Sudhoff
 Professor of Electrical and

Computer Engineering
 Purdue University

 - 7 -

Chapter 1

Introduction

1.1 The Genetic Optimization System

Engineering Tool (GOSET)
1.2 System requirements
1.3 Installing GOSET

 - 8 -

1.1 The Genetic Optimization System
Engineering Tool (GOSET)

The Genetic Optimization System Engineering Tool (GOSET) is a MATLAB® based
code for solving optimization problems. In the course of its development, it was
extensively used to solve a variety of engineering problems – particularly those
related to magnetics, electric machinery, power electronics, and entire power and
propulsion systems. It has been used to automatically design inductors, brushless dc
motors, power supplies, and inverters and for the parameter identification of
synchronous machines, induction machines, gas turbines, etc. It is meant primarily as
an engineering tool, although it is quite generic in its ability to solve both single-
objective and multi-objective optimization problems. Because it solves these
problems using evolutionary algorithms it is very robust in its ability to seek global
rather than local optimum, as well as in its ability to contend with functions that are
not ‘friendly’ in that they are, for example, discontinuous. GOSET provides the
means for the user to either be blissfully unaware of the algorithms and parameters
used, or to become intimately involved in the exact algorithms as well as the
parameters used in these algorithms. It also allows the user to either work from a text-
based environment or to utilize a graphical user interface. In short, it provides the user
with a powerful tool for the automation of the engineering design process.

1.2 System Requirements

GOSET runs on MATLAB Version 6.5 Release 13 and up, and you can refer to the
system requirements for corresponding versions of MATLAB.

For the MATLAB 6.5.1 or later versions running on Microsoft Windows, DLL
version of GOSET is also provided to improve the computational speed. If you are
using MATLAB 6.5 on Microsoft Windows, you can download the following file and
install this functionality.

http://www.mathworks.com/support/solutions/files/s33513/GenericDll_1p1.exe

The detailed installation procedure is provided in the following link.

http://www.mathworks.com/support/solutions/data/1-1ABRP.html?solution=1-1ABRP

 - 9 -

GOSET DLL version is marked by the letter ‘D’ in the GOSET version. For example,
DLL version of ‘goset 2.x’ is ‘goset 2.xD’.

1.3 Installing GOSET

GOSET is MATLAB based toolbox and the installation is a simple process of adding
the GOSET path to the MATLAB paths.

It is strongly advised not to change the default folder name of GOSET. For the
GOSET provided with this manual, the default folder name is ‘goset 2.x’ or
‘goset 2.xD’ for the DLL version.

Installation Instruction

1. Copy the 'goset 2.x(D)' and 'goset 2.x examples' folders in a convenient

place.

2. In MATLAB menu, go to 'File' and select 'Set Path’.

3. Then, click 'Add Folder' .

 - 10 -

4. Locate 'goset 2.x(D)' folder and click 'OK' to add 'goset 2.x(D)' folder to
the MATLAB search paths.

5. Click 'Save' and 'Close' to finish.

6. Now, you are ready to use GOSET.

 - 11 -

An Overview of Single-Objective
Genetic Algorithms

This section is devoted to a brief overview of Genetic Algorithms
(GAs) focused on the canonical genetic algorithm.

2.1 Introduction to genetic algorithms
2.2 Canonical genetic algorithm
2.3 Other genetic operators

Chapter 2

 - 12 -

2.1 Introduction to genetic algorithms

Genetic algorithms are optimization methods that are inspired by biological evolution.
GAs operate on a population of candidate solutions and apply the principle of
survival of the fittest to evolve the candidate solutions towards the desired optimal
solutions.

In GAs, candidate solutions are referred to as individuals. The defining properties of
these individuals (parameters) are encoded to chromosomes that consist of a string of
genes. According to the representation rule, a gene can be a symbol from an alphabet
(in a canonical GA), a binary number, integer, real-value, etc. A population refers to
the group of individuals.

The fitness of an individual is a metric that tells us how good each individual is as the
solution to the given problem. Using a fitness function, individuals are assigned
corresponding fitness values. The individuals with better fitness values are more like
to survive and reproduce.

With the representation rule and the fitness function determined for the given
optimization problem, an initial population is randomly generated and fitness values
are evaluated. Then a pair of parent chromosomes is selected from the current
population. The probability of selection increases with increasing fitness. Genetic
operators such as crossover and mutation are applied to these parent chromosomes to
generate children. The children are used to create a new population, for which fitness
values are evaluated and assigned. This process of selection, crossover, mutation, and
fitness evaluation is repeated until a stopping criterion is satisfied. Each iteration of
this procedure is called a generation.

From the above description of a GA, it is clear that GAs are radically different from
the classical optimization approaches. Some of the most significant differences are:

• GAs operate encodings of the parameter values, not necessarily the actual
parameter values

• GAs operate on a population of solutions, not a single solution
• GAs only uses the fitness values based on the objective functions and do not

require derivative information or other knowledge
• GAs uses probabilistic computations, not deterministic ones
• GAs are efficient in handling problems with a discrete search space

 - 13 -

2.2 Canonical genetic algorithm

In this section, a canonical GA is introduced to illustrate the fundamental mechanisms
of GAs. A flow chart of canonical GA is shown in Figure 2.1. There in, the GA
begins with an initialization step, followed by a repeated sequence of fitness
evaluation, selection, crossover and mutation.

Figure 2.1 Flow chart of a typical GA

Initialization

 In the initialization step, initial solutions are randomly generated and encoded into
individuals according the predefined representation rule. Binary coding is employed
in canonical GAs. The generation number k is set to 0 and the initial population is
denoted P0.

Fitness Evaluation

The fitness value is a figure of merit for an individual. In the fitness evaluation step,
each individual is assigned with its fitness value. Generally, higher fitness value
corresponds to a more optimal individual.

k = k+1

START

Initialization

END

STOP?

Selection

Crossover

Mutation

 Fitness evaluation

k = 0; P0

Form mating pool Mk

Form population Pk+1

Form population Pk+1

^

 - 14 -

Fitness

Function

3

?

?

?

?

8

?
5

1

7 IN OUT

Figure 2.2 Fitness evaluation

Selection

In nature, the individuals that are better suited to the environment are more likely to
survive and reproduce. The selection operator emulates this situation by ensuring that
individuals with larger fitness values are more likely to survive to reproduce. Among
the several different selection methods, the roulette wheel and tournament selection
algorithms are commonly used to form a mating pool Mk.

a. Roulette wheel selection

Roulette wheel selection is one of the most popular selection methods. Let’s assume
that all the individuals are evaluated and assigned with their fitness values. Then one
can imagine a roulette wheel with sections whose number is same as the number of
individuals and whose areas are proportional to the fitness values of the
corresponding individuals. Then the wheel is turned and a chromosome is selected
and copied to the mating pool. This process is repeated until the mating pool is full.

Winner19
76
44
27

8
53
31
76

Individuals with
fitness values

Assign a piece
proportional to
the fitness value

Mating pool

Figure 2.3 Roulette wheel selection

b. Tournament selection

As the name states, two or more individuals are randomly chosen from the population
and the one with better fitness value is selected and copied in the mating pool. This
method is simpler than the roulette wheel method.

 - 15 -

Figure 2.4 Tournament selection

Crossover

Crossover emulates the reproduction of living organs by exchanging gene among the
chromosomes. Crossover generates new individuals that share the characteristics of
their parents. Crossover is performed on the mating pool Mk to form population 1

ˆ
+kP

as a first step in forming the next generation Pk+1. The single-point crossover and the
multiple-point crossover operators are list below.

a. Single-point crossover

A crossover point is randomly selected and the genes of the parents are exchanged
after the crossover point as depicted in Figure 2.5.

 Crossover point

Parent 1

Parent 2 0 1 1 0 1

1 0 1 1 1 Child 1

Child 2 0 1 1 1 1

1 0 1 0 1

Figure 2.5 Single-point crossover

b. Multiple-point crossover

Several crossover points are randomly chosen and the genes of the parents are
exchanged in between the crossover points. Figure 2.6 illustrates two point crossover.

 Crossover points

Parent 1

Parent 2 0 1 1 0 1

1 0 1 1 1 Child 1

Child 2 0 0 1 0 1

1 1 1 1 1

Figure 2.6 Multiple-point crossover

Population Randomly pick
multiple individuals

Winner

Mating pool

 - 16 -

Mutation

In natural evolution, mutation occurs as the result of an error in copying the gene
information. As an analogy to this, mutation in GA is a process of changing some
genes in chromosomes randomly. The main role of mutation operator is to maintain
the diversity of the population.

In the canonical GA using binary representation, mutation operator flips the selected
bit value as in Figure 2.7. The mutation operator is applied to 1

ˆ
+kP which yield 1+kP

Original chromosome 0 1 0 0 0 1 1 0 1 1

Mutated chromosome 0 1 0 0 1 1 1 0 1 1

Mutation point

Figure 2.7 Mutation in binary-coded GAs

2.3 Other genetic operators

Selection, crossover and mutation are the primary genetic operators. However, other
genetic operators have been developed to improve the performance of GAs. We
introduce some of them that are employed in GOSET.

Elitism

Elitism is a mechanism to protect the best individual from being altered and lost by
genetic operations. The simplest way to implement elitism is to pass the current best
individual to the next population without any genetic operations. By using elitism, it
is guaranteed that maximum fitness in the population will never decrease.

Old population New population

Best gene is preserved

GA
operators

Figure 2.8 Elitism

 - 17 -

Migration

This operator works only when multiple-region (or multiple-population) scheme is
employed. By setting the number of regions, n, greater than one, the population is
divided into n different populations. Generally, these populations evolve without any
interaction. Periodically, some of the individuals are redistributed and move from one
region to other region.

Region 1

Region 3

Region 2

Randomly pick
one and move
to other region

Figure 2.9 Migration operator

Using multiple populations with migration can result in a better chance of finding the
global optimum with less computation.

Random search

Random search is a way to extensively explore the neighborhood of the best
individual for better solution by random mutation of the best individual. It can help
reduce the time for the GA to converge to the optimal solution.

 Pick the best
individual Randomly

generate
mutants

Pick the best
mutant Compare and

put the better one back

Figure 2.10 Random search

As shown in Figure 2.10, the best individual is randomly perturbed to generate
mutants. Then, the fitness values of the generated individuals are evaluated. If the

 - 18 -

best among the mutants has better fitness value than that of the current best individual,
then the current best individual is replaced by the new best individual. Otherwise, the
original best individual is placed back to the population.

Diversity Control

For some optimization problems, there are multiple optimal solutions (multi-modal
problems). A naive application of GAs can result in convergence of the solutions to
one optimal solution. Even in the problem with single optimal solution, it is not
desirable for the many solutions exploring the same region in the solution space.
Therefore, the diversity control is employed. By using diversity control, the under
represented solutions are emphasized and similar solutions are penalized by adjusting
their fitness values.

 f

 x

 f

 x
(a) Without the diversity control

 f

 x

 f

 x
(b) With the diversity control

Figure 2.11 Diversity control

Figure 2.11 shows the effect of diversity control. Each circle on the curve represents a
solution and its fitness value is shown by the vertical bar below it. Most of the
solutions are close to the first optimal solution in (a). With the high probability of
selecting a solution near the first optimum, it is likely to end up having all the
solutions near the first optimum. However, when the diversity control is used, the
fitness function values of the overrepresented solutions in the first optimum are
penalized as in (b) and underrepresented solutions in the second optimum are less
penalized and have better chance to survive.

 - 19 -

An Overview of
Multi-Objective Optimization

GOSET has the capability to perform multi-objective optimizations.
A few fundamental notions on multi-objective optimization are
introduced in this chapter.

3.1 Multi-objective optimization problems
3.2 GAs for multi-objective optimization

problems

Chapter 3

 - 20 -

3.1 Multi-objective optimization problems

Definition

Multi-objective optimization problems involve more than one objective function.
Each objective function is to be minimized or maximized. The general form of multi-
objective optimization problem can be formally defined as

The fundamental difference between single-objective optimization and multi-
objective optimization is that in multi-objective optimization problem the desired
result is a set of points that describe the best tradeoff between competing objectives
rather than a single point representing the extrema of a single objective function.

Pareto optimal solution

In the single-objective optimization problem, the superiority of a solution over other
solutions is clearly determined by comparing their objective function values.
However, in multiple-objective optimization problem, the goodness of a solution has
to be redefined.

For this purpose, the concept of domination is introduced. Suppose there are two
solutions x1 and x2. The solution x1 is said to dominate x2 (or x2 is dominated by x1), if
the following two conditions are satisfied,

As an illustration of the concept of domination, let’s consider two-objective
optimization problem with f1 and f2. We want to maximize f1 and minimize f2.
Assume there are five solutions as in Figure 3.1.

nixxx

Kkh

Jjg
Mmf

U
ii

L
i

k

j

m

,,2 ,1 ,

,,2 ,1 ,0)(

,,2 ,1 ,0)(subject to
,,2 ,1),(min/max

)()(L

L

L

L

=≤≤

==

=≥
=

x

x
x

lower
bound

upper
bound

Dominance test conditions

1. The solution x1 is no worse than x2 in all objectives.
2. The solution x1 is strictly better than x2 in at least one objective.

 - 21 -

First, compare the solution 1 and the solution 2. The solution 1 is better than the
solution 2 for both of the objectives. Hence it is evident that the solution 1 dominates
the solution 2.

Figure 3.1 Dominance check example

Now look at the solution 1 and solution 5. They have same f2 values, but solution 5
has bigger f1 value than solution 1. Thus solution 5 dominates solution 1. As a final
example, let’s check the dominance between the solution 1 and 4. The solution 4 is
better for the first objective function, but the solution 1 is better for the second
objective function. As neither solution satisfies the first condition for dominance test,
we cannot say that either solution dominates the other.

Given a set of solutions, the non-dominated solution set is a set of all the solutions
that are not dominated by any members of the solution set.

Figure 3.2 The Pareto-optimal front

Each solution in the feasible decision space can be mapped to the feasible objective
space. The non-dominated set of the entire feasible search space is called the Pareto-
optimal solution set. In Figure 3.2, a bold line in the feasible objective space is

f2

(minimize)

f1 (maximize)

1

2
4

5
3

feasible
objective
space

f1(x)
(minimize)

f2(x)
(minimize)x2

x1

feasible
decision
space Pareto-optimal front B

C

Pareto-optimal solutions

A

 - 22 -

called the Pareto-optimal front that is the set of all the points mapped from the
Pareto optimal solution set. The Pareto-optimal front represents the best possible
compromise between conflicting objectives. The Pareto-optimal front is the desired
result of the multi-objective optimization.

Diversity control

There are multiple solutions for a given multi-objective optimization problem and any
solution in the Pareto optimal solution set can be the best solution. Thus it is required
to find not only as many Pareto-optimal solutions as possible, but also as diverse as
possible solutions over the Pareto-optimal front.

 (a) (b)

 Figure 3.3 Different distributions of solutions

In the Figure 3.3, there are five points in Pareto-optimal front for each case (a) and (b).
While the solutions of (a) are concentrated on a specific part of the Pareto-optimal
front, those of (b) are evenly distributed over the Pareto-optimal front. There are
chances that the most appropriate solution for the given problem exists in the
neglected portion of the Pareto-optimal front in case (a). Thus, it is very important to
have diverse solutions.

There are several different techniques used to control the diversity of solutions. The
interested is referred to [Deb01] or [Car02].

3.2 Genetic algorithms for multi-objective

optimization problem

Genetic algorithm utilizes a population of solution candidates. It is possible for the
genetic algorithms to find out multiple optimal solutions in one execution. Meanwhile,

f1(x)
(minimize)

f2(x)
(minimize)

Pareto-optimal front

f1(x)
(minimize)

f2(x)
(minimize)

Pareto-optimal front

 - 23 -

a series of executions is required to find out multiple solutions in the classical
optimization approaches. Therefore, genetic algorithms are highly suitable for solving
multi-objective optimization problems.

Schaffer [Sch84] implemented the first multi-objective genetic algorithm in 1984 to
find a set of non-dominated solutions. However, it is not until mid 1990’s that the
researchers became actively involved in this area.

Several different multi-objective genetic algorithms have been developed over the
years. The followings are some of those.

• Vector Evaluated GA (Schaffer, 1984)
• Non-Dominated Sorting GA (Goldberg, 1989)
• Niched-Pareto GA (Horn et al., 1994)
• Vector-optimized ES ((Frank Kursawe, 1990)
• Multiple objective GA (Fonseca & Fleming, 1993)
• Weighted-Based GA (Hajela and Lin, 1993)
• Random Weighted GA (Murata & Ishibuchi, 1995)
• Distance-based Pareto GA (Osyczka & Kundu., 1995)
• Strength Pareto EA (Zitzler & Thiele., 1998)
• Elitist NSGA (NSGA II) (Deb et al., 2000)
• Pareto-archived ES (Knowles & Corne., 2000)
• Rudolph’s elitist MOEA (Rudolph, 2001)

Detailed description of these algorithms can be found in Deb [Deb01].

References

[Car02] Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont,
Evolutionary Algorithms for Solving Multi-objective Problems, Kluwer
Academic Publishers, 2002

[Deb01] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John

Wiley & Sons, Inc., 2001

[Sha84] J. D. Schaffer. Some Experiments in Machine Learning Using Vector Evaluated

Genetic Algorithms. Ph.D. Thesis, Nashville, TN: Vanderbilt University, 1984

[Sha85] J. D. Schaffer. Multiple objective optimization with vector evaluated genetic

algorithms. In J. J. Grefenstette, editor, Proc. Int'l Conf. on Genetic Algorithms,
pages 93--100, 1985.

 - 25 -

Chapter 4

GOSET Data Structures and
Algorithm Execution

4.1 Data structures
4.2 Algorithm execution flow
4.3 Execution of GOSET

 - 26 -

4.1 Data Structures

A large amount of information is involved in the genetic algorithm execution. To
facilitate the information in an organized fashion, GOSET categorizes the
information into the following three structures:

MATLAB structure name Contents

P Population information
GAP Genetic Algorithm Parameters
GAS Genetic Algorithm Statistics

Table 4.1 Data structures

We will begin our description of these with population information structure P.

Structure: P

Structure P contains all the information related to the current population. There are
16 fields associated with this structure. Field names and their descriptions are list in
the following table.

