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1.1 Design Approach

• Manual design process
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1.1 Design Approach

• Optimization based design process

3S.D. Sudhoff, Power Magnetic Devices: A Multi-Objective Design Approach



1.2 Mathematical Properties of Obj. Functions

• Definition of a global minimizer
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1.2 Mathematical Properties of Obj. Functions

• Discontinuities and local extrema
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1.2 Mathematical Properties of Obj. Functions

• Definition of a convex set
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1.2 Mathematical Properties of Obj. Functions

• Definition of a convex function: the epigraph is a 
convex set
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1.2 Mathematical Properties of Obj. Functions

• Importance of convexity 
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1.3 Single Obj. Optim. Using Newton’s Method

• Let us find the extrema of f(x)
• Assume that

• The first derivate or gradient is denoted
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1.3 Single Obj. Optim. Using Newton’s Method
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• The second derivative or Hessian is denoted



1.3 Single Obj. Optim. Using Newton’s Method

• If x* is a local minimizer of f, then

• These conditions are necessary but not sufficient
• If f is convex, these conditions are necessary and 

sufficient to know that x* is a global minimizer of f
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1.3 Single Obj. Optim. Using Newton’s Method

• Newton’s Method for find a function extremum
– This is an iterative method in which an estimate is used 

to find a better estimate
– Let x[k] denote the k’th estimate. Using Newton’s 

Method 
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1.3 Single Obj. Optim. Using Newton’s Method

• Derivation
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1.3 Single Obj. Optim. Using Newton’s Method

• Derivation (continued)

14S.D. Sudhoff, Power Magnetic Devices: A Multi-Objective Design Approach



1.3 Single Obj. Optim. Using Newton’s Method

• Example 1.3A: Suppose we wish to minimize

• First we find the gradient:

15S.D. Sudhoff, Power Magnetic Devices: A Multi-Objective Design Approach

24 2
1 1f( ) 2( 2) 3( ) 8xx x e x    



1.3 Single Obj. Optim. Using Newton’s Method

• Next we find the Hessian
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1.3 Single Obj. Optim. Using Newton’s Method

• Iteratively applying our update expression

17S.D. Sudhoff, Power Magnetic Devices: A Multi-Objective Design Approach

Table 1.3A-1   Newton’s method results. 
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1.3 Single Obj. Optim. Using Newton’s Method

• Problems with Newton’s Method

• Population based optimization methods
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1.4 GAs: Review of Biological Genetics

• Deoxyribonucleic acid

• Humans have 22 pairs of chromosomes plus two sex 
chromosomes
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1.4 GAs: Review of Biological Genetics

• Meiosis (formation of gametes)
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1.4 GAs: Review of Biological Genetics

• Example: with sexual reproduction in a creature 
with two chromosomes and no-crossover, how many 
genotypes could the children of the same two 
parents take on?
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1.5 The Canonical Genetic Algorithm

• Salient features
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1.5 The Canonical Genetic Algorithm

• Definitions
– Let P[k] denote the k’th generation of a population of 

individuals
– P[k] is organized as
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1.5 The Canonical Genetic Algorithm

• Definitions (continued)
• An individual is organized as
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1.5 The Canonical Genetic Algorithm

• A decoding function converts a genetic code to 
parameter values

where
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1.5 The Canonical Genetic Algorithm

• The objective (fitness) function describes the 
goodness of the individual 
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1.5 The Canonical Genetic Algorithm

• Example 1.5A.  Suppose individual 13 has the 
genetic code

The decoding function is given by

where xmn1=5, xmx1=10, xmn2=-2, xmx2=0, xmn3=0, and 
xmx3=1
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1.5 The Canonical Genetic Algorithm

Finally the fitness function is given by

Determine the fitness of population member 13. 
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1.5 The Canonical Genetic Algorithm
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1.5 The Canonical Genetic Algorithm

• Overview of the Canonical Genetic Algorithm
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1.5 The Canonical Genetic Algorithm

• Roulette Wheel Selection.  The probability of the 
i’th individual getting into the mating pool is given 
by
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1.5 The Canonical Genetic Algorithm

• N-Way Tournament Selection
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1.5 The Canonical Genetic Algorithm

• Mating, Crossover, Segregation, Mutation
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for i  =1 to / 2pN  
 

  compute element indices 
  1 2 1i i   
  2 2i i  
 

  get genetic codes of parents 
  1pθ  = 1i ’th individual in  kM  

  2pθ  = 2i ’th individual in  kM  
 

  apply genetic operators 
  apply crossover to { 1pθ , 2pθ } yielding { 1aθ , 2aθ } 
      segregate chromosomes of { 1aθ , 2aθ }yielding{ 1bθ , 2bθ } 
  apply mutation to { 1bθ , 2bθ } yielding { 1cθ , 2cθ } 
    
