Lecture Set 5: Distributed Windings and Rotating MMF

S.D. Sudhoff Spring 2021

About this Lecture Set

- Reading
 - Power Magnetic Devices: A Multi-Objective Design Approach, 8.1-8.5, (Available through IEEE)
- Goal
 - Set the stage to study ac machinery including permanent magnet synchronous machines as well as induction machines

Lecture 42

Introduction to AC Machines

PM AC Machine

Induction Machine Stator

Operation of AC Machines

N-Pole: Flux leaves material S-Pole: Flux enters material

P-Pole Machines

For given ac frequency having more than 2 poles reduces machine speed by P/2

Position Measurement

Electrical Angles

Lecture 43

Distributed Windings

- Thus far, we have mostly considered lumped windings. We must now consider distributed winding. This is a more difficult concept.
- Two Representations
 - Discrete Winding Representation
 - Continuous Winding Representation

Discrete Winding Representation

- Let $N_{x,i}$ denote number of conductors of a x-phase winding in the i'th slot
 - '*i*' designates the slot number
 - 'x' denotes winding or phase and is typically 'as', 'bs', or
 'cs'
 - 'y' is 's' for stator or 'r' for rotor
 - A positive value indicates the conductor directed out of the page

Slot and Tooth Locations

Discrete Winding Representation

Developed Diagram

Continuous Winding Description

- Conductor density (conductors/rad): $n_x(\phi_{vm})$
 - 'x' denotes winding/phase 'as', 'bs', or 'cs'
 - 'y' is location ('s' for stator, 'r' for rotor)
 - positive value indicates conductors out of the page
- For example, the a-phase conductor density may be given by

$$n_{as}(\phi_{sm}) = N_{s1}\sin(P\phi_{sm}/2) - N_{s3}\sin(3P\phi_{sm}/2)$$

• Total conductors per phase

$$N_{xy} = \int_{0}^{2\pi} \mathbf{n}_{xy}(\phi) \mathbf{u}(\mathbf{n}_{xy}(\phi)) d\phi$$

Lecture 44

Properties of Distributed Windings

Symmetry Conditions

$$N_{x,i+2S_y/P} = N_{x,i}$$

$$N_{x,i+S_y/P} = -N_{x,i}$$

$$n_x(\phi_m + 4\pi / P) = n_x(\phi_m)$$

$$\mathbf{n}_x(\phi_m + 2\pi/P) = -\mathbf{n}_x(\phi_m)$$

Symmetry Conditions

Winding Arrangements

 $\mathbf{N}_{as}\big|_{1-18} = N \big[0\ 0\ 0\ 1\ 2\ 2\ 1\ 0\ 0\ 0\ 0\ -1\ -2\ -2\ -1\ 0\ 0 \big]$

Winding Arrangements

Lecture 45

The Discrete Winding Function

Introduction to Winding Functions

- The winding function is a measure of how many times a winding links flux at a given place
- The winding function will be used to
 - Find self-inductance of a distributed winding
 - Find mutual-inductance between distributed windings
 - Find the mmf associated with a distributed winding
 - It can be expressed in terms of both discrete and continuous winding descriptions

The Discrete Winding Function

- $W_{x,i}$ is the discrete winding function of phase 'x' of the stator or rotor
- It is the number of times the winding links flux through the *i*'th tooth
- It is the number of turns around tooth *i*

• Summarizing:

$$W_{x,1} = \frac{1}{2} \sum_{i=1}^{S_y/P} N_{x,i}$$

$$W_{x,i+1} = W_{x,i} - N_{x,i}$$

Example

• Suppose we have

$$\mathbf{N}_{x} = \begin{bmatrix} 10 & 20 & 10 & -10 & -20 & -10 & 10 & 20 & 10 & -10 & -20 & -10 \end{bmatrix}^{T}$$

Example

• Finally we obtain ...

 $\mathbf{W}_{x} = \begin{bmatrix} 20 & 10 & -10 & -20 & -10 & 10 & 20 & 10 & -10 & -20 & -10 & 10 \end{bmatrix}^{T}$

Lecture 46

The Continuous Winding Function

Notation

- $\phi = \phi_{rm}$ for rotor windings
- $\phi = \phi_{sm}$ for stator windings
- w_x(φ) = winding function
 Number of times a winding links flux at position φ

Derivation of The Cont. Winding Function

Derivation of The Cont. Winding Function
Derivation of The Cont. Winding Function

Derivation of The Cont. Winding Function

• Thus we have

$$W_{x}(\phi_{m}) = \frac{1}{2} \int_{0}^{2\pi/P} n_{x}(\phi_{m}) d\phi_{m} - \int_{0}^{\phi_{m}} n_{x}(\phi_{m}) d\phi_{m}$$