P.[Field name] Description

P.fithandle Handle to the fitness function

P.size The number of individuals in the population

P.mfit Unconditioned fitness function values (P.nobj × P.size)

P.fit Fitness function values (1 × P.size)

P.eval
Fitness evaluation flag (1 × P.size)

0 : fitness is not evaluated
1 : fitness is evaluated

P.age Age of each individual of the population in generations

P.ngenes Number of genes in all chromosomes of an individual

P.min GAP.gd_min

P.max GAP.gd_max

P.type GAP.gd_type

P.chrom_id GAP.gd_cid

P.normgene Normalized gene values (P.nobj × P.size)

 - 27 -

P.gene Gene values (P.nobj × P.size)

P.region Geographic region (1 × P.size) of an individual

P.pen Penalty function (1 × P.size) which is used for diversity
control

Table 4.2 Data structure of the population

Structure: GAP

Structure GAP has all the parameters about genetic operations. There are 67 fields
associated with GAP. They are listed below with their description and default values

GAP.[Field name] Description Default
Fundamental parameters

GAP.fp_ngen Number of generations to evolve 100

GAP.fp_ipop Number of chromosomes in initial population 100

GAP.fp_npop Number of chromosome in normal population 100

GAP.fp_nobj Number of objectives
Argument

for
gapdefault

GAP.fp_obj Objective to optimize
Note: 0 for multi-objective optimization

1: fp_nobj =1
0: fp_nobj >1

Diversity control parameters

GAP.dc_act
Diversity control usage flag

0 : non-active 1 : active

1

GAP.dc_alg Diversity control algorithm used in selection 4

GAP.dc_spc
Diversity control space

1 : Parameter space (or solution space)
2 : Fitness function space

1

GAP.dc_mnt Minimum threshold for algorithm 1 0.02

GAP.dc_mxt Maximum threshold for algorithm 1 0.1

GAP.dc_ntr Number of trials for algorithm 2 3

GAP.dc_mnb Minimum number of bins relative to population size for
algorithm 2 0.5

GAP.dc_mxb Maximum number of bins relative to population size for
algorithm 2 2

GAP.dc_dc Diversity control distance constant for algorithm 3 and 4 0.001

GAP.dc_nt Diversity control test population size for algorithm 4 50

 - 28 -

Scaling parameters

GAP.sc_alg

Scaling algorithm

0 : none
1 : offset so minimum fitness is zero
2 : linear scaling (most fit individual GAP.sc_klin more

likely to be selected than average fit)
3 : linear scaling (most fit individual GAP.sc_klin more

likely to be selected than median fit)
4 : linear scaling (most fit individual GAP.sc_klin more

likely to be selected than least fit)
5 : sigma truncation
6 : quadratic scaling

1

GAP.sc_kln Scaling factor for linear scaling algorithms 10

GAP.sc_cst Scaling constant for sigma truncation 2

GAP.sc_kmxq
Maximum scaling factor for quadratic scaling (most fit
individual GAP.sc_kmxq more likely to be selected than
median fit)

10

GAP.sc_kmnq
Minimum scaling factor for quadratic scaling (least fit
individual GAP.sc_kmnq more likely to be selected than
median fit)

0.01

Selection algorithm parameters

GAP.sl_alg
Selection algorithm

1 : Roulette wheel 2 : Tournament 3 : Custom

2

GAP.sl_nts Number of individuals used in a tournament 4

GAP.sl_cah Custom algorithm handle []

Death algorithm parameters

GAP.dt_alg

Selection algorithm

1 : Replace parents 2 : Random replacement
3 : Tournament on fitness 4 : Tournament of age
5 : Custom 6 : Random among 1-4

2

GAP.dt_nts Number of individuals used in a tournament 4

GAP.dt_cah Custom algorithm handle []

Mating and crossover parameters
GAP.mc_pp Percentage of population replaced by children 0.6

GAP.mc_fc Fraction of chromosomes involved in crossover 1

GAP.mc_alg

Crossover algorithm

1 : Single point crossover
2 : Scalar simple blend crossover
3 : Vector simple blend crossover
4 : Scalar simulated binary crossover
5 : Vector simulated binary crossover
6 : Randomly apply above algorithms

4

GAP.mc_gac Number of generations between changing algorithms for
random crossover algorithm. 3

GAP.mc_ec Tightness of distribution (ηc) for algorithms 4 and 5 2

 - 29 -

Mutation parameters
GAP.mt_ptgm Probability of a total gene mutation 0.001
GAP.mt_prgm Probability of a relative partial gene mutation 0.002
GAP.mt_srgm Standard deviation of relative partial gene perturbation 0.3
GAP.mt_pagm Probability of a absolute partial gene mutation 0.002
GAP.mt_sagm Standard deviation of absolute partial gene mutation 0.1
GAP.mt_prvm Probability of relative vector mutation 0.002
GAP.mt_srvm Standard deviation of relative vector mutation 0.3
GAP.mt_pavm Probability of absolute vector mutation 0.002
GAP.mt_savm Standard deviation of absolute vector mutation 0.1
GAP.mt_pigm Probability of integer gene mutation 0.008

Gene repair parameters

GAP.gr_alg
Gene repair algorithm

1 : evaluate an individual at a time
2 : evaluate all the individual in a population

1

Migration parameters

GAP.mg_nreg Number of geographic regions the population is distributed 1

GAP.mg_tmig Time between migrations in generations 0

GAP.mg_pmig Probability of an individual to migrate 0

Evaluation Parameters

GAP.ev_bev
Block evaluation flag (1 × P.size)

0 : evaluate an individual at a time
1 : evaluate all the individual in a population

0

GAP.ev_are
Fitness reevaluation option

0 : evaluate the unevaluated chromosomes only
1 : always reevaluate

0

GAP.ev_ssd
Supplementary data passing

0 : pass only gene values and optional data if exist
1 : pass also age, region No. and previous fitness value

0

Elitism parameters

GAP.el_act Elitism activation flag 1

GAP.el_fgs Fraction of generations to pass before starting elitism 0

GAP.el_fpe Fraction of population protected as elite state for multi-
objective optimization 0.5

Random search parameters

GAP.rs_fgs Fraction of generations to pass before starting random
search 0.5

GAP.rs_fps Fraction of total population size used in random search 0.1

GAP.rs_srp Standard deviation used in relative perturbation 0.3

GAP.rs_sap Standard deviation used in absolute perturbation 0.1

 - 30 -

GAP.rs_frp Fraction of the time that relative random perturbations are used.
Absolute random perturbation is used for the rest of the time. 0.7

GAP.rs_fea Fraction of generations on which to execute the algorithm 0.2

Reporting parameters

GAP.rp_lvl

Reporting level

-1 : no reporting
 0 : text reporting only
 1 : plots and text reporting

1

GAP.rp_gbr Generation between reports 5

GAP.rp_crh Custom reporting function handle []

Objective plot parameters

GAP.op_list List of objectives to make objective plots for [1]

GAP.op_style Style for each objective 0 : logarithmic 1 : linear [1 1 … 1]

GAP.op_sign
Sign of fitness for each objective

-1 : negative 1 : positive/mixed

[1 1 … 1]

Pareto plot parameters

GAP.pp_list List of 2 or 3 objectives to be used in Pareto plot []

GAP.pp_xl x-axis label 'Objective 1'

GAP.pp_yl y-axis label 'Objective 2'

GAP.pp_zl z-axis label 'Objective 3'

GAP.pp_title Pareto plot title 'Solution Space'

GAP.pp_style Style for each objective 0 : logarithmic 1 : linear [1 1 … 1]

GAP.pp_sign
Sign of fitness for each objective

-1 : negative 1 : positive/mixed

[1 1 … 1]

GAP.pp_axis Axis limits for Pareto plot []

Distribution plot parameters

GAP.dp_type Distribution plot type 1: plot individuals 2: plot histograms 2

GAP.dp_np Maximum no. of individuals to plot for type 1 100

GAP.dp_res Number of bins in distribution plot for type 2 20

Gene definition parameters

GAP.gd_min Minimum value of gene (P.ngenes × 1)

GAP.gd_max Maximum value of gene (P.ngenes × 1)

GAP.gd_type Types of genes (P.ngenes × 1)
1 : integer 2 : linear 3 : logarithmic

GAP.gd_cid Chromosome ID of gene (P.ngenes × 1)
Used for multiple chromosome case

These fileds
must be

defined by
the user

Table 4.3 Data structure of GAP

 - 31 -

Default values for GAP are defined in gapdefault.m. Thus the user can load the
gapdefault and then redefine only the required fields, instead of defining all the
fields. In the multi-objective optimization problems, default values for GAP can be
initialized by using the number of objectives as the argument of GAP. For example, if
there are 4 objectives, using gapdefault(4) returns the appropriate GAP.

Structure: GAS

The best fitness values, median fitness values, average fitness values, and best
chromosomes over the generations are stored in GAS. Current generation number and
the number of total objective function evaluations are also stored.

GAS.[Field name] Description

GAS.cg Current generation number

GAS.medianfit
The median fitness values of each objective
(No. of objectives × No. of generations)

GAS.meanfit
The average fitness values of each objective
(No. of objectives × No. of generations)

GAS.bestfit
The best fitness values of each objective
(No. of objectives × No. of generations)

GAS.bestgenes
The best gene values for each objective over the generations
(No. of genes × No. of generations × No. of objectives)

GAS.ne The number of the total objective function evaluations

Table 4.4 Data structure of GAS

4.2 Algorithm Execution flow

The algorithm execution flow of GOSET is depicted in Figure 4.1. Together with the
short description of each step, the related GOSET function names are listed.

 - 32 -

Figure 4.1 Algorithm execution of GOSET

Initialization

In this step, the initial population is randomly generated and data structures P,GAP,
and GAS are initialized. When the population does not exist, the initial population of
size GAP.ipop is randomly generated. Then the fitness value for each individual is
evaluated. The other data structures are also initialized accordingly. If the steady-state

 - 33 -

population size GAP.npop is smaller than the initial population size GAP.ipop, then
the population size is reduced to GAP.npop by discarding inferior chromosomes.

Genetic operators

Various genetic operators act on the current population to generate new population.
The detailed descriptions on these operators are in Chapter 5.

Post-processing

Once the new population has been generated, the best fitness value, the average
fitness value, and the gene values of the best individual are stored in the data
structure GAS.

Report plot

At the completion of the genetic operations, GOSET reports the information on the
new population in the gene distribution plot and/or the Pareto plot. In the gene
distribution plot, the normalized gene values of the individuals are plotted and also
the best fitness value, the average fitness value, the average fitness value, and the
worst fitness value over the generations are plotted. In the Pareto plot, the population
is plotted in objective function space.

4.3 Execution of GOSET

When using GOSET from a MATLAB script, GOSET is initiated by gaoptimize.m
that has the following syntax.

[fP,GAS]=gaoptimize(objhandle,GAP,D,GAS,iP,GUIhdl)
[fP,GAS]=gaoptimize(objhandle,GAP,D,GAS,iP)
[fP,GAS]=gaoptimize(objhandle,GAP,D)
[fP,GAS]=gaoptimize(objhandle,GAP)

[fP,GAS,bI]=gaoptimize(objhandle,GAP,D,GAS,iP,GUIhdl)
[fP,GAS,bI]=gaoptimize(objhandle,GAP,D,GAS,iP)
[fP,GAS,bI]=gaoptimize(objhandle,GAP,D)
[fP,GAS,bI]=gaoptimize(objhandle,GAP)

 - 34 -

There are 12 arguments for gaoptimze.m which needs to be defined before
executing GOSET.

objhandle objhandle is the handle of the m-file for the fitness function.

GAP GAP is the structure of genetic algorithm parameters.

D D is the optional data for the fitness function.

GAS GAS is the structure of genetic algorithm statistics. If this does

not yet exist, pass an empty matrix ‘[]’

iP iP is the initial population (a structure). If not used, pass an

empty matrix ‘[]’

GUIhdl GUIhdl is the handle used for GUI.

The outputs of gaoptimize.m are Pout and GAS.

fP fP is the final population (a structure).

GAS GAS is the structure of genetic algorithm statistics.

bI bI is the best individuals or non-dominated solution array.

It is easy to verify that gaoptimize.m follows the algorithm execution flow given in
Figure 4.1. As the gaoptimize.m has a simple modularized structure, it can be
modified easily so that the users can experiment with their own routine.

For the detailed description about running GOSET, refer to Chapter 7 that contains
step-by-step illustrations of using GOSET in the command line mode and the GUI
mode for several different optimization problems.

 - 35 -

Chapter 5

GOSET genetic operators

In this section, the genetic operators used in GOSET are explained
in detail.

5.1 Objective Weighting
5.2 Diversity control
5.3 Scaling
5.4 Selection
5.5 Death
5.6 Mating and crossover
5.7 Mutation
5.8 Gene repair
5.9 Migration
5.10 Fitness evaluation
5.11 Elitism
5.12 Random search
5.13 Trim GA

 - 36 -

5.1 Objective weighting

In the multi-objective optimization problem, there are more than one fitness values for each
individual. objwght.m randomly generates a normalized weighting vector to be used for
scalarization of the objective function values.

In the multi-objective optimization problem (P.nobj > 1), it is possible to use only one
objective function value for fitness evaluation. If the objective function number to be used is
specified in GAP.fp_obj, then the output weight vector owv has all zero values except for
the element corresponding to the objective function specified by GAP.fp_obj.

5.2 Diversity control

Four different diversity control algorithms are available to maintain the diversity of the
solutions in GOSET. These routines generate a fitness weight value for each individual. These
fitness weight values constitute the fitness penalty vector (P.pen) that is used for determining
an aggregated fitness P.fit in the scaling process. Individuals with many other individuals
close to them are assigned a small fitness weight value (thereby reducing the effective fitness)
and those with small number of neighboring individuals are assigned with fitness weight value
near unity (thus, penalizing the fitness less).

The diversity control can be applied to either the parameter (or decision) space or the fitness
function (or objective) space. For the diversity control in the parameter space, use GAP.dc_spc
= 1 and GAP.dc_spc = 2 is for the diversity control in the fitness function space.

a. Diversity control algorithm 1 (GAP.dc_alg = 1)

In this approach, the number of neighboring individuals of each individual is counted.
The neighboring individuals are those within the threshold distance which is
determined as

Threshold distance = (mean distance between points) α× ,

where α = (GAP.dc_mnt+rand Χ(GAP.dc_mxt-GAP.dc_mnt)).

Then the fitness weight of an individual is the reciprocal of the counted number of
individuals. Figure 5.1 illustrates this method with three examples.

 - 37 -

a
b

4
1 afor penalty =

2
1 bfor penalty = 1

1
1 cfor penalty ==

c

Threshold
distance

Figure 5.1 Illustration of diversity control method 1 in 2D space.

While very systematic, one major drawback of this approach is the necessity of
evaluating the distance between all the individuals which requires a computation time
proportional to the square of the population.

b. Diversity control algorithm 2 (GAP.dc_alg = 2)

This approach is based on the idea that individuals with similar gene values have
similar weighted sum of their gene values for any weight vector. In this method, first
an integer weight vector is generated at random, where the element value come from
the integer set {1, 2, … P.ngenes}. Then the weighted sum of the normalized genes
for each individual is evaluated. Individuals with similar weighted sum values are
grouped and put into bins based on the weighted sum. The total number of bins are
randomly chosen from {(GAP.dc_mnb × GAP.fp_npop), … (GAP.dc_mxb ×
GAP.fp_npop)}. For the individuals in a specific bin, their fitness penalty weights
become the reciprocal of the number of individuals in that bin.

Since it is possible that two individuals with drastically different gene values have
similar weighted sum for some weight vector, this procedure is repeated GAP.dc_ntr
times and the largest fitness penalty weight is chosen as the final fitness penalty weight
for each individual. This reduces the chance of assigning an individual a smaller fitness
penalty weight than appropriate.

Figure 5.2 shows an illustration of the diversity control algorithm mentioned above.
For example, if we look at the bin No. 1, there are two individuals. So the penalty
value for the individuals in bin No. 1 is ½, and likewise, the penalty value of the
individual in bin No. 5 is ¼.

 - 38 -

Random weight

vector X

Group individuals
according to their

weighted sum

Bin No. 1 2 3 4 5

Figure 5.2 Illustration of diversity control method 2.

Although this approach is not as systematic as the first approach, the computation time
is proportional to the population size, not the square of the size.

c. Diversity control algorithm 3 (GAP.dc_alg = 3)

The idea of this diversity control algorithm is similar to the diversity algorithm 1.
Instead of using the count of solutions in a neighborhood, the sum of infinity norm
between a solution and all the other solutions is used to determine the penalty value.
The fitness penalty weight for k’th individual is express as

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

1

,exp

1

i c

ki

k
pen

d
d

P ,

where di,k is the infinity norm between k’th and i’th individual, that is, the maximum
absolute gene difference between k’th and i’th individual and dc is the distance
constant (GAP.dc_dc) which controls the size of the neighborhood. If a small dc is
used, then the effective size of the neighborhood is also small. Thus only the solutions
with many neighboring solutions that are very close to them are penalized severely and
most of other solutions are not penalized. As the dc increases, the effective size of the
neighborhood increases and the penalty level also increases.

The fitness penalty weight in the algorithm 3 can take continuous value rather than
discrete value as in the algorithm 1. As with the algorithm 1, the distance evaluation
between all the individuals requires a computation time proportional to the square of
the population.

 - 39 -

d. Diversity control algorithm 4 (GAP.dc_alg = 4)

This approach is identical to the diversity control algorithm 3. However, only
GAP.dc_nt individuals among the population are randomly selected for the distance
evaluation. The random selection of the individuals is performed for each different
individual. This reduces the computational load at the cost of some inaccuracy in the
distance measurement. The fitness penalty weight for k’th individual is express as

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=
GAP.dc_nt

GAP.dc_nt 1

,expregion in the population ofNumber 1

1

i c

ki

k
pen

d
d

P ,

where di,k is the infinity norm between k’th and i’th individual, dc is the distance
constant (GAP.dc_dc)

5.3 Scaling

In the early stage of the evolution, if there are few individuals with very large fitness values,
then these strong individuals will dominate the entire population very quickly which can lead
to convergence to some local optimum without thorough exploration of the search space. This
is called as premature convergence. Towards the end of the evolution, when the population is
almost converged with most of the individuals sharing similar fitness values, then the
competition among individuals is weak and the evolution process slows down. As a remedy to
both these problems, scaling can be employed to maintain the appropriate evolution pressure
throughout the evolution process. Scaling is also useful in the multi-objective optimization
problems that have different scales in the objective functions.

As the first step in the scaling operation, the fitness values are scaled using one of the six
scaling methods. After scaling, all negative fitness values are clipped to zero, and then the
objective function weight vector (GAP.owv) is applied to scalarize the fitness values (P.mfit)
in the multi-objective optimization. Finally, the penalty vector (P.pen) is applied and the
scalarized the fitness values are penalized to yield the aggregated fitness values (P.fit) that
are used in the selection operation.