 

  place children into next population 
  the 1i ’th individual of  1k P  becomes 1cθ  

  the 2i ’th individual of  1k P  becomes 2cθ  
 

end 



1.5 The Canonical Genetic Algorithm

• Example 1.5B
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1.5 The Canonical Genetic Algorithm

• Problems with the Canonical Genetic Algorithm
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1.6 Real Coded Genetic Algorithms

• The main idea:
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1.6 Real Coded Genetic Algorithms

• Decoding for the j’th gene

• For linearly encoded data

• Integer Encoding – same as linear except
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1.6 Real Coded Genetic Algorithms

• For logarithmic encoded data
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1.6 Real Coded Genetic Algorithms

• Crossover algorithms
– Single-Point Crossover
– Simple-Blend Crossover
– Simulated Binary Crossover
– Single-Point Simple-Blend
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1.6 Real Coded Genetic Algorithms

• Single-Point Crossover

• Problems with Single-Point Crossover
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1.6 Real Coded Genetic Algorithms

• Simple Blend Crossover
– Consider parents p1 and p2

– Determine a uniformly distributed random number in 
range [0,1] denoted Genes of the child are determined 
as

where is a algorithm constant (say 0.5)
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1.6 Real Coded Genetic Algorithms

• Simple Blend Crossover (Continued)
– Vector Simple Blend Crossover

– Scalar Simple Blend Crossover

– Observation on gene values

– Gene repair
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1.6 Real Coded Genetic Algorithms

• Simulated Binary Crossover
– Objective

– Algorithm. Start with random number  in [0,1)
– Define
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1.6 Real Coded Genetic Algorithms

• Simulated Binary Crossover (Continued)
– Next

– Vector Simulated Binary Crossover 

– Scalar Simulated Binary Crossover 

– Observation on gene values

– Gene repair
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1.6 Real Coded Genetic Algorithms

• Single-Point Simple-Blend Crossover
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1.6 Real Coded Genetic Algorithms

• Methods for Gene Repair
– Hard Limit Gene Repair

– Ring Mapped Gene Repair
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1.6 Real Coded Genetic Algorithms

• Mutation methods
– Total Mutation

– Partial Absolute Mutation
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1.6 Real Coded Genetic Algorithms

– Partial Relative Mutation

– Absolute Vector Mutation

– Relative Vector Mutation

– Integer Mutation
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1.6 Real Coded Genetic Algorithms

– Gene repair

– Uniform Mutation

– Non-Uniform Mutation
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1.6 Real Coded Genetic Algorithms

• Example 1.6A. Let us use a GA to find the 
maximizer of

–We will use linear coding with xmn,1 = xmn,2 = 0 and xmx,1 = 
xmx,2 = 5

–We will use 2-way tournament selection
–We will use simple blend crossover with =0.5 and a 

probability of crossover of 0.5 

50S.D. Sudhoff, Power Magnetic Devices: A Multi-Objective Design Approach

2 2
1 2 2

1( )
( 6) 4( 3) 1

f
x x x


   

x



1.6 Real Coded Genetic Algorithms

• Example 1.6A (continued)
–We will use total mutation with the probability of a gene 

mutation of 0.1
–We will consider 3 generations with a population size of 

8
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1.6 Real Coded Genetic Algorithms

• Example 1.6A results
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Table 1.6A-1   Example of real-coded genetic algorithm evolution. 
 