• Consider the following geometry

- We might have
 - $n_{as} = 100\sin(\phi_{sm})$
- Find the winding function

Lecture 47

Comparison of Winding Functions

$$\mathbf{N}_{as}\big|_{1-18} = N \begin{bmatrix} 0 & 0 & 0 & 1 & 2 & 2 & 1 & 0 & 0 & 0 & 0 & -1 & -2 & -2 & -1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{W}_{as}\big|_{1-18} = N \begin{bmatrix} 3 & 3 & 3 & 2 & 0 & -2 & -3 & -3 & -3 & -3 & -3 & -3 & -2 & 0 & 2 & 3 & 3 \end{bmatrix}$$

$$n_{as} = N(7.221\sin(2\phi_{sm}) - 4.4106\sin(6\phi_{sm}))$$
$$w_{as} = N\left(\frac{7.221}{2}\cos(2\phi_{sm}) - \frac{4.4106}{6}\cos(6\phi_{sm})\right)$$

Comparison of Winding Functions

Lecture 48

Distributed MMF

The Idea

- In a distributed machine, the MMF source is associated with a winding is a function of position as well as the current
- We will focus on the continuous winding distribution
- We can show

$$F_{S}(\phi_{m}) = \sum_{x \in X_{S}} W_{x}(\phi_{m})i_{x} \qquad F_{R}(\phi_{m}) = \sum_{x \in X_{R}} W_{x}(\phi_{m})i_{x}$$

$$\mathbf{F}_{g}(\boldsymbol{\phi}_{m}) = \mathbf{F}_{S}(\boldsymbol{\phi}_{m}) + \mathbf{F}_{R}(\boldsymbol{\phi}_{m})$$

Lumped vs Distributed MMF

Airgap MMF

• Before we start, define airgap MMF in a rotating machine:

$$\mathbf{F}_{g}(\boldsymbol{\phi}_{m}) = \int_{rotor}^{stator} \mathbf{H}(\boldsymbol{\phi}_{m}) \cdot d\mathbf{I}$$

• Since the integration is in radial direction

$$\mathbf{F}_g(\phi_m) = \int_{rotor}^{stator} \mathbf{H}_r(\phi_m) dl$$

• Now consider the following

Lecture 49

Reasons to Care About Airgap MMF

Air Gap Flux Density

• Thus we have

$$B_g(\phi_m) = \frac{\mu_0 F_g(\phi_m)}{g(\phi_m)}$$

Total Field

$$F(\phi) = \sum_{x \in X} F_x(\phi)$$

$$B = \frac{\mu_0 F(\phi)}{g(\phi)}$$

Field Associate With a Winding

$$B_{\chi} = \frac{\mu_0 F_{\chi}(\phi)}{g(\phi)}$$

• Suppose

$$-w_{as} = 100\cos(4\phi_{sm}); i_{as} = 5 \text{ A}$$

 $-w_{bs} = 50\sin(4\phi_{sm}); i_{bs} = 10 \text{ A}$
 $-g = 1 \text{ mm}$

- What is the peak B-field ?
- At what position is the peak B-field ?

Lecture 50

Rotating MMF

Rotating MMF

• Another concept from the MMF is that the fields rotate

• Suppose

$$n_{as} = N_s \sin(P\phi_{sm}/2)$$
$$n_{bs} = -N_s \cos(P\phi_{sm}/2)$$

$$w_{as} = \frac{2N_s}{P} \cos(P\phi_{sm}/2)$$
$$w_{bs} = \frac{2N_s}{P} \sin(P\phi_{sm}/2)$$

• And that

$$i_{as} = \sqrt{2}I_s \cos(\omega_e t + \phi_i)$$
$$i_{bs} = \sqrt{2}I_s \sin(\omega_e t + \phi_i)$$

• What is the MMF ?

• Result

$$\mathbf{F}_{s} = \frac{2\sqrt{2}N_{s}I_{s}}{P}\cos\left(P\phi_{sm}/2 - \omega_{e}t - \varphi_{i}\right)$$

Affect of Number of Poles

$$F_{s} = \frac{2\sqrt{2}N_{s}I_{s}}{P}\cos\left(P\phi_{sm}/2 - \omega_{e}t - \varphi_{i}\right)$$

Lecture 51

Unbalance

Unbalanced Two-Phase Systems

• Let's consider another case. Again starting with

$$\mathbf{F}_{s} = \frac{2N_{s}}{P} \left(\cos\left(P\phi_{sm} / 2\right) i_{as} + \sin\left(P\phi_{sm} / 2\right) i_{bs} \right)$$