Several different scaling methods are available in GOSET. Options include no-scaling, offset
scaling, standard linear scaling, modified linear scaling, mapped linear scaling, sigma
truncation, and quadratic scaling. These methods are described below.

a. No scaling (GAP.sc_alg = 0)

 - 40 -

Scaling is not applied and the actual fitness value is used as shown in Figure 5.3. This
option is primarily intended for fitness functions that have been carefully constructed
so that no scaling is necessary.

 fmin fmax

 fmin

f’=af+b
 fmax

 f

 f’

a = 1
b = 0

Figure 5.3 No scaling

b. Offset scaling (GAP.sc_alg = 1)

In this method, fitness values are mapped linearly such that the minimum fitness value
is mapped to 0 and the maximum value is mapped to fmax ! fmin .

 fmin fmax

fmax − fmin
f’=af+b

0
f

f’

f = original fitness
f’= scaled fitness

min

1
fb

a
−=

=

Figure 5.4 Offset scaling

c. Standard linear scaling (GAP.sc_alg = 2)

In this method, a linear scaling is used in such a way that the average fitness is not
modified and the maximum fitness is GAP.sc_kln times the average fitness value.

f = original fitness
f’= scaled fitness

 - 41 -

f’

fmin fmax

k favg
f’=af+b

 favg

 favg

f

 afmin+b

f = original fitness
f’= scaled fitness

GAP.sc_kln=

−=

−

−
=

k

afb

ff
fk

a

avg

avg

avg

)1(

)1(

max

Figure 5.5 Standard linear scaling

d. Modified linear scaling (GAP.sc_alg = 3)

In this method, a linear scaling is applied in such a way that the median fitness is not
modified and the maximum fitness is GAP.sc_kln times the median fitness value.

f’

fmin fmax

 fmin

k fmed
f’=af+b

 fmed

 fmed

f

f = original fitness
f’= scaled fitness

GAP.sc_kln=
−=

−
−

=

k
afb

ff
fk

a

med

med

med

)1(

)1(

max

Figure 5.6 Modified scaling

e. Mapped linear scaling (GAP.sc_alg = 4)

This method is another linear scaling that maps the maximum fitness to GAP.sc_kln
and the minimum fitness to 1.

f’

 fmin fmax

1

f’=af+b
k

f

f = original fitness
f’= scaled fitness

GAP.sc_kln=
+⋅−=

−
−

=

k
afb
ff

ka

1

1

min

minmax

 - 42 -

Figure 5.7 Mapped linear scaling

f. Sigma truncation (GAP.sc_alg = 5)

In the sigma truncation method, all the fitness values smaller than (favg ! GAP.sc_cst

× fstd), where favg is the average fitness value and the fstd is the standard deviation of the
fitness values, are mapped to negative values and therefore disregarded later by
clipping to zeros. It is useful when there are a few individuals with very small fitness
value and most individuals have large fitness values.

fmin fmax

b

f’=af+b

kc≅fstd

0

favg

 fmax –favg +kc≅fstd

f

f’

f = original fitness
f’= scaled fitness

GAP.sc_cst=

⋅−−=
=

c

stdcavg

k

fkfb
a

)(
1

Figure 5.8 Sigma truncation scaling

g. Quadratic scaling (GAP.sc_alg = 6)

This algorithm emphasizes the large fitness value and deemphasizes the small fitness
value. The maximum fitness value is mapped to GAP.sc_kmxq, the average fitness
value to 1, and the minimum fitness value to GAP.sc_kmnq. The quadratic scaling is
the only nonlinear scaling method in GOSET.

 fmin fmax

1

 favg

kmax

cbfaff ++=′ 2

kmin

 f

 f’

f = original fitness
f’= scaled fitness

qGAP.sc_kmn

qGAP.sc_kmx

=

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

min

max

min

max

1

min
2

min

avg
2

avg

max
2

max

1
1
1
1

k
k

k

k

ff
ff
ff

c
b
a

Figure 5.9 Quadratic scaling

 - 43 -

5.4 Selection

The selection operators choose individuals from the population to constitute a mating pool for
reproduction. When the multiple regions are used, selection operations are confined to each
region. For each region, the selection operator picks same number of chromosomes as those in
the current region and moves them to the mating pool for that region.

There are two pre-defined selection operators that the user can choose from. They are roulette
wheel selection and tournament selection.

a. Roulette wheel selection

Each individual is assigned with the selection probability that is proportional to the
aggregate fitness value (P.fit). Then individuals are chosen based on the selection
probability. It is more likely that the better individual is chosen and copied to the
mating pool which mimics principle of the survival of the fittest.

b. Tournament selection

GAP.sl_nts number of individuals are randomly chosen from the population and
their aggregate fitness values (P.fit) are compared. Then the individual with the best
fitness value is selected to be in the mating pool.

Illustrations of these selection operators are in the section 2.2.

Custom algorithm

In the case that the user wants to use his/her own selection algorithm, the custom algorithm
handle GAP.sl_cah can be defined as long as the algorithm follows certain format. The
details regarding the custom algorithm can be found in the Appendix B.

5.5 Death

Death operator determines which individual is to die and replaced by the children. The
followings are possible options for the death operators.

a. Replacing parents

Parents are replaced by their own children.

 - 44 -

b. Random selection

The parents to be replaced are randomly chosen.

c. Tournament on fitness

The parent to be replaces is determined via the tournament based on the aggregate
fitness value. GAP.dt_nts number of parents are randomly chosen for a tournament
and the one with worst aggregate fitness value is marked for death.

d. Tournament on age

The parent to be replaces is determined via the tournament based on the age. Among
the randomly chosen GAP.dt_nts number of parents, the oldest one is marked for
death.

e. Custom algorithm

User defined custom death algorithm is used. The custom function handle is assigned
to GAP.dt_cah. Refer to the Appendix B for the details on the format of the custom
algorithm.

f. Random algorithm

If this option is selected, the death algorithm is randomly chosen among the first four
death algorithms at each generation.

5.6 Mating and crossover

There are three different crossover operators in GOSET. All the crossover operation is
performed on the normalized gene values and the actual gene values are updated based on the
crossovered normalized gene values.

These crossover operations are followed by gene repair process for illegal genes. That is, if a
gene value lies outside of the allowed range [0, 1] after the crossover operation, that gene value
is automatically fixed using the generapair routine.

a. Single point crossover

This crossover operator is similar to the crossover operator in binary-coded GAs. In
multiple chromosome setting, single point crossover occurs in each chromosome. The

 - 45 -

following example shows a single point crossover operation on individuals with two
chromosomes.

 Crossover points

Parent 1

Parent 2

0.83 0.21 0.55
1 2

0.98 0.26

0.42 0.17 0.34 0.24 0.77 Child 2

Child 1
1 2

1 2 1 2

0.42 0.17 0.55

0.83 0.21 0.34 0.98 0.77

0.24 0.26

Figure 5.10 Single point crossover with two chromosomes

b. Simple blend crossover

In the simple blend crossover, the children are generated from the weighted sum of
their parents. It is implemented so that the gene values of the two children have same
distance from the average value of the gene values of the parents. Figure 5.11
illustrates how simple blend crossover works. Filled circles represent the gene values
of parents positioned at p and q respectively, and white circles represent those of
children. The gene values of children can take any values between (3p-q)/2 and (3q-
p)/2 and they are equally distanced from the center of p and q.

Parents

Children

(3p-q)/2

p q

(3q-p)/2

(p+q)/2

Figure 5.11

Depending on whether the each gene value in a chromosome is blended using same
ratio or each gene value is blended independently, there are scalar simple blend
crossover and vector simple blend crossover.

Scalar simple blend crossover

In the scalar simple blend crossover operation, each gene position has different ratio of
blending. For example, two parents

Parent 1 = [0 0.8 0.3] and Parent 2 = [1 0.2 0.5]

 can generate

Child 1 = [0.25 0.95 0.4] and Child 2 = [0.75 0.05 0.4]

 - 46 -

via scalar simple blend crossover. The first gene values moved 25% of their distance
towards the average value of them. The second gene, -25%. And the third gene, 50%.

Vector simple blend crossover

In the vector simple blend crossover operation, all the genes are blended using same
ratio. For example, two parents

Parent 1 = [0 0.8 0.3] and Parent 2 = [1 0.2 0.5]

 can generate

Child 1 = [0.25 0.65 0.35] and Child 2 = [0.75 0.35 0.45].

For all three genes, the parent gene values are blended in such a way that they moved
25% of the distance between them towards their average values.

c. Simulated binary crossover

As the name suggests, the simulated binary crossover operator mimics the behavior of
the single-point crossover operator in binary-coded genetic algorithm. Detailed
description of the simulated binary crossover operator is beyond the scope of this
manual and only the basic concepts are introduced here. Interested readers are referred
to [p109, Deb01]

1 0 1 0 0 1 1

0 1 0 1 1 0 1

Crossover point Value

83

45

64 Avg.

Parent 1

Parent 2 Child 2

Child 1 1 0 1 0

0 1 1 0 1 0 1

1 0 1
Value

85

43

64 Avg.

Figure 5.12 Single point crossover example

Figure 5.12 illustrates an example of the single point crossover operation on the binary
chromosomes. Note that the average values are same before and after the crossover
operation. Hence, the amount of increase in one chromosome is same as the decrease
in another chromosome and the children are equally distanced from the center point of
the parents.

Each point of the chromosome has the same probability to be selected as a crossover
point. And the crossover in the lower bit results in children closer to the parents point.
Thus the values of children are more like to be near the values of parents. With these
investigations, the single point crossover can be simulated in real-coded genetic
algorithms by using the probability density for the children as in Figure 5.13.

 - 47 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

P
ro

ba
bi

lit
y

de
ns

ity
 p

er
 o

ffs
pr

in
g

0
0.1

Positions of offspring solutions

ηc = 2
ηc = 5

Figure 5.13 Simulated binary crossover

In Figure 5.13, it is assumed that the parents are positioned at 0.3 and 0.6. The
distribution index ηc is a non-negative real number that controls the spread of the
children. If the distribution index ηc is large, the probability of generating children that
are closer to the parents are higher. As the distribution index ηc becomes smaller, it is
allowed to create solutions that are far from the parents.

As in the simple blend crossover, there are scalar simulated binary crossover and
vector simulated binary crossover depending on whether the each gene value is
crossovered using same ratio or each gene value is crossovered independently.

d. Random crossover

When GAP.mc_alg is set to 6, GOSET chooses a mating crossover algorithm randomly
among the five methods described above. They are

 Single point crossover
 Scalar simple blend crossover
 Vector simple blend crossover
 Scalar simulated binary crossover
 Vector simulated binary crossover.

For every GAP.mc_gac generation, the crossover algorithm changes randomly.

5.7 Mutation

 - 48 -

The mutation operators of GOSET can be categorized into three types as described in this
section. All the mutation operations are applied to the normalized gene value and the actual
gene values are updated based on the mutated normalized gene values.

a. Total mutation

With the probability of GAP.mt_ptgm, each gene value can be replaced by a new
randomly generated gene value within the prescribed range that is defined by P.max
and P.min. For the integer type gene, the gene value takes any integer value within the
allowed range.

In the following figure, let us assume that the real-typed third gene is mutated. As the
mutation is applied to the normalized gene values, each gene has a value between 0
and 1.

Original chromosome 0.23 0.18 0.72 0.51 0.88

Mutated chromosome

Mutation point

0.23 0.18 0.43 0.51 0.88

Randomly generated
new gene value

Discard original
gene value

Figure 5.14 Total mutation

b. Partial mutation

Two types of partial mutations are employed. They are the relative partial mutation and
the absolute partial mutation. Integer genes are not involved in the partial mutations.

These mutation operations are followed by gene repair process(generepair) for
illegal genes.

Relative partial mutation

With the probability of GAP.mt_prgm, each gene value is perturbed by certain fraction
of the current gene value. The amount of perturbation is obtained using a Gaussian
random variable with standard deviation of σrgm(GAP.mt_srgm).

 - 49 -

Original chromosome 0.23 0.18 0.72 0.51 0.88

Mutated chromosome

Mutation point

0.23 0.18 0.68 0.51 0.88

 1 + N(0,σrgm)

Figure 5.15 Relative partial mutation

The figure 5.15 illustrates a relative partial mutation on the third gene, when the
Gaussian random variable N(0,σrgm) has a value -0.055.

Absolute partial mutation

With the probability of GAP.mt_pagm, each gene value is added with a Gaussian
random variable with zero mean and standard deviation of σagm(GAP.mt_sagm).

Original chromosome 0.23 0.18 0.72 0.51 0.88

Mutated chromosome

Mutation point

0.23 0.73 0.68 0.51 0.88

 N(0,σagm)

Figure 5.16 Absolute partial mutation

The figure 5.16 illustrates a relative partial mutation on the third gene, when the
Gaussian random variable N(0,σagm) has a value 0.55.

c. Vector mutation

Vector mutation is very similar to the partial mutation. However, the vector mutation
changes the each and every gene of the individual undergoing mutation. Integer genes
do not participate in the vector mutations.

These mutation operations are also followed by gene repair process for illegal genes as
in the partial mutation.

 - 50 -

Relative vector mutation

Each individual undergoes relative vector mutation with the probability of
GAP.mt_prvm. Every gene value of the individual is perturbed by certain fraction of
the current gene value. The amount of perturbation is obtained using

Random vector =),0(rvmdir Nv σ⋅

where dirv is a normalized random vector)1(×ngenesP specifying the direction of
perturbation and),0(rvmN σ is a Gaussian random variable with mean 0 and standard
deviation GAP.mt_srvm.

 Original chromosome 0.23 0.18 0.72 0.51 0.88

Mutated chromosome 0.24 0.15 0.78 0.60 0.81

1 + Random vector

Figure 5.17 Relative vector mutation

The figure 5.17 illustrates a relative vector mutation when the random vector is given
as

[0.03 –0.15 –0.08 0.18 –0.08].

Absolute vector mutation

Each individual undergoes absolute vector mutation with the probability of
GAP.mt_pavm. If an individual mutates, each and every gene value of the individual is
added with a random vector

Random vector =),0(mGAP.mt_savNvdir ⋅ ,

where dirv is a normalized random vector)1(×ngenesP specifying the direction of
perturbation and),0(avmN σ is a Gaussian random variable with mean 0 and standard
deviation GAP.mt_savm.

 Original chromosome 0.23 0.18 0.72 0.51 0.88

Mutated chromosome 0.22 0.20 0.73 0.51 0.87

Random vector

 - 51 -

Figure 5.18 Absolute vector mutation

The figure 5.18 illustrates an absolute vector mutation with the random vector

[–0.01 0.02 0.01 0.0 –0.01].

d. Integer mutation

Integer mutation is applied only to integer genes. Each gene is mutated to a randomly
generated integer within the allowed range with the probability of GAP.mt_igm.

5.8 Gene repair

Sometimes the gene values generated by the matingcrossover operator or the mutation
operator are infeasible and they fall outside of the specified range. In that case, they need to be
repaired to have valid gene value. Two different gene repair algorithms are available to
maintain the feasibility of the solutions in GOSET. This routine is called within the
matingcrossover and mutation operators.

a. Hard limiting algorithm 1 (GAP.gr_alg = 1)

When the processed gene value lies outside of the allowed range, i.e. [0, 1], the hard
limiting method maps a gene value to the nearest boundary value. For example, if a
resultant gene value is 1.2, it is adjusted to 1, and if it is -0.4, it is adjusted to 0.

b. Ring mapping algorithm 2 (GAP.gr_alg = 2)

When the processed gene value lies outside of the allowed range, i.e. [0, 1], the ring-
mapping maps a gene value to the modulus after division by 1. For example, if a
resultant gene value is 1.2, it is adjusted to 0.2, and if it is -0.1, it is adjusted to 0.9.

5.9 Migration

Migration is meaningful only when there are multiple regions defined, that is,
GAP.mg_nreg > 1. This operator selects some individuals in the population and
moves them to different regions. Each individual is migrated with the probability of

 - 52 -

GAP.mg_pmig. The parameter GAP.mg_tmig determines the frequency of applying
the migration operator and the migration interval is randomly chosen between
0.5×GAP.mg_tmig and 1.5×GAP.mg_tmig. For example, if GAP.mg_tmig is set to 4,
then the possible migration intervals are 2, 3, 4, 5, and 6 generations.

5.10 Fitness evaluation

In this step, the fitness values of all individuals are evaluated. GAP.ev_bev determines
whether to evaluate the fitness of an individual at a time (GAP.ev_bev = 0) or to
evaluate the fitness of the entire population at once (GAP.ev_bev = 1).

When an individual is moved from the previous generation without any change, the
fitness value of the individual does not change and there is no need to evaluate the
fitness again. In this case, GOSET can evaluate only the unevaluated individuals by
setting GAP.ev_are = 0. Setting GAP.ev_are = 1 will force GOSET evaluate all
individuals.

Evaluation of the fitness usually requires only the gene values of the individual
(P.gene). If the optional data D is specified for the gaoptimze function call, then the
optional data is also passed to the fitness function. On top of this, other information
like age(P.age), previous fitness function values(P.mfit), and region(P.region)
can be send to the fitness function by setting GAP.ev_ssd = 1. The order of the
information passed to the fitness function is P.gene, P.age, P.mfit, P.region, and
D.

There are many different ways to define a valid fitness function for a given
optimization problem. One fundamental rule is that the better gene should have more
positive fitness function value than those of inferior genes.

As an example, let’s look at the minimization problem of Powell function. The Powell
function [CHO96] is described as

4
41

4
32

2
43

2
214321)(10)2()(5)10(),,,(xxxxxxxxxxxxf −+−+−++= .

It is the minimization problem and the smaller function value is better. Hence, we can
simply take the negative of f(x) as the fitness function. The following is the fitness
evaluation routine in m-file for the problem of minimizing Powell function with -f(x)
as the fitness function.

 - 53 -

function fv = powell(x)

x1 = x(1);
x2 = x(2);
x3 = x(3);
x4 = x(4);

f = (x1 + 10*x2)^2 + 5*(x3 - x4)^2 + (x2 - 2*x3)^4 + 10*(x1-x4)^4;

fv = -f;

The Powell function always takes the nonnegative value, and thus the inverse of f(x)
can be another valid fitness function. A small positive value is added to the
denominator to avoid the possible singularity at the optimum point. In this case, the
last line of above m-file is replaced by the following line.

fv = 1/(0.001+f);

5.11 Elitism

Elitism is a device to insure that the fittest individual in a population is preserved
unless a better fit individual is found.

Single-objective optimization case

Pick the best
chromosome

Old population New population

Genetic
operation

Put the better
chromosome back

Figure 5.19 Elitism for the single-objective optimization

Elitism in the single objective optimization is straightforward. The best individual of
the population Pk and the best individual of the population after the genetic operations
performed are compared. The better of the two becomes a member of the next
population. As this operation is confined within a region, the best one of each region is
preserved for the multi-region case.
Even in the multi-objective optimization case, there are cases that it is desirable to use
only one specific fitness function value for elitism. This can be done by setting

 - 54 -

GAP.fp_obj to the number indicating a specific objective function. The elitism, then,
performs in the same way as with the single-objective optimization using only one
objective function value.

Multi-objective optimization case

In the multi-objective optimization case, the objective of elitism is to preserve non-
dominated solutions. Thus, it is necessary to retain multiple individuals.

First, the old population and the modified population in the same region are combined,
and the non-dominating solutions are found.

As the number of non-dominated solution can increase, the number of non-dominated
solutions is limited to

Maximum No. of non-dominated solutions = GAP.el_fpe × (No. of individuals in the region).

If the reserved space for the non-dominating solutions is enough for the non-
dominating solutions just found, then some individuals corresponding to dominated
solutions are randomly removed from the population and replaced by non-dominated
solutions. If the reserved space cannot accommodate all the non-dominated solutions,
then the appropriate number of non-dominated solutions are chosen using a diversity
control algorithm and placed in the population for the next generation.

Pick
non-dominated
individuals

Old population New population

Genetic
operations

Pick non-dominated
individuals

4.1 Yes

4.2 No

Fit in the
reserved
space?