Generation 1 
 1P  0.3210 

0.8296 
0.8222 
0.5707 

0.5718 
0.2860 

0.6991 
0.7963 

0.4416 
0.4462 

0.4657 
0.2790 

0.6754 
0.9037 

0.9085 
0.7472 

ix  1.6051 
4.1478 

4.1109 
2.8534 

2.8591 
1.4301 

3.4957 
3.9813 

2.2079 
2.2311 

2.3283 
1.3952 

3.3769 
4.5183 

4.5426 
3.7360 

f i 0.1492 0.0295 0.0689 0.0148 0.2213 0.0530 0.0104 0.0081 
 1M  0.5718 

0.2860 
0.4657 
0.2790 

0.8222 
0.5707 

0.3210 
0.8296 

0.4657 
0.2790 

0.8222 
0.5707 

0.4416 
0.4462 

0.3210 
0.8296 

Generation 2 
 2P  0.5718 

0.2860 
0.1355 
0.3321 

0.8975 
0.7424 

0.6534 
0.6579 

0.4657 
0.2790 

0.5279 
0.0321 

0.3627 
0.6971 

0.8467 
0.5786 

ix  2.8591 
1.4301 

0.6774 
1.6606 

4.4874 
3.7118 

3.2668 
3.2895 

2.3283 
1.3952 

2.6394 
0.1604 

1.8133 
3.4857 

4.2336 
2.8932 

f i 0.0689 0.0313 0.0086 0.0419 0.0530 0.0155 0.4886 0.0249 
 2Μ  0.1355 

0.3321 
0.5718 
0.2860 

0.3627 
0.6971 

0.5718 
0.2860 

0.8467 
0.5786 

0.8467 
0.5786 

0.5718 
0.2860 

0.6534 
0.6579 

Generation 3 
 3P  0.1355 

0.3321 
0.5718 
0.2860 

0.5462 
0.3365 

0.3883 
0.6467 

0.8467 
0.5786 

0.8467 
0.5786 

0.6235 
0.5216 

0.6017 
0.4223 

ix  0.6774 
1.6606 

2.8591 
1.4301 

2.7308 
1.6824 

1.9417 
3.2334 

4.2336 
2.8932 

4.2336 
2.8932 

3.1174 
2.6082 

3.0085 
2.1114 

f i 0.0313 0.0689 0.1008 0.7719 0.0249 0.0249 0.1625 0.2335 
 



1.6 Real Coded Genetic Algorithms

• Example 1.6A results (continued)
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1.6 Real Coded Genetic Algorithms

• Additional operators
– Scaling (We’ll discuss this shortly)
– Diversity Control

– Elitism

–Migration

– Death

54S.D. Sudhoff, Power Magnetic Devices: A Multi-Objective Design Approach



1.6 Real Coded Genetic Algorithms

• Additional operators (continued)
– Local Search

– Deterministic Search
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1.6 Real Coded Genetic Algorithms

• Scaling
– Used with Roulette Wheel Selection

– Early in an evolution

– Late in an evolution

– Solution is scaling
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1.6 Real Coded Genetic Algorithms

• Several scaling laws take the form
where
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' max(0, )f af b 

Table 1.6-1   Linear scaling methods. 
Method a  b  Comments 

Offset Scaling 1 minf  Ensures positive fitness 
 

Standard 
Linear Scaling 

( 1) avg

max avg

k f
f f



 
 

(1 )avgf a  
Most fit individual k times 
more likely to be in mating 

pool than average 
 

Modified 
Linear Scaling 

( 1) med

max med

k f
f f

  

 
(1 )medf a  

Most fit individual k times 
more likely to be in mating 

pool than median 
 

Mapped 
Linear Scaling min

( 1) avg

max

k f
f f



 
 

1minaf   
 

Minimum fitness mapped to 
1; maximum fitness to k  

 

Sigma 
Truncation 

 

1  
 

( )avg stdf kf   
 

 
Average fitness maps to stdkf  

 



1.6 Real Coded Genetic Algorithms

• Consider Standard Linear Scaling
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1.6 Real Coded Genetic Algorithms
• Quadratic Scaling

where

• An individual with maximum fitness is kmax times as likely to 
be in the mating pool as an average fitness individual

• An individual with minimum fitness is kmin times as likely to 
be in the mating pool as the average fitness individual
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1.6 Real Coded Genetic Algorithms

• Quadratic Scaling
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1.6 Real Coded Genetic Algorithms

• Enhanced Real-Coded Genetic Algorithm
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1.7 Multi-Obj. Opt. and the P.O. Front

• Consider a set of motors. Suppose we want to 
minimize coss and loss.  Which is best?
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1.7 Multi-Obj. Opt. and the P.O. Front

• Definition of Dominance

• Definition of a Non-Dominated Set
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1.7 Multi-Obj. Opt. and the P.O. Front

• Pareto-Optimal Set and Pareto-Optimal Front
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1.7 Multi-Obj. Opt. and the P.O. Front

• Methods to Perform Multi-Objective Optimization
–Weighted Sum Method
– -Constraint Method
–Weighted Metric Method
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1.7 Multi-Obj. Opt. and the P.O. Front

• The -Constraint Method
– Approach: repeatedly solve

for different values of 
– This yields the Pareo-Optimal front one point (or one 

single-objective optimization) at a time
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1.7 Multi-Obj. Opt. and the P.O. Front

• The -Constraint Method (continued)
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1.8 Multi-Obj. Opt. Using GAs

• Non-Elitist Strategies
• Elitist Strategies
– Elitist Non-Dominated Sorting GA
– Distance-Based Pareto GA
– Strength Pareto GA
– Elitist Non-Dominated Sorting GA (NSGA-II)
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1.8 Multi-Obj. Opt. Using GAs

• Before setting forth this NSGA-II, we need to 
discuss
– Kung’s method of finding a non-dominated set
– Non-Dominated Sorting (NDS)
– Crowding distance
– Crowding Distance Sorting (CDS)
– Crowding Tournament Selection (CTS)
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1.8 Multi-Obj. Opt. Using GAs

• Kung’s Method to find non-dominated solutions
– Let P be the population
– Let E be the set of non-dominated individuals
– Algorithm
• Step 1: Sort P from best to worse in terms of first objective. 