• Suppose the b-phase current is zero; the a-phase current given by

$$i_{as} = \sqrt{2}I_s \cos(\omega_e t + \phi_i)$$

Unbalanced Two-Phase Systems
Unbalanced Two-Phase Systems

Unbalanced Two-Phase Systems

Lecture 52

Three Phase Systems

• In this case suppose

$$n_{as}(\phi_{sm}) = N_{s1} \sin(P\phi_{sm}/2) - N_{s3} \sin(3P\phi_{sm}/2)$$

$$n_{bs}(\phi_{sm}) = N_{s1} \sin(P\phi_{sm} / 2 - 2\pi / 3) - N_{s3} \sin(3P\phi_{sm} / 2)$$

$$n_{cs}(\phi_{sm}) = N_{s1}\sin(P\phi_{sm}/2 + 2\pi/3) - N_{s3}\sin(3P\phi_{sm}/2)$$

• Question: why would I do this ?

• Proceeding, we have

$$w_{as}(\phi_{sm}) = \frac{2N_{s1}}{P} \cos(P\phi_{sm}/2) - \frac{2N_{s3}}{3P} \cos(3P\phi_{sm}/2)$$

$$w_{bs}(\phi_{sm}) = \frac{2N_{s1}}{P} \cos(P\phi_{sm} / 2 - 2\pi / 3) - \frac{2N_{s3}}{3P} \cos(3P\phi_{sm} / 2)$$

$$w_{cs}(\phi_{sm}) = \frac{2N_{s1}}{P} \cos(P\phi_{sm} / 2 + 2\pi / 3) - \frac{2N_{s3}}{3P} \cos(3P\phi_{sm} / 2)$$

• Now

$$\mathbf{F}_{S}(\boldsymbol{\phi}_{sm}) = \mathbf{W}_{as}(\boldsymbol{\phi}_{sm})\boldsymbol{i}_{as} + \mathbf{W}_{bs}(\boldsymbol{\phi}_{sm})\boldsymbol{i}_{bs} + \mathbf{W}_{cs}(\boldsymbol{\phi}_{sm})\boldsymbol{i}_{cs}$$

• Now let us assume a three-phase balanced set of currents

$$i_{as} = \sqrt{2}I_s \cos(\omega_e t + \phi_i)$$
$$i_{bs} = \sqrt{2}I_s \cos(\omega_e t + \phi_i - 2\pi/3)$$
$$i_{cs} = \sqrt{2}I_s \cos(\omega_e t + \phi_i + 2\pi/3)$$

• Combining yields

$$F_{S} = \frac{3\sqrt{2}N_{s1}I_{s}}{P}\cos\left(P\phi_{sm}/2 - \omega_{e}t - \phi_{i}\right)$$

Lecture 53

Flux Linkage and Inductance

• Flux linkage:

$$\lambda_x = \lambda_{xl} + \lambda_{xm}$$

• Inductance

$$L_{xy} = \frac{\lambda_x \big|_{due \ to \ i_y}}{i_y}$$

• Partitioning Inductance

$$L_{xy} = L_{xyl} + L_{xym}$$

• Inductance Terms

$$L_{xyl} = \frac{\lambda_{xl}\big|_{due \ to \ i_y}}{i_y} \qquad \qquad L_{xym} = \frac{\lambda_{xm}\big|_{due \ to \ i_y}}{i_y}$$

• We can show

$$\frac{\lambda_{xym}}{i_y} = L_{xym} = \mu_0 r l \int_0^{2\pi} \frac{\mathbf{w}_x(\phi_m) \mathbf{w}_y(\phi_m)}{\mathbf{g}(\phi_m)} d\phi_m$$

Lecture 54

Example Inductance Calculations

Example 1

• Suppose

$$n_{as} = N_s \sin(P\phi_{sm}/2) \qquad \qquad w_{as} = \frac{2N_s}{P} \cos(P\phi_{sm}/2) n_{bs} = N_s \sin(P\phi_{sm}/2 - 2\pi/3) \qquad \qquad w_{bs} = \frac{2N_s}{P} \cos(P\phi_{sm}/2 - 2\pi/3)$$

3 7

and that the air gap is uniform. Find the magnetizing inductance between the two phases

Example 1

• We obtain

$$L_{asbs} = -\frac{2\pi\mu_0 r L N_s^2}{P^2 g}$$

Example 2 (IM)

$$n_{as}(\phi_{sm}) = N_{s1}\sin(P\phi_{sm}/2)$$
$$n_{ar}(\phi_{rm}) = N_{r1}\sin(P\phi_{rm}/2)$$

Example 2 (Cont.)

Example 2 (Cont.)

Example 2 (Cont.)