Make space
and place in
the population

 Diversity
control

Apply niching
and choose
appropriate
number of
individuals

M

Figure 5.20 Elitism for the multi-objective optimization

 - 55 -

5.12 Random search

Random search operator is specialized for a local search. It can reduce the convergence
time significantly near the optimum point. In the initial stage of the evolution when the
active exploration is desirable, it is unnecessary to apply random search. The parameter
GAP.rs_fgs specifies the point of starting the random search. If GAP.rs_srp =
0.2, then the random search is inactive for the first 20 percent of entire generation. At
each generation with the active random search, the random search occurs with the
probability given by GAP.rs_fea.

Given the best solution, random search operator generates mutants of the best
chromosome. Mutants are generated in the same way as the relative vector mutation
based on GAP.rs_srp and the absolute vector mutation with GAP.rs_sap. The
relative vector mutation is chosen with the probability of GAP.rs_frp and the
absolute vector mutation is chosen with the probability of (1−GAP.rs_srp). The
number of the generated mutants is determined by the parameter GAP.rs_fps that
specifies the fraction of the total population size, that is

The number of mutants = GAP.rs_fps × Size of the population.

Then the best solution among the mutants is found and this solution replaces the
existing best only if this solution is better than the existing best solution.

5.13 Trim GA

The trimga operator uses the Nelder-Mead simplex algorithm to perform a
deterministic optimization using the best individual from a GA as a starting point. The
goal is to find a better solution in the vicinity of the obtained GA solution. The
trimga only works with single-objective optimization problems. Gene range
constraints are enforced by subtracting infinitity from the fitness function when the
gene range goes outside of the prescribed limits. This is a stand alone routine and is not
the part of the evolution process.

A sample call is

[x,f] = trimga(GAP,P,D)

 or

 [x,f] = trimga(GAP,P)

 - 56 -

where the inputs are the genetic algorithm parameter structure GAP the population
structure P and optional data structure D, and where the outputs are x the revised
solution, and f the revised fitness function value.

References

[CHO96] E. K. P. Chong and S. H. Żak, An Introduction to optimization, Wiley-Interscience,

1996

[Deb01] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley &

Sons, Inc., 2001

 - 57 -

Chapter 6

GOSET
Graphical User Interface (GUI)

In this section, the GOSET GUI is introduced. GOSET GUI provides
an intuitive and convenient method to use GOSET.

6.1 GOSET GUI
6.2 Main Window
6.3 Menu bar
6.4 Evolution status, output report

and start/stop/continue buttons
6.5 Main menu

 - 58 -

6.1 GOSET GUI

GOSET has the built-in graphic user interface (GUI) that provides an intuitive interface for the
user. With the GOSET GUI, the user has total control over GOSET without having to
remember parameter names or consult the documentation.

GOSET GUI also provides extra features that help the user to utilize GOSET more efficiently.
Some of them are listed below.

Stop & Continue:

 GOSET can be stopped at any time of the evolution process. The user may
want to change some parameters, check the best chromosome value, or
manipulate with the current population. The evolution process also can be
resumed from the point it was stopped.

Project save & load:

 The current population and all the parameters can be saved for later use. When
the saved project is loaded, the evolution process can be resumed as if it is
continued from the moment the project was saved.

View & save setting:

 Current parameter settings for GA operators, gene definitions and fitness
function information can be viewed. It is also possible to save these
information in a text file.

Best chromosome value display:

 The actual values of the best chromosome together with the gene description
can be viewed.

Mouse-on help:

 For the most GUI objects, mouse-on help is provided for efficient documentation.

 Example

Flexibility in the optional data for the fitness function:

 - 59 -

 For the optional fitness function data, a vector with actual numerical elements,
a variable name in the workspace or a ‘.mat’ file name containing the
appropriate data can be used.

6.2 Main window

The GOSET GUI can be initiated by typing ‘goset’ in the MATLAB command
window. If the GOSET GUI does not start, refer to Section 1.3 to check if the GOSET
is properly installed.

Figure 6.1 Main window of GOSET GUI

The main window of GOSET GUI is shown in Figure 6.1. There are five sections in
the main window:

 Menu bar
 Evolution status display
 Output report option
 Start/Stop/Continue buttons
 Main menu

Main menu

Output
Report

Menu bar

Evolution
Status

Start\Stop
\Continue
Buttons

 - 60 -

We will look at each part of the GOSET GUI in the following sections.

6.3 Menu bar

The menu bar, shown below, is located at the top of the main GOSET GUI window.

Figure 6.2 Menu bar of the GOSET GUI

The menu bar has the following menus.

 File
 Setting
 Option
 Help

a. File menu

File menu has submenu as in Figure 6.3.

Figure 6.3 File menu of GOSET GUI

Save current project: Store all the information of current generation including
the population information and the parameters of
genetic operators.

Load saved project: Load a previously saved project.

 - 61 -

Recent files: Five most recently accessed fitness function files are

listed. They can be loaded directly by clicking them.

Exit GOSET: Close GOSET GUI. The shortcut key is Ctrl+Q.

b. Setting menu

Parameter settings of the current project can be viewed and the default settings can be
loaded. Figure 6.4 shows the setting menu.

Figure 6.4 Setting menu of GOSET GUI

View setting: Display the fitness function information, gene parameters,
parameters of GA operators as in the following figure.

Figure 6.5 Setting Viewer

 Selecting ‘Fitness function’, ‘Gene parameters’, and ‘GA
operators’ will display corresponding information.

 ‘Export to text file’ button on the upper right corner of the
setting window saves all these information to a text file.

Load default setting: Load default setting for GA operators. The fitness

function, gene parameters are unchanged.

 - 62 -

c. Tools menu

The tools menu has two submenus ‘Trim GA’ and ‘Extra user routine’ as in Figure 6.6.

Figure 6.6 Option menu

Trim GA: Perform a deterministic optimization using the best solution found
by GA. The found solution can be included as a current population
member.

Figure 6.7 Trim GA mode

Extra user routines: Define M-files to be executed before and after the GA.

Figure 6.8 User routine input box

d. Help menu

There are two submenus ‘About GOSET’ and ‘Forced Exit’ in Help menu as shown in
Figure 6.9.

 - 63 -

Figure 6.9 Help menu

About GOSET: Display information on GOSET.

Forced Exit: Forcefully terminate GOSET GUI when the exit does not

working.

6.4 Evolution status, output report, and
start/stop/continue buttons

a. Evolution status display section

Evolution status display section shows the current generation number, the best fitness
value, and the average fitness value. It also has a progress bar visualizing the evolution
process with the completion percentage.

Figure 6.10 Evolution status

b. Output report option

The level of output report, the report interval and the computation time report flag can
be set according to the need of the user. The plot of current generation and gene value
of the best individual can be displayed.

Figure 6.11 Output report option

 - 64 -

Report level: Define the output report level. There are three options in the

report level.

None: output report is not given.

Text only: Text report of the generation number, the best fitness

value, average fitness value, median fitness value,
and the number of evaluations in the MATLAB main
window.

Example

Statistics for generation 46
Best fitness = -0.12645
Mean fitness = -3.0653
Median fitness = -1.6876
Number of evaluations = 2928

Text and plot: Together with text report in the MATLAB main

window, the plot is displayed and updated every
generation as defined by the plotting parameters.

Report interval: Set the number of generations between reports.

Report computation time: When checked, the time spent on each GA

operation is displayed. If the report level is set
to ‘None’, the computation time is not reported.

 Example

Absolute computation times for generation 56
OWV: 0.00e+000 DC: 3.20e-002 SCALE: 0.00e+000
SELECT: 0.00e+000 MC: 3.10e-002 MUT: 0.00e+000
MIGRATE: 0.00e+000 EVAL: 1.50e-002 ELITE: 0.00e+000
RS: 0.00e+000 STAT: 0.00e+000 REPORT: 4.70e-002

Relative computation times for generation 56
OWV: 0.00 DC: 25.60 SCALE: 0.00
SELECT: 0.00 MC: 24.80 MUT: 0.00
MIGRATE: 0.00 EVAL: 12.00 ELITE: 0.00
RS: 0.00 STAT: 0.00 REPORT: 37.60

Plot current: Display the plot of current generation as defined in the plotting
parameters.

Display best: Show the gene number, its description and the actual value of it

as in Figure 6.12.

 - 65 -

Figure 6.12 Gene values of the best chromosome

c. Start/stop/continue buttons

Start, stop and continue buttons are enabled and disabled depending on the situation, as
shown in Figure 6.13.

Figure 6.13 Status of buttons

For example, when the GOSET is stopped before reaching the last generation, the start
and the continue buttons are enabled. If the continue button is pressed, the evolution
process is resumed from where it is stopped. If the start button is pressed, all the
evolution result accumulated up to that point will be discarded and the GA starts from
the generation number 1.

6.5 Main menu

The fitness function information, the definition of the genes, plotting parameters and
all the genetic operator parameters are defined in the main menu.

There are 14 buttons in the main menu section. When each button is pressed, the
corresponding parameter input box will appear. In most case, it is clear what to do with
these input fields. Therefore, we will look at only a part of the main menu section.

a. Fitness function button

Initial state Pause state

Evolution state

 - 66 -

The fitness function button and the fitness function name field are shown in Figure
6.14.

Figure 6.14 Fitness function button

Fitness function button: Open the fitness function parameter input box

shown below.

Figure 6.15 Fitness function input box

 Fitness function file and the optional data for the
fitness function are defined.

Optional fitness function data field can take a vector
with numerical elements, a variable name in the
MATLAB workspace, or the ‘.mat’ file name that
has the data vector.

Mode of optimization: For the single objective optimization problem, ‘S’ is

displayed. And ‘M’ is shown for the multi-objective
optimization problem.

Fitness function name: Display current fitness function file name.

b. Gene parameters

The total number of genes and their descriptions, maximum values, minimum values,
gene types, and the chromosome number are defined.

Fitness function name

Mode of optimization

Fitness function button

 - 67 -

Figure 6.16 Gene parameters input box

When a gene number is selected using the slide bar, its gene description, minimum and
maximum values, type and chromosome ID are shown in the following fields. Gene
description can be used to specify what each gene is representing.

c. Fundamental parameters

The total number of generations for evolution, the initial population size, the regular
population size, the number of objective functions and the objective function number
to be used in the optimization are defined.

Figure 6.17 Fundamental parameters input box

For multi-objective optimization, use value 0 in the objective function to optimize.
Even if there are multiple objectives, a specific objective function can be used for the
optimization, in which case, it becomes single-objective optimization problem.

 - 68 -

d. Diversity control

Diversity control has ON/OFF toggle switch and the user can decide whether to use the
diversity control operator or not.

Figure 6.18 Diversity control ON/OFF button

In the parameter input box, the diversity algorithm and other parameters are defined.
The diversity control can be applied to either the parameter space or the fitness
function space.

Figure 6.19 Diversity control input box

e. Elitism

Elitism has the ON/OFF toggle switch to activate or deactivate it as in the diversity
control.

Figure 6.20 Elitism ON/OFF button

ON/OFF toggle

ON/OFF toggle

 - 69 -

Chapter 7

Tutorial Lessons

In this section, some optimization problems are considered with
step-by-step guidance to familiarize the users with GOSET. Each
problem is solved using both the command line approach and
the GUI approach.

7.1 Rosenbrock’s banana function
7.2 Tanaka problem
7.3 Power diode curve fitting
7.4 Transfer function fit

 - 70 -

7.1 Rosenbrock’s banana function

Problem description

Rosenbrock’s function [p.55, CHO96] is a real-valued function given in the following:

.

We want to find the minimizer of the function f(x1, x2). Rosenbrock’s function and its level
sets are depicted in Fig. 7.1. Due to the shape of level sets that resemble bananas, it is also
referred to as the banana function. The global optimizer of Rosenbrock’s function is at (1, 1)
where the function has its value 0.

−2
−1

0
1

2

−1

0

1

2

3
0

1000

2000

3000

x
1

x
2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x
1

x 2

1

1

1

1

1
7

7

7

7

7

7

7
7

7

7

70

70

70
70

70

70

70

70 70

70

200

200

20
0

200

200

200

20
0

20
0

20
0400

400

400

400

40
0

40
0

800

800

800

80
0

80
0

Figure 7.1 Rosenbrock’s function Figure 7.2 Level sets

Before using GOSET, the fitness function for the given problem needs to be defined as an
mfile. There are many different ways to define a valid fitness function. As it is a minimization
problem and the Rosenbrock’s function value is non-negative, one simple way is to take the
inverse as the fitness function. A small positive value is added to the denominator to prevent
the singularity of the fitness function value at the minimizer. The following mfile banana.m
defines a fitness function for Rosenbrock’s function.

2 2 2
1 2 2 1 1(,) 100() (1)f x x x x x= − + −

 - 71 -

The above mfile is located in the folder ‘Rosenbrock’ under ‘goset 1.0x examples’ folder.

a. Command line approach

With the fitness function defined, we are now ready to use GOSET to find the
minimizer of the Rosenbrock’s function.

First of all, GAP and other parameters related to the population need to be determined.

GAP = gapdefault;

GAP.fp_ngen = 200; % Total generation number

GAP.fp_ipop = 100; % Initial population size

GAP.fp_npop = 100; % Population size

GAP.op_style = 0; % Logarithmic scale for objective plot

gapdefault is used to define GAP and only some parameters are redefined. For the
detailed information regarding the default setting of GAP, refer to gapdefault.m.

The values of x1 and x2 become the gene values, and their minimum, maximum values
are defined as

GAP.gd_min = [-2 -1];

GAP.gd_max = [2 3];

The types of the genes are given in the vector,

GAP.gd_type = [2 2];.

And employing only one chromosome for all the genes results in the following
chromosome ID vector

GAP.gd_cid = [1 1];.

All the parameters are defined in the MATLAB workspace, and thus we can execute
GOSET by

% BANANA.M
% Rosenbrock's Banana Function

function f = banana(x)

f1 = 100*(x(2) - x(1)^2)^2 + 5*(1 - x(1))^2;
f = 1/(0.001 + f1);

 - 72 -

[P,GAS]= gaoptimize(@banana,GAP);

All the above commands are in the script file ‘runme.m’ located in the same folder as
‘banana.m’, so type ‘runme’ in the main window to start GOSET.

Observe that the fitness function handle name is ‘@banana.’

As the default value for the report level is set to GAP.rp_lvl = 1, a plot will appear to
show the normalized objective function values and the fitness function values as the
GOSET evolves over the generations. Figure 7.3 is the report plot after 200
generations.

Figure 7.3 Report plot for Rosenbrock’s function

There is also the text report displayed in the MATLAB main window. For this example
the text report is:

Statistics for generation 1
Best fitness = 16.3028
Mean fitness = 0.19982
Median fitness = 0.0074076
Number of evaluations = 100
.
.
.

Statistics for generation 200
Best fitness = 999.9466
Mean fitness = 304.7056
Median fitness = 199.2891
Number of evaluations = 12687

 - 73 -

The generation number and the best, mean, and median fitness values together with the
number of evaluations are reported.

The best gene values can be found by checking the last element of GAS.bestgenes.

>> GAS.bestgenes(:,200)

ans =

 1.0003
 1.0005

The resultant minimizer found by GOSET turned out to be very close to the actual
minimizer (1, 1).

b. GUI approach

The procedure for GUI approach is very similar to that of command line approach. The
main difference is that the parameters are defined in the GUI window, not in the
MATLAB command window or a script M-file.

To start the GOSET GUI, type ‘goset’ in the MATLAB command window.

Then the GOSET GUI window will appear.

 - 74 -

Fitness function selection

The first step is choosing the fitness function. Click ‘Fitness function’ button in the
main menu.

Then, click browse button.

After locating the fitness function ‘banana.m’, select it and click ‘open.’

Click ‘Apply’ button to finish selecting the fitness function.

 - 75 -

Parameter input

Once the fitness function is chosen, we are ready to define gene parameters. Select
gene parameters button.

The default value for the gene number is 3. There are 2 gene values in this problem, so
change the gene number to 2.

Then, for each gene, the minimum, maximum, gene type, and chromosome ID number
need to be defined. Gene description can also be assigned if necessary. For the first
gene, move the slider bar to so the number at the right of ‘Parameters of the gene
#’ is 1 and type information as in the following figure

Slider bar

 - 76 -

For the second gene, use the slider bar again to select 2nd gene and enter the
appropriate information as in the following figure and click apply.

Then select fundamental parameters button in the main menu.

In the input fields, insert parameter values as in the following and click apply.

 - 77 -

The last parameters to be adjusted are the plotting parameters, so click it.

Set the plot scale for the objective plot to 0 (logarithmic scale), select ‘Gene value’ for
the distribution plot type and click apply.

For the plotting and text report, select the report level to ‘Text and plot.’

Starting GOSET

 - 78 -

Now, we are ready to start the GOSET and click the start button.

As in the command line approach, the report plot and text will be shown and refreshed
in every GAP.rp_gbr generation. The evolution status section in the GUI window also
shows the current generation number, best fitness value, average fitness value and the
progress bar.

GOSET can be stopped at any time by clicking stop button. Try it.

The simulation is now stopped and the user can do all kinds of things with the data
structures generated in the Matlab workspace. You can change parameters for genetic
operators. or check the actual value of the best gene in the current generation by
clicking ‘Display best’ button in the output report section.

Let’s try and click ‘Display best’ button.

Then the following window will pop up to list the gene numbers, gene descriptions and
their actual values.

 - 79 -

GOSET can resume the optimization process using the continue button.

The following is the final report plot after 200 generations.

The best chromosome at the last generation has the gene values that are very close to
the actual optimum point (1, 1).

 - 80 -

7.2 Tanaka Problem

Problem description

One of the most important features of GOSET is the capability to handle multi-objective
optimization problems. As a multi-objective optimization problem, Tanaka problem [TAN95]
is considered in this section. The Tanaka problem is a constrained optimization problem with
two objectives to be minimized:

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Pareto−optimal fronts

x
1
 , f

1

x 2 ,
f 2

Figure 7.4 The feasible objective space and the Pareto-optimal fronts of Tanaka problem.

In this problem, the variable space is also the objective space. The feasible objective space and
the Pareto-optimal front are shown in Figure 7.4.

In the first step, the fitness function for the given problem needs to be defined in a m-file.
There are two objectives to be minimized and they all have positive values. And the fitness
function values are defined to be the negative of the objective function values. Infeasible
solutions are assigned with the value -10 to reduce the chance of surviving in the population.
The following mfile tanaka.m defines a fitness function for Tanaka problem.