Call result Ps.
• Step 2: E=front(Ps) 
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1.8 Multi-Obj. Opt. Using GAs

• Description of front()
– This is a recursive routine
– Let Pa:b denote the a’th to b’th individuals within a 

population P
– |X| is number of elements in set X
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1.8 Multi-Obj. Opt. Using GAs

• Pseudo-code for front()
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Table 1.8-1   Pseudo-code for Kung’s method.  
 
function R =front(S) 
   if | | 1S  

      R =S 
   else 
      i =floor( | | / 2S ) 

      T=front( 1:iS ) 
      B =front( 1:i SS ) 
      N=solutions of B not dominated  
         by any solution of T 
      R = T N  
   end 
end 

 



1.8 Multi-Obj. Opt. Using GAs

• Example
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{1, 2, 3, 4, 5, 6, 7,8}P

{1, 6, 2, 3,8, 4, 7, 5}s P



1.8 Multi-Obj. Opt. Using GAs

• Example (continued)
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Table 1.8-1   Pseudo-code for Kung’s method.  
 
function R =front(S) 
   if | | 1S  

      R =S 
   else 
      i =floor( | | / 2S ) 

      T=front( 1:iS ) 
      B =front( 1:i SS ) 
      N=solutions of B not dominated  
         by any solution of T 
      R = T N  
   end 
end 

 



1.8 Multi-Obj. Opt. Using GAs

• Non-Dominated Sorting (NDS)
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1.8 Multi-Obj. Opt. Using GAs

• Crowding distance
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1.8 Multi-Obj. Opt. Using GAs

• Crowding Distance Sorting (CDS)
– Sort a set of designs (normally on the same front) in 

terms of decreasing crowding distance

• Crowding Tournament Selection (CTS)
– Pick two member of population
– If on different fronts, one on best front wins
– If on the same front, one with the highest crowding 

distance wins
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1.8 Multi-Obj. Opt. Using GAs

• Elitist Non-Dominated Sorting Genetic Algorithm 
(NSGA-II)
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1.9 Formulation of Fitness Functions

• Setting up constraints
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1.9 Formulation of Fitness Functions

• Aggregation (or averaging) of constraints

• We can then define a fitness function as
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1.9 Formulation of Fitness Functions

• An approach to minimize computational effort
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  calculate constraint ic  

  1I IC C   

  S S iC C c   
 

  if ( S IC C ) 

      1 1 1 TSC C
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f �  

         return 
      end 



1.10 A Design Example

• Consider a UI core inductor
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1.10 A Design Example

• Free parameters
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1.10 A Design Example

• Analysis
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1.10 A Design Example

• Constraints
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1 gte( , )mnc L L

2 lte( , )rt mxc B B

3 lte( , )rt mxc J J

4 lte( , )rt mxc P P

5 lte( , )mxc M M
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1.10 A Design Example

• Fitness functions

86S.D. Sudhoff, Power Magnetic Devices: A Multi-Objective Design Approach

( 1) 1
1 1

c c
f

c
M

  
 



 ( 1) 11 1

1 1
1

T

T

rt

c c
f

c
M P

  


       



1.10 A Design Example

• Domain of Design Parameters
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parameter N ds (m) ws (m) wc (m) lc (m) g (m) 
min. value 1 10-3 10-3 10-3 10-3 10-5 
max. value 103 10-1 10-1 10-1 10-1 10-2 
encoding log log log log log log 

chromosome 1 1 1 1 1 1 
 



1.10 A Design Example

• Single Objective Optimization Study
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1.10 A Design Example

• UI-core design
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Current density (A/mm2) = 1.67 
Flux density (T) = 0.617
Inductance (mH) = 1 
Mass (kg) = 0.578



1.10 A Design Example

• Is the design process repeatable?
• Running 100 studies yields standard deviations 

(normalized to means)
– N: 11%
– ds: 4.4%
– ws: 17%
– wc: 6.4%
– lc: 14%
– g: 11%
–M: 1%
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1.10 A Design Example

• Multi-objective optimization
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1.10 A Design Example

• UI-core design
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Current density (A/mm2) = 1.30 
Flux density (T) = 0.617
Inductance (mH) = 1 
Mass (kg) = 0.75



1.10 A Design Example
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• Multi-objective optimization