()1

2

1 1 2 1

2 1 2 2

2 2
1 1 2 1 2

2 2
2 1 2 1 2

min (,)
min (,)

subject to (,) 1 0.1cos 16arctan 0,

(,) (0.5) (0.5) 0.5,

x
x

f x x x
f x x x

C x x x x

C x x x x

=
=

= + − − ≥

= − + − ≤

1

1

0 ,
0 .

x
x

π
π

≤ ≤
≤ ≤

 - 81 -

a. Command line approach

First of all, GAP and other parameters related to the population need to be defined as in the
following,

GAP = gapdefault(2); % default setting for two objectives

GAP.fp_ngen = 200; % Total generation number

GAP.fp_ipop = 200; % Initial population size

GAP.fp_npop = 200; % Population size

GAP.fp_obj = 0; % Multi-objective problem

GAP.sc_alg = 6; % Quadratic scaling

GAP.op_list = []; % Do not show distribution plot

GAP.pp_list = [1, 2]; % List of parameters for Pareto plot

GAP.pp_sign = [-1,-1]; % Sign of fitness for each objective

GAP.pp_axis = [0 1.25 0 1.25] % axis limits for Pareto plot

GAP.dp_np = 200; % Max no. of population to plot for type 1

GAP.gd_min = [0 0];

GAP.gd_max = [pi pi];

GAP.gd_type = [2 2];

GAP.gd_cid = [1 1];

where the gapdefault(2) is used to define default GAP for the problem with two
objectives and the maximum number of population for plotting GAP.dp_np is set to 200 to
display all the individuals in the population.

% Tanaka problem (1995)

function [f] = tanaka(x)

C1 = x(1)^2+x(2)^2-1-0.1*cos(16*atan(x(1)/x(2))) >= 0;
C2 = (x(1)-0.5)^2+(x(2)-0.5)^2 <= 0.5;

if C1 & C2
 f(1,1) = -x(1);
 f(2,1) = -x(2);
else
 f(1,1) = -10;
 f(2,1) = -10;
end

 - 82 -

Then gaoptimize is called to perform optimization:

[P,GAS]= gaoptimize(@tanaka,GAP);

The fitness function handle is ‘@tanaka.’ The script file ‘runme.m’ in the folder ‘Tanaka’
has all the above commands and executing ‘runme’ will start the evolution to solve Tanaka
problem.

Figure 7.5 Pareto plot for Tanaka problem

The distribution plot is turned off by using null matrix ‘[]’ for GAP.op_list, and only the
Pareto plot is displayed as in Figure 7.5.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

x
1
 , f

1

x 2 ,
f 2

Figure 7.6 Final population plot with the non-dominated solutions in black circles

 - 83 -

The final population after 200 generation is plotted on the feasible objective space with the
non-dominated solutions in black circles in Figure 7.6. Comparison of this figure with
Figure 7.4 demonstrates the performance of GOSET with respect to multi-objective
optimization problems.

b. GUI approach

As in the previous example, the beginning of GUI approach starts with choosing the
fitness function.

Fitness function selection

In the GOSET GUI window, go to fitness function browse menu and locate the fitness
function ‘tanaka.m’ and select it.

Parameter input

Gene parameters are needed to be typed as in the following illustrations.

 - 84 -

Fundamental parameters are set as in the following. There are two fitness functions, so the
number of objective function is set to 2 and the objective function to optimize is set to 0
for multi-objective optimization.

For the scaling algorithm, Quadratic scaling is used with the default scaling parameters.

Plotting parameters are set to display only the Pareto plot as in the following. Axis limits
are also given to fix the range of plotting and the maximum number of individuals for
plotting is set to 200.

 - 85 -

For plotting the Pareto plot, check the output level setting if it has been set to ‘Text and
plot.’

User routines

GOSET GUI allows the user to execute user routines before and after the GA optimization
process. In the menu bar, select ‘Option’ and then click ‘Extra user routines’.

Then the following user routine menu pops up.

Click ‘Browse’ button to choose the mfiles executed before and after GA. In this example,
‘tanaka_pre.m’ and ‘tanaka_post.m’ are chosen respectively.

 - 86 -

‘tanaka_pre.m’ plots the feasible objective space and the Pareto optimal front of Tanaka
problem and ‘tanaka_post.m’ plots the final population with the non-dominated
solutions in black circles.

Starting GOSET

When the GOSET is started, the mfile ‘tanaka_pre.m’ is first executed to display the
Pareto optimal front of Tanaka problem in Figure 7.6. Observe the Pareto plot to see how
the solutions are distributed throughout the Pareto front over the generations. At the end of
the GOSET run, ‘tanaka_post.m’ is executed and a figure with final solutions will be
shown as in Figure 7.7.

7.3 Power diode curve fitting

Problem description

In this section, GOSET is applied to power diode curve fitting. The diode of interest is a part
of Fuji Electric 6MBI 30L-060 which is commonly used for an inverter for motor drivers and
AC-DC servo drive amplifiers. The configuration of Fuji 6MBI 30L-060 is shown in Figure
7.7 and its characteristics are listed in Table 7.1

V WU

+

_

EU
BU

EX
BX

EV
BV

EY
BY

EU
BU

EZ
BZ

EW
BW

(GU) (GV) (GW)

Figure 7.7 Circuit schematic of the IGBT module

Fuji 6MBI 30L-060 Device Characteristics
Description Rating
Collector-Emitter Voltage 600V
Gate-Emitter Voltage ±20V

 - 87 -

Collector Current – Continuous 30A
Collector Current – 1ms Pulse 60A
Maximum Power Dissipation 120W
Operating Junction Temperature 150°C
Thermal Resistance – IGBT Junction to Case 1.04°C/W (Max)
Thermal Resistance – Diode Junction to Case 2.01°C/W (Max)

Table 7.1 IGBT Module device characteristics

The voltage versus current (V-I) curve of the Power diode is measured using the hardware
configuration shown in Figure 7.8

Figure 7.8 Hardware Test Configuration for Diode V-I characteristic

Voltage (V) Current (A) Voltage (V) Current (A) Voltage (V) Current (A)

0.3130 0 1.2178 6.0040 1.5160 18.0660
0.4145 0 1.2548 7.0870 1.5358 19.0300
0.5154 0 1.2844 8.0360 1.5527 19.9480
0.6140 0.0400 1.3122 9.0000 1.5716 21.0100
0.7120 0.1495 1.3412 10.0520 1.5885 22.0200
0.8056 0.3915 1.3654 11.0290 1.6065 23.0800
0.8942 0.8345 1.3888 11.9900 1.6229 24.0400
0.9649 1.4103 1.4134 13.0640 1.6389 25.0000
1.0405 2.3180 1.4345 14.0280 1.6565 26.0500
1.1092 3.4680 1.4570 15.0860 1.6720 27.0000
1.1722 4.8340 1.4768 16.0510 1.6880 27.9700

Table 7.2 Measured voltage and current of the power diode

 - 88 -

0 5 10 15 20 25 30
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Current (A)

V
ol

ta
ge

 (
V

)

Figure 7.9 Voltage versus current for power diode

The V-I data set measured at 36 points is listed in Table 7.2 and it is depicted in Figure 7.9.
Using the measured V-I date set (vk, ik), k = 1, . . . ,n, a model of the power diode is going to be
developed. It is assumed that the voltage is expressed as the function of the current in the
following way

cbiaiv)(+=

where the parameter a, b, and c are to be identified using GA.

A fitness function candidate is

3

1
10

)(
1

1),,(
−

=

+
+

−

=

∑
n

k k

c
kk

v
biai

cbaf

where vk and ik are measured voltage and current in kth point. This fitness function is coded to
mfile diode.m as in the following.

% DIODE.M
% IGBT diode V-I curve fitting fitness function

function f = diode(parameters,data)

% assign genes to parameters
a = parameters(1);
b = parameters(2);
c = parameters(3);

v = a*data.i + (b*data.i).^c;
error = abs(1-v./data.v);
f = 1.0/(1.0e-3 + mean(error));

 - 89 -

a. Command line approach

In the first step, the voltage and current measurement data is defined and saved for later
use.

data.v =[.313,.4145,.5154,.614,.712,.8056,.8942,.9649,1.0405,1.1092,1.1722, ...

 1.1811,1.2178,1.2548,1.2844,1.3122,1.3412,1.3654,1.3888,1.4134,1.4345, ...

 1.4570,1.4768,1.4955,1.5160,1.5358,1.5527,1.5716,1.5885,1.6065,1.6229,1.6389, ...

 1.6565,1.6720,1.6880,1.7054];

data.i=[0,0,0,.040,.1495,.3915,.8345,1.4103,2.318,3.468,4.834,5.032,6.004,7.087, ...

 8.036,9,10.052,11.029,11.990,13.064,14.028,15.086,16.051,17.007,18.066,19.030, ...

 19.948,21.01,22.02,23.08,24.04,25,26.05,27,27.97,29.02];

save 'data.mat' data

To save some chores, you can load the stored ‘data.mat’ from the directory ‘…/GOSET/
goset 1.05 examples/power diode curve fit/’.

load data

The default values are used for GAP except for the mating crossover algorithm and the
total generation number for evolution.

GAP = gapdefault; % load the default values for GAP
GAP.mc_alg = 2; % Scalar simple blend crossover
GAP.fp_ngen = 200; % Total number of generation to evolve

 The range, type and chromosome ID vectors are defined as

GAP.gd_min = [1e-6 1e-6 1e-6];
GAP.gd_max = [1e+3 1e+3 1e+3];
GAP.gd_type = [3 3 3];
GAP.gd_cid = [1 1 1];.

The range of each gene is from 10-5 to 103 and the logarithmic gene type is used. As the
necessary parameters are all defined, execute the GOSET.

[P,GAS]= gaoptimize(@diode,GAP);

Execute the script ‘runme.m’ to start GOSET. After 200 generations, the best individual bI
or (GAS.bestgenes(:,200)) has the following parameter values.

a = 0.0091
b = 0.5066
c = 0.1363

These parameters yield the best fitting V-I curve expressed as

 - 90 -

1363.0)5066.0()0091.0(iiv += .

The plots of measured data and the estimated curve are shown in Figure 7.10. The
estimated curve fits very closely to the measured data.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Current (A)

V
ol

ta
ge

 (
V

)

Measured
Fit

Figure 7.10 Plot of measured data and the estimated curve using GOSET

B. GUI approach

With an assumption that the previous two examples gave enough chance to learn how to start
GOSET GUI, how to enter parameter values, etc., only the parts where changes need to be
made will be described.

In the fitness function window, browse and select the fitness function ‘diode.m.’ The
optional data for fitness function is set to ‘data.mat’ which is located in the same folder as
‘diode.m’.

 - 91 -

The gene parameters are defined next. As there are three parameters to be identified, the total
number of gene is set to 3. For each gene, the minimum gene value is set to 1e-5, the
maximum gene value to 1000, gene type to logarithmic and the chromosome ID to 1. Gene
description can be specified, if desired. The first gene is names as ‘a’ in the following figure.

In the fundamental parameter input window, the total generation number for evolution is set to
200.

For the comparison between the measured data and the estimated curve, an m-file named
‘plotcurve.m’ is provided in the ‘power diode curve fitting’ folder. To execute this
m-file, go to the extra user routine menu

and set ‘Mfile to execute after GA’ to ‘plotcurve.m’

 - 92 -

Now the GOSET can be started. When the evolution process is over, ‘plotcurve.m’ is
executed and a comparison plot similar to the Figure 7.10 will be shown.

7.4 Transfer function fitting

Problem description

In this section, GOSET is employed to estimate the transfer function given the transfer
function values. The transfer function values are admittances looking into the d-axis of
brushless DC motor.

The admittances measured at 60 different frequencies are listed in Table 7.3 and plotted in
Figure 7.11.

Freq.(Hz) fk Admittance Yk Freq.(Hz) fk Admittance Yk Freq.(Hz) fk Admittance Yk
20 0.2754 + 0.2059i 224 0.0126 + 0.0533i 2516 0.0013 + 0.0062i
23 0.2470 + 0.2106i 253 0.0108 + 0.0478i 2839 0.0012 + 0.0056i
25 0.2299 + 0.2116i 286 0.0094 + 0.0428i 3203 0.0011 + 0.0050i
29 0.1992 + 0.2100i 322 0.0082 + 0.0385i 3615 0.0010 + 0.0045i
32 0.1794 + 0.2066i 364 0.0072 + 0.0345i 4079 0.0009 + 0.0040i
37 0.1517 + 0.1987i 410 0.0063 + 0.0310i 4603 0.0008 + 0.0036i
41 0.1336 + 0.1914i 463 0.0056 + 0.0278i 5195 0.0008 + 0.0033i
47 0.1117 + 0.1798i 523 0.0049 + 0.0249i 5862 0.0007 + 0.0029i
53 0.0948 + 0.1685i 590 0.0044 + 0.0223i 6615 0.0006 + 0.0027i
59 0.0815 + 0.1579i 666 0.0040 + 0.0201i 7465 0.0006 + 0.0024i
67 0.0679 + 0.1452i 751 0.0035 + 0.0180i 8424 0.0005 + 0.0021i
76 0.0565 + 0.1326i 848 0.0032 + 0.0162i 9506 0.0005 + 0.0019i
85 0.0480 + 0.1219i 957 0.0029 + 0.0145i 10728 0.0004 + 0.0017i
96 0.0401 + 0.1108i 1079 0.0026 + 0.0130i 12106 0.0004 + 0.0016i

109 0.0333 + 0.0999i 1218 0.0023 + 0.0117i 13661 0.0004 + 0.0014i
123 0.0280 + 0.0903i 1375 0.0021 + 0.0105i 15416 0.0003 + 0.0012i
138 0.0238 + 0.0818i 1551 0.0019 + 0.0095i 17397 0.0003 + 0.0011i
156 0.0201 + 0.0735i 1750 0.0017 + 0.0085i 19632 0.0003 + 0.0010i
176 0.0171 + 0.0661i 1975 0.0016 + 0.0076i 22154 0.0003 + 0.0009i
199 0.0146 + 0.0593i 2229 0.0014 + 0.0069i 25000 0.0002 + 0.0008i

Table 7.3 Admittances of the brushless DC motor in the d-axis

 - 93 -

10
1

10
2

10
3

10
4

10
5

−70

−60

−50

−40

−30

−20

−10

0

M
ag

ni
tu

de
 (

dB
)

10
1

10
2

10
3

10
4

10
5

−90

−80

−70

−60

−50

−40

−30

Frequency (Hz)

P
ha

se
 (

D
eg

re
e)

Figure 7.11 Magnitude and phase plot of admittance data

It is assumed that the transfer function of the admittance has the form

1

11
)(

2

2

1

1

+
++

+
+

+
=

s
a

s
a

s
a

sY
n

n

τττ
L ,

where n is the order of the transfer function, a-s and τ-s are the parameters to be identified.

The fitness function F is defined as

12

1

11

10
)(1

1),,,,,(
−

=

+
−

=

∑
m

k k

kk

nn

Y
sYY

m

aaF ττ LL ,

where m is the number of admittance data set and kk fjs π2= .

In the example, the order of the transfer function to be estimated is assumed to be n = 6. The
following is the fitness function m-file.

 - 94 -

a. Command line approach

The transfer function values at 60 different frequencies are defined first in the workspace.

f = [20 23 25 29 32 37 41 47 53 59 67 76 85 96 109 123 138 156 176 199 ...

224 253 286 322 364 410 463 523 590 666 751 848 957 1079 1218 1375 ...

1551 1750 1975 2229 2516 2839 3203 3615 4079 4603 5195 5862 6615 ...

7465 8424 9506 10728 12106 13661 15416 17397 19632 22154 25000];

% frequency vector in s-domain

data.s = 1j*2*pi*f;

data.t = [0.2754+0.2059i 0.2470+0.2106i 0.2299 + 0.2116i 0.1992 + 0.2100i ...
 0.1794 + 0.2066i 0.1517 + 0.1987i 0.1336 + 0.1914i 0.1117 + 0.1798i ...
 0.0948 + 0.1685i 0.0815 + 0.1579i 0.0679 + 0.1452i 0.0565 + 0.1326i ...
 0.0480 + 0.1219i 0.0401 + 0.1108i 0.0333 + 0.0999i 0.0280 + 0.0903i ...
 0.0238 + 0.0818i 0.0201 + 0.0735i 0.0171 + 0.0661i 0.0146 + 0.0593i ...
 0.0126 + 0.0533i 0.0108 + 0.0478i 0.0094 + 0.0428i 0.0082 + 0.0385i ...
 0.0072 + 0.0345i 0.0063 + 0.0310i 0.0056 + 0.0278i 0.0049 + 0.0249i ...
 0.0044 + 0.0223i 0.0040 + 0.0201i 0.0035 + 0.0180i 0.0032 + 0.0162i ...
 0.0029 + 0.0145i 0.0026 + 0.0130i 0.0023 + 0.0117i 0.0021 + 0.0105i ...
 0.0019 + 0.0095i 0.0017 + 0.0085i 0.0016 + 0.0076i 0.0014 + 0.0069i ...
 0.0013 + 0.0062i 0.0012 + 0.0056i 0.0011 + 0.0050i 0.0010 + 0.0045i ...
 0.0009 + 0.0040i 0.0008 + 0.0036i 0.0008 + 0.0033i 0.0007 + 0.0029i ...
 0.0006 + 0.0027i 0.0006 + 0.0024i 0.0005 + 0.0021i 0.0005 + 0.0019i ...
 0.0004 + 0.0017i 0.0004 + 0.0016i 0.0004 + 0.0014i 0.0003 + 0.0012i ...
 0.0003 + 0.0011i 0.0003 + 0.0010i 0.0003 + 0.0009i 0.0002 + 0.0008i]

Then data.s and data.t are saved in ‘data.mat’ for later use.

save 'data.mat' data

The ‘data.mat’ also can be directly loaded from ‘…/GOSET/goset 2.3
examples/Transfer function fit/’.

% TFFIT.M
% Transfer function fitting fitness function
function f=tffit(parameters,data)

a = parameters(1:6);
tau = parameters(7:12);

tpred = zeros(size(data.s));
for i = 1:6,
 tpred = tpred+a(i)./(tau(i)*data.s+1);
end

terror = data.t-tpred;
error = norm(terror./abs(data.t))/length(tpred);
f = 1.0/(1.0e-12+error);

 - 95 -

load data

The default values are used for GAP and the total generation number for evolution is set to
1000.

GAP = gapdefault; % load the default values for GAP

GAP.fp_ngen = 1000; % Total number of generation to evolve

 The parameter range, type and chromosome ID vectors are defined as

GAP.gd_min = [1.0e-8 1.0e-8 1.0e-8 1.0e-8 1.0e-8 1.0e-8...

 1.0e-8 1.0e-8 1.0e-8 1.0e-8 1.0e-8 1.0e-8];

GAP.gd_max = [1.0e+1 1.0e+1 1.0e+1 1.0e+1 1.0e+1 1.0e+1 ...

 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0];

GAP.gd_type = [3 3 3 3 3 3 3 3 3 3 3 3];

GAP.gd_cid = [1 1 1 1 1 1 1 1 1 1 1 1];

The first six elements correspond to the parameter a, and the rest are for τ. GOSET is
ready to go.

[P,GAS]= gaoptimize(@tffit,GAP);

To start GOSET, execute the script ‘runme.m’ with all the commands described above.

After 1000 generations, the best individual (GAS.bestgenes(:,1000)) has the
following parameter values.

a = [0.00074282873079 0.00020824030313 0.00000009385065 ...
 0.00079650808510 0.42038798793770 0.00597311661588]

tau = [0.00002657084427 0.00000001815644 0.00000011416888 ...

0.00008665847926 0.00586600530356 0.00038902284811]

These parameters yield the transfer function

.
10003890.0

005973.0
1005866.0

4204.0
100008666.0

0007965.0

10000001141.0
50000000938.0

150000000181.0
0002082.0

100002657.0
0007428.0)(

+
+

+
+

+
+

+
+

+
+

+
=

sss

sss
sY

 - 96 -

10
1

10
2

10
3

10
4

10
5

−70

−60

−50

−40

−30

−20

−10

0

M
ag

ni
tu

de
 (

dB
)

10
1

10
2

10
3

10
4

10
5

−90

−80

−70

−60

−50

−40

−30

Frequency (Hz)

P
ha

se
 (

D
eg

re
e)

Figure 7.12 Plot of the magnitude and phase of the measured transfer function data
and the transfer function obtained using GOSET

The magnitude and phase plot of the data set and the estimated transfer function are shown
in Figure 7.12. The solid red line is for the transfer function estimated using GOSET and
the blue x’s are the measured transfer function values. The estimated transfer function fits
the measured data very closely.

B. GUI approach

In the first step, select the fitness function file and the optional data file.

Then, the gene parameters are defined as in the following figures. Total number of gene is
12. First six genes correspond to the parameters a1,…,a6 and their maximum and minimum

 - 97 -

values are set to 10 and 10-8, respectively. Rest of the genes are for parameter τ1,…,τ6 and
the maximum and minimum values are set to 1 and 10-8. The gene type is logarithmic for
all genes.

The fundamental parameters are set as in the following

Setting the plot scale to 0 makes the fitness function axis logarithmic.

 - 98 -

For the comparison plot after the evolution, ‘plotcurve.m’ is selected in the ‘Mfile to
execute after GA’.

The gene distribution at 1000 generation and the fitness values throughout the evolution
are shown in Figure 7.13

Figure 7.13 Gene distribution and the fitness history

At the end of the evolution, a comparison plot similar to Figure 7.12 will appear.

 - 99 -

References

[CHO96] E. K. P. Chong and S. H. Żak, An Introduction to optimization, Wiley-

Interscience, 1996
[TAN95] M. Tanaka, GA-based decision support system for multi-criteria optimization,

Proceedings of the International Conference on Systems, Man and Cybernetics,
Vol. 2, pp. 1556-1561.

 - 101 -

A. GOSET function list
B. GOSET function reference
C. GOSET parameter list

Appendix

 - 102 -

Appendix A. GOSET function list

Initialization gapdefault contains default parameter values for GAP
 downsize reduce the population size to a desired number
 gainit initialize the genetic algorithm

unrndinit initialize a population randomly
 gasetup sets up a population of chromosomes

Genetic operators gaoptimize GOSET main routine
 objwght generate weight vector for multi-objective functions
 divcon prevent crowding of the chromosomes
 scale determine the scaled fitness

select select chromosomes for reproduction
death determine parents to be replaced by children

 matingcrossover exchanges genes between chromosomes
 mutate randomly change some gene values
 generepair fix gene value after crossover and mutation
 migrate move chromosomes from one region to another
 updateage update the age of all individuals

evaluate evaluate the fitness values of chromosomes
 elitism preserve best chromosomes

randsearch search the vicinity of the best chromosomes
updatestat update the statistic information of GAS structure
normgene updates the normalized genes based on raw genes
rawgene updates the raw genes based on normalized genes
nondom find the non-dominated solutions
trimga perform a deterministic optimization

Plotting reportplot plots current population

distplot plots the distribution of the genes
paretoplot plots the population in the objective space

GUI related goset GOSET GUI

Misc. contents contains general information of GOSET

 - 103 -

Appendix B. GOSET function reference

 - 104 -

contents

Purpose Contain general information regarding GOSET

Syntax contents

Arguments None

Value None

Description contents.m has descriptions on data structures P, GAS and functions of

GOSET and upgrade information

See Also gapdefault

 - 105 -

death

Purpose determine parents that are replaced by the children

Syntax Dlist = select(Pin,Plist,GAP)

Arguments Pin structure of current population
 Plist parent list generated from select algorithm
 GAP structure of genetic algorithm parameters

Value Dlist death list

Description Death operator determines which individual is to die and replaced by the

children. The followings are possible options for the death operators.

Replacing parents (GAP.dt_alg = 1)

 Parents are replaced by their own children.

Random selection (GAP.dt_alg = 2)

 The parents to be replaced are randomly chosen.

Tournament on fitness (GAP.dt_alg = 3)

The parent to be replaces is determined via the tournament based on the
aggregate fitness value. GAP.dt_nts number of parents are randomly chosen
for a tournament and the one with worst aggregate fitness value is marked for
death.

Tournament on age (GAP.dt_alg = 4)

The parent to be replaces is determined via the tournament based on the age.
Among the randomly chosen GAP.dt_nts number of parents, the oldest one is
selected and marked for death.

Custom algorithm (GAP.dt_alg = 5)

User defined custom death algorithm is used. The handle of the custom
function is assigned to GAP.dt_cah. The custom function must have the
following format

 D_list = f(region,size,age,mfit,fit)

 D_list indices of the individuals to be replaced by children
 region the region number
 size number of individuals for the death list

 - 106 -

 age vector describing ages of the individuals in population
 mfit array with raw fitness values of the individuals in the region
 fit vector with aggregate fitness values of individuals in the region

As an example of a custom algorithm, the random death algorithm is written
as an mfile called ‘customdeath.m’ which is shown below.

This mfile must exist in the same folder as the fitness function file or in the
GOSET folder. Then the custom file handle GAP.dt_cah is set to
@customdeath.

Random algorithm (GAP.dt_alg = 6)

If this option is selected, the death algorithm is randomly chosen among the
first four death algorithms at each generation.

% Custom death algorithm example – random death algorithm
function dlist = customdeath(region,size,region_age,region_mfit,region_fit)

% Randomly select death list
regionsize=length(region_age);
randomlist = randperm(regionsize);

dlist = randomlist(1:size);

 - 107 -

distplot

Purpose Plot the distribution of the genes in the individuals

Syntax distplot(fignum,P,objective,GAP,[region])

Arguments fignum figure number
 P structure of current population

objective objective function number to show in the plot
GAP structure of genetic algorithm parameters
region plot only the individuals in this specified region (optional)

Value None

Description distplot shows the distribution of the genes of the individuals. It is called

within the reportplot and plotted together with the fitness history.

Figure B.1

Figure B.2

There are two types of distribution plot. Setting GAP.dp_type to 1 will show
the first type of distribution plot which displays the normalized gene values as
in Figure B.1. In this case, there are four genes in each individual. The top 25
percent of the individuals are marked by blue cross (+), the next 25

 - 108 -

percentiles are plotted as green X (x), then the next 25 percentiles are in
yellow square (), and the last 25 percentiles are drawn as the red
diamonds(). The gene values of the best individual of each region are
connected by the blue solid line. For multi-region scheme, there are multiple
blue solid lines which represent the best individuals in multiple regions.

The second type (GAP.dp_type = 2) of distribution plot shows the
histogram of the normalized gene values as in Figure B.2. The number of bars
for the histogram can be set using GAP.dp_res. In Figure B.2, the number of
bars is set to 5 (GAP.dp_res = 5). The gene values of the best individual of
each region are indicated by green horizontal lines. For each gene values,
there are as many green lines as the number of regions.

For both of the distribution plot, only a part of the population can be displayed
by setting the parameter GAP.dp_np that determines the maximum number of
individuals to plot. Only GAP.dp_np individuals are randomly chosen from
the population and displayed. The positions of green lines represent the
normalized gene values of the best individual.

See also reportplot, paretoplot

 - 109 -

divcon

Purpose Compute penalty function values for maintaining diversities of the population

Syntax Ppen = divcon(Pin,GAP)

Arguments Pin structure of current population
 GAP structure of genetic algorithm parameters

Value Ppen penalty function vector

Description Maintaining genetic diversity in the population is important especially in the

multi-objective optimization problem. Diversity control algorithms are
employed so that the under represented individuals are emphasized and
similar individuals are penalized by degrading their fitness values.

 Diversity control can be applied to either the parameter (solution) space or the

fitness function space. Setting GAP.dc_spc = 1 causes the diversity control
in the parameter space and setting GAP.dc_spc = 2 causes the diversity control
in the fitness function space.

Presently, four different diversity control algorithms are used in GOSET.

Diversity control algorithm 1

This algorithm is chosen by setting GAP.dc_alg = 1. For each individual,
the distances with all other individuals are evaluated. Then the number of
individuals, whose distance from the individual of interest is smaller than the
threshold distance, is counted. The threshold distance is randomly determined
as a value between the minimum threshold (GAP.dc_mnt) and the maximum
threshold (GAP.dc_mxt). That is,

Threshold distance = average distance among the individual Η α

where α =(GAP.dc_mnt+randΗ(GAP.dc_mxt-GAP.dc_mnt)). Then the
penalty function value of an individual is defined as the reciprocal of the
counted number of individuals.

Diversity control algorithm 2

This algorithm is chosen by setting GAP.dc_alg = 2. To overcome the
problem of the computational load in the first method, this algorithm uses a
weighted sum of gene values for diversity control. For an arbitrary weight

 - 110 -

vector whose element number is same as gene number in an individual, the
weighted sum of each individual is evaluated. Then the modulus after
dividing the weighted sum by 1 is taken. If the gene values of individuals are
very similar, then the modulus of the weighted sum must be also similar. Then
the individuals are grouped according to the modulus values and put into a
corresponding bin. The number of bins, that is the number of groups, is
randomly determined as the following

No. of bins = round (α⋅Number of individual),

where α = GAP.dc_mnb+rand(GAP.dc_mxb-GAP.dc_mnb). Then the
interval [0,1] is divided into (No. of bins) equally distanced subintervals. The
penalty value of an individual is the reciprocal of the total number of
individuals in the same bin.

However, even with different gene values, individuals may have similar
modulus for some weight vectors. In such cases, the penalty value does not
reflect the actual proximity of gene values. Hence, the procedure is repeated
GAP.dc_ntr times and the largest penalty function value is chosen as the
final penalty function value for each individual.

Diversity control algorithm 3

This algorithm is chosen by setting GAP.dc_alg = 3. The idea of this
diversity control algorithm is similar to the diversity algorithm 1. The sum of
infinity norm between the solutions is used to determine the penalty value as
shown in the following formula

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

1

,exp

1

i c

ki

k
pen

d
d

P ,

where di,k is the infinity norm between k’th and i’th individual and dc is the
distance constant (GAP.dc_dc) which controls the size of the neighborhood.
As the distance constant dc increases, the effective size of the neighborhood
increases and the penalty level also increases.

Diversity control algorithm 4

This algorithm is chosen by setting GAP.dc_alg = 4. It is identical to the
diversity control algorithm 3 except the fact that only a part of the population,
that is, for each individual, GAP.dc_nt individuals are randomly chosen and

 - 111 -

used in the distance evaluation. The following formula is used to calculate the
fitness penalty weight for k’th individual.

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=
GAP.dc_nt

GAP.dc_nt 1

,expregion in the population ofNumber 1

1

i c

ki

k
pen

d
d

P

where di,k is the infinity norm between k’th and i’th individual, dc is the
distance constant (GAP.dc_dc)

 - 112 -

downsize

Purpose Reduce the population to a desired size

Syntax Pout = downsize(Pin,Newsize)

Arguments Pin structure of current population
 Newsize the size of the new population

Value Pout structure of downsized population

Description This function reduces the size of the population to a desired number based on

the (cumulative) rank of the individual.

In the multiple region (multi-population) case, the number of individuals in a
region is determined such that the ratio of individuals among regions is
maintained. For example, suppose a population with 100 individuals that are
distributed in 3 different regions as in the following table. If we want the new
population to have only 50 individuals, then the number of individuals in the
new populations becomes the half of the number of individuals in the original
population as shown in Table B.1.

Region 1 2 3 total
No. of individuals in Pin 30 50 20 100
No. of individuals in Pout 15 25 10 50

Table B.1

The selection of the individuals is based on the rank in single objective case.
In the multi-objective case, cumulative rank is used to pick the individuals for
the new population. Consider a 3-objective optimization problem in Table B.2.
If we have four individuals and need to reduce the size to two, then individual
A and D are selected according to the cumulative rank.

Rank in each objective Individual I II III
Cumulative

Rank
A 3 1 1 5
B 4 4 2 10
C 2 3 4 9
D 1 2 3 6

Table B.2

 - 113 -

elitism

Purpose Preserve the best individuals

Syntax Pout = elitism(Pin,Porg,GAP,GAS)

Arguments Pin structure of current manipulated population
 Porg structure of original population
 GAP structure of genetic algorithm parameters
 GAS structure of genetic algorithm statistics

Value Pout structure of output population

Description Elitism is activated by setting GAP.el_act = 1. The starting point of elitism

can be using the parameter GAP.el_fgs that specifies the fraction of the
population. For example, if GAP.el_fgs = 0.25 with the total generation
number of 100, then the elitism is effective starting from 25th generation.

In single objective optimization problems, the best individual in each region
of the processed population and the best one in the original population are
compared. If the best individual of the processed population is worse than that
of the original population, then the best one in the processed population is
replaced by the best one in the old population. In multi-objective optimization
problem, it is guaranteed that a limited number of non-dominated individuals
of the population are preserved up to certain number. The maximum number
of preserved non-dominated individuals is determined by (population size Η
GAP.el_fpe).

 - 114 -

evaluate

Purpose Evaluate the fitness of chromosomes

Syntax [mfit,es,une] = evaluate(Pin,GAP,cne,D)

Arguments Pin structure of current population
 GAP structure of genetic algorithm parameters
 cne current number of evaluations performed
 D an optional data structure used for fitness evaluation

Value mfit multi-objective fitness
 es evaluation status of each member of population
 une updated number of evaluations

Description evaluate assigns individuals with fitness values obtained from the fitness

function defined by P.fithandle.

When GAP.ev_are is set to 0, this function only updates the individuals
whose fitness values have not been evaluated. When GAP.ev_are = 1, the
fitness value of all the individuals are evaluated.

Also GAP.ev_bev determines whether to pass all the individuals to the
fitness evaluation function at the same time (when set to 1) or to evaluate one
individual at a time (when set to 0). The fitness function must be written to
handle the vector evaluation.

Normally, the only gene values are passed to the fitness function. If the
supplementary data flag GAP.ev_ssd = 1, then the age(P.age), previous
fitness values(P.mfit) and the region(P.region) are also sent to the fitness
function.

D is the optional data structure that is required for evaluating the fitness
function and it is passed to the fitness function if it is defined when the
gaoptimize is called.

The passed data and its order are listed in the following table.

Optional data D GAP.ev_ssd Data and its order passed to the fitness function
0 P.gene, D exists 1 P.gene, P.age, P.mfit, P.region, D
0 P.gene does not exist 1 P.gene, P.age, P.mfit, P.region

 - 115 -

gainit

Purpose Initialize the genetic algorithm

Syntax [GAP,GAS,Pout]=gainit(numargin,@fitfun,D,GAP,

GAS,iP,GUIhdl)

Arguments numargin number of argument of the GAOPTIMIZE

@fitfun name of the m-file that evaluates the fitness
D optional data needed by fitness function
GAP structure of genetic algorithm parameters
GAS structure of genetic algorithm statistics
iP optional initial population
GUIhdl handle used for GUI (Pass empty matrix ‘[]’ when not in use)

Value GAP structure of genetic algorithm parameters

GAS structure of genetic algorithm statistics
Pout structure of the population

Description gainit initializes the genetic algorithm by setting up the population. If the

optional initial population is passed, gainit only evaluates the fitness of the
population. Otherwise gasetup is called to generate initial population, and
the fitness is evaluated. If the size of the initial population (GAP.fp_ipop) is
larger than the steady state population (GAP.fp_ipop), the population size is
reduced. In the last step, gainit generates a report on initial evaluation.

See Also gasetup

 - 116 -

gaoptimize

Purpose Perform function optimization using GOSET

Syntax [Pout,GAS]=gaoptimize(@fitfun,GAP,D,GAS,iP,GUIhdl)

Arguments @fitfun name of the m-file that evaluates the fitness

GAP structure of genetic algorithm parameters
D optional data required by fitness function
GAS structure of genetic algorithm statistics
iP optional variable with initial population
GUIhdl handle used for GUI (Use empty matrix when not in use)

Value Pout structure of final population

GAS structure of genetic algorithm statistics

Description As the main function of GOSET, it performs the function optimization using

GOSET. The structure of gaoptimize.m is modularized. Thus users who
want to experiment their own operator, can easily modify this function.

 - 117 -

gapdefault

Purpose Assigns default values to the genetic algorithm parameters used in GAP

Syntax GAP = gapdefault(nobj)

Arguments nobj number of objectives

Value GAP structure of genetic algorithm parameters

Description This function returns the structure of genetic algorithm parameters GAP with

their default values. The user can load the gapdefault and then redefine
only the required fields, instead of defining all the fields.

The following Table B.3 shows the default values defined in gapdefault.

Fundamental parameters
GAP.fp_ngen = 100 GAP.fp_ipop = 100
GAP.fp_npop = 100 GAP.fp_nobj = nobj
GAP.fp_obj = 1 for single objective / 0 for multi-objective

Diversity control parameters
GAP.dc_act = 1 GAP.dc_alg = 4
GAP.dc_spc = 1 GAP.dc_mnt = 0.02

GAP.dc_mxt = 0.1 GAP.ntr = 3
GAP.dc_mnb = 0.5 GAP.dc_mxb = 2.0
GAP.dc_dc = 0.001 GAP.dc_nt = 50

Selection algorithm parameters
GAP.sl_alg = 2 GAP.sl_nts = 4
GAP.sl_cah = []

Death algorithm parameters
GAP.dt_alg = 2 GAP.dt_nts = 4
GAP.dt_cah = []

Mating and crossover parameters
GAP.mc_pp = 0.6 GAP.mc_fc = 1.0
GAP.mc_alg = 4 GAP.mc_gac = 3
GAP.mc_ec = 2

Mutation parameters
GAP.mt_ptgm = 0.001 GAP.mt_prgm = 0.002
GAP.mt_srgm = 0.3 GAP.mt_pagm = 0.002
GAP.mt_sagm = 0.1 GAP.mt_prvm = 0.002
GAP.mt_srvm = 0.3 GAP.mt_pavm = 0.002
GAP.mt_savm = 0.1 GAP.mt_pigm = 0.008

Migration parameters
GAP.mg_nreg = 1 GAP.mg_tmig = 0

 - 118 -

GAP.mg_pmig = 0
Evaluation Parameters
GAP.ev_bev = 0 GAP.ev_are = 0
GAP.ev_ssd = 0

Scaling parameters
GAP.sc_alg = 1 GAP.sc_klin = 10
GAP.sc_cst = 2 GAP.sc_kmxq = 10
GAP.sc_kmnq = 0.01

Gene repair parameter
GAP.gr_alg = 1

Elitism parameters
GAP.el_act = 1 GAP.el_fgs = 0.0
GAP.el_fpe = 0.5

Random search parameters
GAP.rs_fgs = 0.5 GAP.rs_fps = 0.1
GAP.rs_srp = 0.3 GAP.rs_sap = 0.1
GAP.rs_frp = 0.7 GAP.rs_fea = 0.2

Reporting parameters
GAP.rp_lvl = 1 GAP.rp_gbr = 5
GAP.rp_crh = []

Objective plot parameters
GAP.op_list = [1] GAP.op_style = 1
GAP.op_sign = 1

Pareto plot parameters
GAP.pp_list = [] GAP.pp_xl = ‘Objective 1’
GAP.pp_style = 1 GAP.pp_yl = ‘Objective 2’
GAP.pp_sign = 1 GAP.pp_zl = ‘Objective 3’
GAP.pp_title =‘Solution space’ GAP.pp_axis = []

Distribution plot parameters
GAP.dp_type = 2 GAP.dp_np = 100
GAP.dp_res = 20

Gene description parameters
GAP.gd_min : user defined GAP.gd_max : user defined
GAP.gd_type : user defined GAP.gd_cid : user defined

Table B.3 Default values of GAP defined in gapdefault.m

For the full description regarding these parameters, refer to first section of
GOSET data structures and algorithm execution or gapdefault.m. The m-
file gapdefault.m also has default values of the GAP listed in Table B.3.

 - 119 -

gasetup

Purpose Set up a population of chromosomes

Syntax [P,GAS] = gasetup(popsize,GAP,@fitfun,[D])

Arguments popsize number of individuals in the population

GAP structure of genetic algorithm parameters
@fitfun name of the m-file that evaluates the fitness
D optional data needed by fitness function

Value P structure of the population
GAS structure of genetic algorithm statistics

Description gasetup is called within gainit when the initial population does not exist.

It sets up the population data structure P based on the assigned maximum
value, minimum value, type, and the chromosome ID of each gene and by
defining initial values using unrndinit.

The initial evaluation of the fitness function is also included and the statistic
structure GAS is returned together with the population data structure P.

See Also gainit, unrndinit

 - 120 -

generepair

Purpose correct the gene value to be feasible

Syntax [rgene] = generepair(gene,GAP)

Arguments gene an individual, vector of normalized gene values

GAP structure of genetic algorithm parameters

Value rgene repaired gene values

Description generepair is called within matingcrossover and mutate to
correct any resultant genes which lie outside the specified range. The
parameter GAP.gr_alg controls the repair method.

By default, GAP.gr_alg is set to 1 for hard limiting method that clips
any illegal gene value to the boundary value. For example, if a
resultant gene value is 1.2, it is adjusted to 1, and if it is -0.4, it is
adjusted to 0.

By setting it to 2, ring mapping method is applied and the modulus
after division by 1 is used as the repaired value. For example, if a
resultant gene value is 1.2, it is adjusted to 0.2, and if it is -0.1, it is
adjusted to 0.9.

In situations where the limit of a variable is a physical limit which also
happens to be the location of the optimum solution, the hard limiting
method results in significantly better performance.

 - 121 -

 goset

Purpose Start GOSET GUI (Graphic User Interface)

Syntax goset

Arguments none

Value none

Description goset initiates the GOSET GUI window as in the Figure B.3.

Figure B.3 GOSET GUI main window

For the detailed description of GOSET GUI, refer to Chapter 6.

 - 122 -

matingcrossover

Purpose Perform mating and genetic crossover on a population

Syntax Pout = matingcrossover(Pin,Plist,PLsize,

Dlist,GAP,GAS)

Arguments Pin structure of current population
 Plist parent list from selection operator

PLsize size of the parent list
Dlist death list from death operator
GAP structure of genetic algorithm parameters
GAS structure of genetic algorithm statistics

Value Pout structure of the population after crossover

Description Perform crossover operations on a population. Three different types of

crossover methods are used in GOSET; single point crossover, simple blend
crossover, and simulated binary crossover.

The parameter GAP.mc_pp specifies the mating crossover probability, that is,
the fraction of the population replaced by children. The fraction of the
chromosome undergoes crossover is determined by GAP.mc_fc.
All crossover operation is region specific and parents that are selected from
one region reproduce children into the same region. Also all the crossover
operations are chromosome-ID specific. Hence genes of different
chromosome ID are treated separately and the crossover operators are applied
independently.

The mating crossover methods are determined by GAP.mc_alg as in the
following table.

GAP.mc_alg Mating Crossover method

1 Single point crossover

2 Scalar simple blend crossover

3 Vector simple blend crossover

4 Scalar simulated binary crossover

5 Vector simulated binary crossover

6 Random algorithm

Let’s discuss the mating crossover methods one by one.

Single point crossover

 - 123 -

This crossover operator is similar to the crossover operator in binary-coded
GAs. A crossover point is randomly selected and the gene values after that
point are swapped between two parent chromosomes.

If P1 and P2 are the parent chromosomes with n genes and c is the crossover
point, then the children chromosomes are

] [and] [):(;1)1:1(;22):(;2)1:1(;11 nccncc PPCPPC −− ==

where P1;(a:b) is a vector whose elements are gene values from a’th to b’th
positions of P1.

Scalar simple blend crossover

Scalar simple blend crossover generates the children from the weighted sum
of their parents by the following steps;

STEP 1 : For i’th gene, choose a random number]1 ,1[−∈iu

STEP 2 : Calculate the average of the parents

2
;2;1 ii

i

PP
m

+
=

STEP 3 : Calculate the amount of change

iiii PPu ;2;1 −⋅=δ

STEP 4 : Compute the offspring

iiiiii mCmC δδ −=+= ;2;1 and

Note that each gene in the same chromosome is crossovered with the
different amount of change.

Vector simple blend crossover

Vector simple blend crossover is similar to the scalar simple blend crossover.
The only difference is that all genes in the same chromosome are crossovered
with the same amount of change as in the following steps

STEP 1 : Choose a random number]1 ,1[−∈u

STEP 2 : Calculate the average of the parents

 - 124 -

2
;2;1 ii

i

PP
m

+
=

STEP 3 : Calculate the amount of change

iii PPu ;2;1 −⋅=δ

STEP 4 : Compute the offspring

iiiiii mCmC δδ −=+= ;2;1 and

Note that all genes in the same chromosome are crossovered with the
same amount of change.

Scalar simulated binary crossover

Scalar simulated binary crossover generates the children by the following
steps;

STEP 1 : For i’th gene, choose a random number]1 ,0[∈iu

STEP 2 : Calculate the spread factor

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≤
= +

+

otherwise.,
)1(2

1

;5.0 if,)2(
1

1

1
1

c

c

i

ii

i

u

uu
η

η

β

 where ηc is the distribution tightness parameter GAP.mc_ec.

 STEP 3 : Compute the offspring

].)1()1[(5.0
],)1()1[(5.0

;2;1;2

;2;1;1

iiiii

iiiii

CCC
CCC

ββ
ββ

++−=
−++=

Note that each gene in the same chromosome can be recombined with
different spread factor.

Vector simulated binary crossover

Vector simulated binary crossover is identical as scalar simulated binary
crossover except that the spread factor is same for all the genes in the same
chromosome.

 - 125 -

The following describes the vector simulated crossover;

STEP 1 : Choose a random number]1 ,0[∈u

STEP 2 : Calculate the spread factor beta

⎪
⎩

⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≤
= +

+

otherwise.,
)1(2

1
;5.0 if,)2(

1
1

1
1

c

c

u

uu
η

η

β

 STEP 3 : Compute the offspring

].)1()1[(5.0
],)1()1[(5.0

212

211

CCC
CCC

ββ
ββ

++−=
−++=

Random crossover

For every GAP.mc_gac generation, a mating crossover methods are randomly
selected from the five mating crossover methods described above.

See Also generepair

Reference K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John

Wiley & Sons, Chichester, UK, 2001

 - 126 -

migrate

Purpose Change the region of individuals

Syntax Pout = migrate(Pin,GAP,cg)

Arguments Pin structure of population before migration
 GAP structure of genetic algorithm parameters
 cg current generation number

Value Pout structure of population after migration

Description This function works only when there are multiple regions. If the migration

occurs, some individuals are selected and moved to other regions. The
migration interval is randomly chosen from the integer values between
0.5×GAP.tmig and 1.5×GAP.tmig. For example, if GAP.tmig = 6 then,
the migration interval can be any integer from 3 to 9. Each individual is
selected and migrated with the probability of GAP.pmig. The target region is
chosen randomly among GAP.nreg number of regions.

 - 127 -

mutate

Purpose Perform mutation on a population of chromosomes

Syntax Pout = mutate(Pin,GAP)

Arguments Pin structure of population before mutation
 GAP structure of genetic algorithm parameters

Value Pout structure of the population after mutation

Description This function applies genetic mutation on the population. Four different

mutation algorithms are applied sequentially in the order of total mutation,
partial mutation, vector mutation, and integer mutation.

These mutation operations are performed on the normalized gene values.
When a gene value lies outside of the allowed range after mutation, then its
value is corrected using generepair routine.

Total mutation

Each gene can be mutated to any value within the predetermined range with
the probability of GAP.mt_ptgm. Thus, the mutated genes have no
relationship to their previous value.

Partial mutation

Each gene can be perturbed with respect to its current value by using a
random value generated using a Gaussian random variable. The mutated gene
value is related to the original gene value.

Relative gene mutation

In the relative gene perturbation, with the probability of
GAP.mt_prgm, each gene value is perturbed by certain fraction of the
current gene value. The amount of perturbation is determined using a
Gaussian random variable with standard deviation of GAP.mt_srgm.

The relative gene mutation on j’th gene in k’th individual can be
expressed as

)),0(1(,;,; rvmkjngkjng NPP σ+⋅=

 - 128 -

where),0(rvmN σ is a Gaussian random variable with mean 0 and
standard deviation rvmσ (GAP.mt_srgm).

Absolute gene mutation

In the absolute gene perturbation, each gene value is added with a
Gaussian random variable with standard deviation of GAP.mt_sagm.
The probability of absolute gene perturbation is defined in
GAP.mt_pagm.

The absolute gene mutation on j’th gene in k’th individual can be
expressed as

)),0(1(,;,; rvmkjngkjng NPP σ+⋅=

where),0(rvmN σ is a Gaussian random variable with mean 0 and
standard deviation rvmσ (GAP.mt_srgm).

Vector mutation

This function is similar to partial mutation except the fact that all the genes of
an individual are involved.

Relative vector mutation

Each individual undergoes the relative vector mutation with the
probability of GAP.mt_prvm. Every gene value of the individual is
perturbed by certain fraction of the current gene value. The relative
vector mutation on the k’th individual can be expressed as

)),0(1(;; rvmdirkngkng NvPP σ⋅+⋅=

where dirv is a normalized random vector)1(×ngenesP specifying the
direction of perturbation and),0(rvmN σ is a Gaussian random
variable with mean 0 and standard deviation rvmσ (GAP.mt_srvm).

Absolute vector mutation

Each individual undergoes absolute vector mutation with the
probability of GAP.mt_pavm. The absolute vector mutation on the
k’th individual can be expressed as

 - 129 -

),0(;; avmdirkngkng NvPP σ⋅+=

where dirv is a normalized random vector)1(×ngenesP specifying the
direction of perturbation and),0(avmN σ is a Gaussian random
variable with mean 0 and standard deviation avmσ (GAP.mt_savm).

Integer mutation

Each integer gene can be mutated to any integer value within the
predetermined range with the probability of GAP.mt_pigm.

See Also generepair

 - 130 -

nondom

Purpose Find the set of non-dominated solutions for multi-objective optimization

Syntax Nd = nondom(O,flag)

Arguments O a matrix of objective function values whose dimension is

(Number of objective functions) by (Number of solutions)
flag 1 indicates that the lager objective value is better

0 indicates that the smaller objective value is better

Value Nd a row vector with dimension equal to the number of solutions whose

elements are 1 if the solutions are non-dominated and 0 if they are
dominated

Description nondom is used to identify the non-dominated solutions among the solutions

using the objective function value matrix. The method proposed by Kung et al.
is employed.

Kung et al.’s method of identifying the non-dominated solution set

Step 1 Sort the population according to the descending order of importance in the first

objective function and name the population as P

Step 2 Front(P)

IF |P| = 1,
Return P as the output of Front(P)

ELSE
 T = Front (P(1: [|P|/2]))
 B = Front (P([|P|/2 – 1] : |P|))

IF the i-th non-dominated solution of B is not dominated by
any non-nominated solution of T,

M=T ∪{i}
Return M as the output of Front(P)

END

Note 1. |•| is the number of the elements

2. P(a : b) means all the elements of P from index a to b,
3. [•] is an operator gives the nearest smaller integer value.

It is a recursive algorithm, and it may not be easy to visualize. However, it is
the most computationally efficient method known at the time this manual is
written.

 - 131 -

Examples Suppose we have the following objective function value matrix with two
objectives and five solutions ,

⎥
⎦

⎤
⎢
⎣

⎡
=

47615
28964

O .

Then Nd = nondom(O,1) returns

Nd = [0 0 1 1 0].

Reference K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley &

Sons, Chichester, UK, 2001, pp. 38-39

 - 132 -

normgene

Purpose Update the normalized gene values based on the raw gene values

Syntax Pout = normgene(Pin)

Arguments Pin structure of population before updating the normalized gene values

Value Pout structure of population after updating the normalized gene values

Description normgene updates the normalized gene values (P.normgne) based on the

actual gene values (P.gene). The raw gene value is mapped to a value
between 0 and 1 according to the type of the gene (P.type). Note that only
the population members who have not been evaluated are updated.

The following table shows how normgene maps the raw gene value to the
normalized gene values on j’th gene of the m’th chromosome for different
types of gene.

Gene type Ptype Operation
Integer &

linear 1, 2)/()(min;max;min;,;g,;ng jjjkjkj PPPPP −−=

Logarithmic 3
)ln()ln(
)ln()ln(

min;max;

min;,;g
,;ng

jj

jkj
kj PP

PP
P

−

−
=

Table B.4

Examples With the following parameters

P min = [0 1 10], P max = [10 2 1000], and P type = [1 2 3],

if a chromosome with normalized gene values is

Pg;k = [5 1.5 500],

then the corresponding chromosome with actual gene values is

Png;k = [0.5 0.5 0.8495].

See Also rawgene

 - 133 -

objwght

Purpose Create an objective weight vector for use in multi-objective optimization

Syntax owv = objwght(GAP)

Arguments GAP structure of genetic algorithm parameters

Value owv normalized weight vector for scalarization of the multi-objective

function values

Description objwght generates a normalized weight vector to be used for scalarization of

the fitness function values in the multi-objective optimization problem.

In the single-objective optimization problem where GAP.fp_nobj = 1, there
is only one objective function. Thus objwght returns owv = 1

Even in the multi-objective optimization problem (GAP.fp_nobj > 1), it is
possible to use one objective function value for fitness evaluation. The
objective function number to be used is specified in GAP.fp_obj. Then the
output weight vector owv has all zero values except for the element
corresponding to the objective function specified by GAP.fp_obj.

Example Consider a multi-objective optimization with three objectives f1, f2 and f3. A
possible weight vector is

owv = [0.2 0.7 0.1].

Then the fitness value is calculated as

Fitness = 0.2 f1 + 0.7 f2 + 0.1 f3.

If GAP.fp_obj = 2, then objwght generates

owv = [0 1 0].

Hence the fitness value is calculated as

Fitness = f2.

 - 134 -

paretoplot

Purpose Plot two objective functions in 2D objective space

Syntax paretoplot(fignum,P,GAP,[region])

Arguments fignum figure number

P structure of current population
GAP structure of genetic algorithm parameters
region an optional integer argument specifies the region of which the

chromosomes are plotted

Description paretoplot generates 2D plot of 2 objective functions or 2D plot of 3

objective functions as in Figure B.4. It is called within reportplot.

 Figure B.4 2D and 3D Pareto plots

 When the view angle is adjusted for the better observation in the case of 3D

plot, it is maintained throughout the evolution process.

See also reportplot, distplot

 - 135 -

randsearch

Purpose Perform a random search in the vicinity of the best individual in each region

for better individual

Syntax Pout = randsearch(Pin,GAP,GAS,D)

Arguments Pin structure of current population
 GAP structure of genetic algorithm parameters
 GAS structure of genetic algorithm statistics
 D an optional data structure if needed for fitness evaluation

Value Pout structure of the population after the random search

Description randsearch explores the neighborhood of the best individual for better

solution by random mutation of the best individual. By extensively exploring
the vicinity of the best individual, it helps the GA to converge to the optimal
solution faster.

There are two different random search operations. They are the relative
random search that uses the relative vector mutation and the absolute random
search that employs the absolute vector mutation. At each generation, only
one of the two random search operations is active.

Random search starts at (GAP.rs_fgs × GAP.fp_ngen)’th generation and
(GAP.rs_fps × GAP.fp_npop) individuals are randomly generated using
relative vector mutation with the standard deviation of GAP.rs_srp or
absolute vector mutation with the standard deviation of GAP.rs_sap. The
choice between the two random mutations is dependant on the value
GAP.rs_frp. GAP.rs_frp is the probability that the absolute mutation is
used and thus the probability that the relative mutation is utilized is (1-
GAP.rs_frp).

After generating the mutants, the fitness values of the mutants are evaluated.
If there exists an individual whose fitness is better than that of the current best
individual, then the current best is replaced by the new individual.

 - 136 -

rawgene

Purpose Update the raw gene values based on the normalized gene values

Syntax Pout = rawgene(Pin)

Arguments Pin structure of population before updating raw gene values

Value Pout structure of population after updating raw gene values

Description rawgene updates the actual gene values (P.gene) based on the normalized

gene values (P.normgene). The normalized gene value is mapped to a
value in the predefined range according to the type of the gene (P.type).
Note that only the population members who have not been evaluated are
updated.

The following table shows how rawgene maps the normalized gene value to
the actual gene values on j’th gene of the k’th chromosome for different types
of gene.

Gene type Ptype Operation

Integer 1
])[(min;,;ngmin;max;,;g jkjjjkj PPPPP +⋅−=

where [] is the round -up operator
Real 2 jkjjjkj PPPPP min;,;ngmin;max;,;g)(+⋅−=

Logarithmic 3 ()())ln()ln()ln(exp min;,;ngmin;max;,;g jkjjjkj PPPPP +⋅−=

Table B.5

Examples With the following parameters

P min = [0 1 10], P max = [10 2 1000], and P type = [1 2 3],

if a chromosome with normalized gene values is

Png;k = [0.5 0.5 0.5],

then the corresponding chromosome with actual gene values is

Pg;k = [5 1.5 100].

See Also normgene

 - 137 -

reportplot

Purpose Plot the distribution of the genes of the chromosomes, the fitness history and

Pareto plot

Syntax reportplot(GAP,GAS,Pk,GUIhdl)

Arguments GAP structure of genetic algorithm parameters
 GAS structure of genetic algorithm statistics

P structure of the current population
GUIhdl handle for GOSET GUI

Value None

Description Plots the distribution of the genes of the chromosomes with the fitness history

as in Figure B.5 or the Pareto plot as in Figure B.6

Figure B.5 Gene distribution plot Figure B.6 2D Pareto plot

It is also possible to use a custom plotting routine on top of the
distribution/fitness history plot and the Pareto plot by defining custom report
plot handle GAP.rp_crh. The custom report plotting routine must have the
following format without output return value.

 f(P,GAP)

 P structure of current population
 GAP structure of genetic algorithm parameters

See also distplot, paretoplot

 - 138 -

scale

Purpose Update scaling parameters and computes the scaled and aggregated fitness

Syntax F = scale(Pin,GAP)

Arguments Pin structure of the input population

GAP structure of genetic algorithm parameters

Value F scaled and aggregated fitness

Description scale generate the scaled and aggregated fitness value (P.fit) based on

the current GAP and the current population. Scaling operator is applied
independently to each region in the multiple region case.

Given the current fitness values, each fitness values (P.fit) is penalized by
multiplying the penalty function value (P.pen) generated from the diversity
control routine. Then the maximum (fmax), minimum (fmin), average (favg),
media (fmed) and standard deviation (fstd) of the penalized fitness value of the
population in each region are found.

Depending on the value of scaling algorithm parameter GAP.sc_alg,
different scaling method is used as in Table B.6.

Scaling
algorithm
number

(GAP.sc_alg)

Scaling
method

Operation

 f = original fitness f’ = scaled fitness

0 None

 fmin fmax

 fmin

f’=af+b
 fmax

f

f’

0
1

=
=

b
a

1 Offset
scaling

 fmin fmax

fmax -fmin
f’=af+b

0
f

f’

min

1
fb

a
−=

=

 - 139 -

2
Standard

linear
scaling

 fmin fmax

afmin+b

kfavg
f’=af+b

favg

 favg

f

f’

GAP.sc_kln=

−=

−

−
=

k

afb

ff
fk

a

avg

avg

avg

)1(

)1(

max

3
Modified

linear
scaling

 fmin fmax

afmin+b

kfmed
f’=af+b

 fmed

 fmed

f

f’

GAP.sc_kln=
−=

−
−

=

k
afb

ff
fk

a

med

med

med

)1(

)1(

max

4
Mapped
linear

scaling

fmin fmax

1

f’=af+b
k

f’

f

GAP.sc_kln=
+⋅−=

−
−

=

k
afb
ff

ka

1

1

min

minmax

5 Sigma
truncation

fmin fmax

b

fstd - fstd +kfstd f’=af+b

 favg

kfstd

0

f

GAP.sc_cst=

⋅−−=
=

k

fkfb
a

stdavg)(
1

6 Quadratic
scaling

 fmin fmax

cbfaff ++=′ 2

kmax

1

 favg

kmin

f

 f’

sGAP.sc_kmn

sGAP.sc_kmx

=

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

min

max

min

max

1

min
2

min

avg
2

avg

max
2

max

1
1
1
1

k
k

k

k

ff
ff
ff

c
b
a

Table B.6 Scaling algorithms

If GAP.sc_alg = 0, scaling is not used.

If GAP.sc_alg = 1, offset scaling is used and fmin is mapped to 0 and fmax is
mapped to |fmax - fmin|.

 - 140 -

When GAP.sc_alg = 2, the fitness values are mapped so that the scaled
fitness values also have same average fitness value as the original fitness
value and the maximum fitness value is GAP.sc_kln times larger then favg .

The case of GAP.sc_alg = 3 is similar to the case of GAP.sc_alg = 2,
except that median fitness value is used instead of average fitness value.

With GAP.sc_alg = 4, fitness values are linearly scaled such that fmin is
mapped to 1 and fmax is mapped to GAP.sc_kln.

Sigma truncation is applied when GAP.sc_alg = 5. All the fitness values
smaller than (favg ! GAP.sc_cst Η fstd), where favg is the average fitness
value and the fstd is the standard deviation of the fitness values, are mapped to
negative values and therefore disregarded later by clipping to zeros. It is
useful when there are few individuals with very small fitness value and most
individuals have large fitness value.

If GAP.sc_alg = 6, quadratic scaling is used. This algorithm emphasizes
the large fitness value and deemphasizes the small fitness value. The
parameters of a quadratic function is found such that fmax is mapped to
GAP.sc_kmxs, favg to 1 and fmin to GAP.sc_kmns., Then other fitness
function values are mapped according to this quadratic function.
GAP.sc_kmns is set to less than 1.

After applying the above scaling, all the negative fitness values are set to
zeros, the fitness values are divided by the sum of all the fitness values. These
final fitness values become the scaled fitness values that represent selection
probabilities.

As the last step, the aggregate fitness values P.fit for chromosomes are
obtained by summing all the objective functions using the objective function
weight vector GAP.owv.

Examples Given the fitness function vector P.mfit with three objective functions and

five chromosomes as the following,

P.mfit = ⎥
⎦

⎤
⎢
⎣

⎡
− 3333.325.6205.714

1111.11101054

If the penalty vector is

P.pen = [0.5 0.8 0.6 0.8 0.9],

then the penalized fitness becomes

 - 141 -

⎥
⎦

⎤
⎢
⎣

⎡
− 351267

108642

If we apply standard linear scaling with the scaling factor (GAP.sc_klin)
of 2, we have a = 1.5, b = -3 for the first objective and a = 0.5385, b = 1.9385
for the second objective to yield

⎥
⎦

⎤
⎢
⎣

⎡
3.55384.63088.40001.2923-5.7077

129630 .

To make the fitness values non-negative, any negative fitness values are set to
zero, that is,

⎥
⎦

⎤
⎢
⎣

⎡
3.55384.63088.400005.7077

129630 .

Then the fitness values are normalized by dividing the fitness value by the
sum of the fitness value of the corresponding objective.

⎥
⎦

⎤
⎢
⎣

⎡
0.15940.20770.376800.2560

4.03.02.01.00

With the objective function weight [0.4 0.6], the aggregate fitness values are
found to be

P.fit = [0.1536 0.0400 0.3061 0.2446 0.2557]

Reference D. E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning,
Addison Wesley Publishing Company, January 1989

 - 142 -

select

Purpose Select chromosomes from the population and form a mating pool

Syntax Pout = select(Pin,GAP)

Arguments Pin structure of current population
 GAP structure of genetic algorithm parameters

Value Pout structure of the population

Description Selection operator picks chromosomes from the current population to

construct a mating pool for reproduction. When multiple regions are used,
selection is applied within each region. That is, if there are m chromosomes in
a region, the selection operator picks the chromosome only from that region
until m spaces of the mating pool are filled. There are two different selection
methods in GOSET that one can choose from. They are roulette wheel
selection and tournament selection.

 In the selection operation, the aggregate fitness values (P.fit) are divided by

the sum of the aggregate fitness value to yield the normalized aggregate
fitness values.

Roulette wheel selection

Setting GAP.sl_alg = 1 will activate roulette wheel selection. In the
roulette wheel selection, the probability of an individual to be selected to the
mating pool is proportional to the aggregate fitness (P.fit).

Tournament selection

Tournament selection is used if GAP.sl_alg is set to 2. In the tournament
selection, GAP.sl_nts individuals are randomly chosen, and their aggregate
fitness values (P.fit) are compared and the individual with best fitness value
is selected to the mating pool. This procedure is repeated until the mating pool
is occupied.

Illustrations of these selection operators are in Chapter 2.

 Custom selection

Custom selection routine can be used instead of the two existing selection
algorithms. This is specified by setting GAP.sl_alg to 3 and setting

 - 143 -

GAP.dt_cah with the handle of the custom function. The custom function
must have the following format

 P_list = f(region,size,age,mfit,fit)

 P_list indices of the individuals to become parents
 region the region number
 size number of individuals for the death list
 age vector describing ages of the individuals in population
 mfit array with raw fitness values of the individuals in the region
 fit vector of aggregate fitness values of individuals in the region

As an example of a custom algorithm, the Roulette wheel selection algorithm
is written as an mfile called ‘customselect.m’ which is shown below.

This mfile must be in the same folder as the fitness function file or in the
GOSET folder. Then the custom file handle GAP.sl_cah is set to
@customselect.

% Custom select algorithm example – Roulette wheel selection algorithm
function plist = customselect(region,size,region_age,region_mfit,region_fit)

% determine the mating probability
Matprob = region_fit/sum(region_fit);

% create a mapping function for selection
map=cumsum(matprob);
% now do the selection
for i=1:size,
 choice=rand;
 j=1;
 while (choice > map(j))
 j=j+1;
 end
 plist(i)=j;
end

 - 144 -

trimga

Purpose Randomly initialize the gene values and the regions of the individuals

Syntax [x,f]=trimga(GAP,P,[D])

Arguments GAP structure of genetic algorithm parameters

P structure of a population
D optional data required by fitness function

Value x revised solution
 f revised fitness function of the revised solution

Description The trimga operator uses the Nelder-Mead simplex algorithm to perform an

deterministic optimization using the best individual from a GA as a starting
point. The goal is to find a better solution in the vicinity of the obtained GA
solution. The trimga only works with single-objective optimization problems.
Gene range constraints are enforced by subtracting infinitity from the fitness
function when the gene range goes outside of the prescribed limits. This is a
stand alone routine and is not the part of the evolution process.

 By using GUI, the user can execute trimga to refine the solution and include

it in the current population for further evolution with ease.

Figure B.7 Using Trim GA in GUI mode

 - 145 -

unrndinit

Purpose Randomly initialize the gene values and the regions of the individuals

Syntax Pout = unrndinit(Pin,GAP)

Arguments Pin structure of current population
 GAP structure of genetic algorithm parameters

Value Pout structure of the population

Description unrndinit randomly generates chromosomes of the initial population.

First, the normalized gene values are randomly assigned as in the following,

=kjngP ,; rand

where kjngP ,; represents the normalized gene value of j’th gene in the k’th
individual and rand is MATLAB function that generates a random number
between 0 and 1.

For the integer type gene, the normalized gene values are assigned with a
discretized value between 0 and 1 such that they can represent correct integer
values when mapped to actual gene values, that is,

1levels
)levels(

,; −
×

=
rand fix

kjngP

where 1levels min;max; +−= jj PP , and fix is a MATLAB function that rounds
a number towards zero.

After this step, the actual gene values are determined according to their types
by using rawgene.

If multi-regions are used, the chromosomes are distributed into regions by

)(GAP.nregrand ceil ×=regP

where ceil is a MATLAB function that rounds a number towards positive
direction.

 - 146 -

updateage

Purpose Update the age of the each individual in the population

Syntax Newage = updateage(P)

Arguments P structure of current population

Value Newage vector of new ages

Description The age of each individual in the population is updated. The age of the

individual survived from the previous generation increase by one, and the age
of the new individual is set to one.

 - 147 -

updatestat

Purpose Update the statistic information of GAS

Syntax GAS = updatestat(GAS,Pin)

Arguments Pin structure of current population
 GAS structure of genetic algorithm statistics

Value GAS structure of genetic algorithm statistics

Description The current average fitness value, the median fitness value, the best fitness

value, and the gene values of the best individual are added to GAS.meanfit,
GAS.medianfit, GAS.bestfit, and GAS.bestgenes respectively.
The number of total evaluation is updated to GAS.ne.

 - 148 -

Appendix C. GOSET parameter list
P.[] Description
P.fithandle Handle to the fitness function
P.size The number of individuals in the population
P.mfit Unconditioned fitness function values
P.fit Fitness function values
P.eval Fitness evaluation flag 0 : fitness is not evaluated 1 : fitness is evaluated
P.age Ages of the individuals in generation number
P.ngenes Number of genes in all chromosomes of an individual
P.min Minimum value of gene
P.max Maximum value of gene
P.type Types of genes 1 : integer 2 : linear 3 : logarithmic
P.chrom_id Chromosome ID of gene (used for multiple chromosome case)
P.normgene Normalized gene values
P.gene Gene values
P.region Geographic region of an individual
P.pen Penalty function which is used for diversity control

GAP.[] Description Default
Fundamental parameters
GAP.fp_ngen No. of generations to evolve 100
GAP.fp_ipop No. of chromosomes in initial population 100
GAP.fp_npop No. of chromosome in the population 100
GAP.fp_nobj No. of objective functions nobj
GAP.fp_obj Objective to optimize (0 for Multi-objective optimization) 1 / 0
Diversity control parameters

GAP.dc_act
Diversity control usage flag

0: non-active 1: active 1
GAP.dc_alg Diversity control algorithm 4
GAP.dc_spc

Diversity control space
1 : Parameter space 2 : Fitness function space 1

GAP.dc_mnt Minimum threshold for algorithm 1 0.02
GAP.dc_mxt Maximum threshold for algorithm 1 0.1
GAP.dc_ntr No. of trials for algorithm 2 3
GAP.dc_mnb Min no. of bins relative to pop. size for algorithm 2 0.5
GAP.dc_mxb Max no. of bins relative to pop. size for algorithm 2 2
GAP.dc_dc Diversity control distance const (Algorithm 3 & 4) 0.001
GAP.dc_nt Diversity control test pop. size (Algorithm 4) 50
Scaling parameters

GAP.sc_alg

Scaling algorithm

0 : none
1 : offset so minimum fitness is zero
2 : lin. scaling (favg → favg, fmax → GAP.sc_klin×favg)
3 : lin. scaling (fmed → fmed, fmax → GAP.sc_klin×favg)
4 : lin. scaling (fmin → 1, fmax → GAP.sc_klin)
5 : sigma truncation
6 : quadratic scaling

1

GAP.sc_kln Scaling factor for linear scaling algorithms 10
GAP.sc_cst Scaling constant for sigma truncation 2
GAP.sc_kmxq Max scaling factor for quadratic scaling (fmax→GAP.sc_kmxq) 10
GAP.sc_kmnq Min scaling factor for quadratic scaling (fmin→GAP.sc_kmnq) 0.01
Selection algorithm parameters
GAP.sl_alg

Selection algorithm
1: Roulette wheel 2: Tournament 2

GAP.sl_nts No. of individuals used in a tournament 4
GAP.sl_cah Function handle for the custom selection algorithm []
Death algorithm parameters
GAP.dt_alg

Death algorithm
1: replace parents 2: random replacement
3: tournament on fitness 4: tournament on age
5: custom algorithm 6: random among 1 - 4

2

GAP.dt_nts No. of individuals used in a tournament 4
GAP.dt_cah Function handle for the custom death algorithm []
Mating and crossover parameters
GAP.mc_pp Percentage of pop. replaced by children 0.6
GAP.mc_fc Fraction of chromosomes involved in crossover 1

GAP.mc_alg

Crossover algorithm
1 : Single point crossover
2 : Scalar simple blend crossover
3 : Vector simple blend crossover
4 : Scalar simulated binary crossover
5 : Vector simulated binary crossover
6 : Random algorithms

4

GAP.mc_gac No. of gen. btw changing Algs for random crossover Alg 3
GAP.mc_ec Tightness of distribution (ηc) for crossover algorithms 4 and 5 2
Mutation parameters
GAP.mt_ptgm Probability of a total gene mutation 0.001

GAP.mt_prgm Probability of a relative partial gene mutation 0.002
GAP.mt_srgm Standard deviation of relative partial gene perturbation 0.3
GAP.mt_pagm Probability of a absolute partial gene mutation 0.002
GAP.mt_sagm Standard deviation of absolute partial gene mutation 0.1
GAP.mt_prvm Probability of relative vector mutation 0.002
GAP.mt_srvm Standard deviation of relative vector mutation 0.3
GAP.mt_pavm Probability of absolute vector mutation 0.002
GAP.mt_savm Standard deviation of absolute vector mutation 0.1
GAP.mt_pigm Probability of integer gene mutation 0.008
Gene repair parameters

GAP.gr_alg

Gene repair algorithm

1 : Hard limiting
2 : Ring mapping

1

Migration parameters
GAP.mg_nreg No. of geographic regions the population is distributed 1
GAP.mg_tmig Time between migrations in generations 0
GAP.mg_pmig Probability of an individual to migrate 0
Evaluation parameters
GAP.ev_bev Block evaluation 0 : evaluate an individual

 1 : evaluate all the individual 0

GAP.ev_are
Fitness reevaluation option

0: evaluate only the unevaluated 1: evaluate all 0

GAP.ev_ssd Supplementary data
0: Pass P.gene 1: pass P.age, P.mfit, P.region 0

Elitism Parameters
GAP.el_act Elitism activation flag 1
GAP.el_fgs Fraction of generation to pass before starting random search 0
GAP.el_fpe Fraction of pop. protected as elite for multi-objective optimization 0.5
Random search parameters
GAP.rs_fgs Fraction of generation to pass before starting random search 0.5
GAP.rs_fps Fraction of total population size used in random search 0.1
GAP.rs_srp Standard deviation used in relative perturbation 0.3
GAP.rs_sap Standard deviation used in absolute perturbation 0.1
GAP.rs_frp

Fraction of time that relative random perturbations are used.
Absolute random perturbation is used for the rest of the time. 0.7

GAP.rs_fea Fraction of generations on which to execute the algorithm 0.2
Reporting parameters
GAP.rp_lvl Reporting level -1: no report 0: text only 1: plot & text 1
GAP.rp_gbr Generation between reports 5
GAP.rp_crh Function handle for custom reporting algorithm []
Objective plot parameters
GAP.op_list List of objectives to make objective plots for [1]
GAP.op_style Style for each objective 0: logarithmic 1: linear [1 … 1]
GAP.op_sign Sign of fitness for each objective -1: neg 1: pos/mixed [1 … 1]
GAP.dp_type Distribution plot type 1: plot individuals 2: plot histograms 2
GAP.dp_np Maximum number of individuals to plot 100
GAP.dp_res Number of bins in distribution plot for type 2 20
Pareto plot parameters
GAP.pp_list List of 2 or 3 objectives to be used in Pareto plot []
GAP.pp_xl x-axis label 'Objective 1'
GAP.pp_yl y-axis label 'Objective 2'
GAP.pp_zl z-axis label 'Objective 3'
GAP.pp_title Pareto plot title ‘Solution space’
GAP.pp_style Style for each objective 0: logarithmic 1: linear [1 … 1]
GAP.pp_sign Sign of fitness for each objective -1: neg 1: pos/mixed [1 … 1]
GAP.pp_axis Axis limits for Pareto Plot []
Gene definition parameters
GAP.gd_min Row vector of minimum gene values
GAP.gd_max Row vector of maximum gene values
GAP.gd_type Row vector of gene types 1: integer 2: linear 3: logarithmic
GAP.gd_cid Row vector of chromosome ID number

Defined by
the user

USNA Beowulf parameters
GAP.pe_act Parallel evaluation flag to use USNA Beowulf 0
GAP.pe_tout Maximum expected fitness evaluation time in second 60
ACSL simulation parameters
GAP.acsl_act ACSL simulation flag 0
GAP.acsl_fn ACSL filename for PRX and CMD files []
GAP.acsl_pn ACSL parameter name vector []
GAP.acsl_ts ACSL runtime table size 3000

GAS.[] Description
GAS.cg Current generation number
GAS.medianfit The median fitness values of each objective
GAS.meanfit The average fitness values of each objective
GAS.bestfit The best fitness values of each objective
GAS.bestgenes The best gene values for each objective over the generations
GAS.ne The number of the total objective function evaluations

Abbreviation list No.: Number Min: Minimum Max: Maximum Pop.: population Gen.: Generation Alg: Algorithm Neg: Negative Pos: Positive

████ : Only applicable to USNA Beowulf version (GOSET v2.3p)

