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About this Lecture Set

• Reading
– Power Magnetic Devices: A Multi-Objective Design 

Approach, 8.1-8.5, (Available through IEEE) 
• Goal
– Set the stage to study ac machinery including permanent 

magnet synchronous machines as well as induction 
machines
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Introduction to AC Machines
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PM AC Machine
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Induction Machine Stator
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Operation of AC Machines
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N-Pole: Flux leaves material
S-Pole: Flux enters material



P-Pole Machines
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For given ac frequency  having 
more than 2 poles  reduces 
machine speed by P/2
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Position Measurement



Electrical Angles
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Distributed Windings

10



11

Distributed Windings

• Thus far, we have mostly considered lumped 
windings.  We must now consider distributed 
winding.  This is a more difficult concept.

• Two Representations
– Discrete Winding Representation
– Continuous Winding Representation
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Discrete Winding Representation

• Let Nx,i denote number of conductors of a x-phase 
winding in the i’th slot
– ‘i’ designates the slot number
– ‘x’ denotes winding or phase and is typically ‘as’, ‘bs’, or 

‘cs’
– ‘y’ is ‘s’ for stator or ‘r’ for rotor
– A positive value indicates the conductor directed out of 

the page
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Slot and Tooth Locations

, ,1(2 2) /ys i y ysi S    

, ,1(2 3) /yt i y ysi S    
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Discrete Winding Representation 
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Developed Diagram
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Continuous Winding Description

• Conductor density (conductors/rad): nx(ym)
– ‘x’ denotes winding/phase ‘as’, ‘bs’, or ‘cs’
– ‘y’ is location (‘s’ for stator, ‘r’ for rotor)
– positive value indicates conductors out of the page

• For example, the a-phase conductor density may 
be given by

• Total conductors per phase
1 3n ( ) sin( / 2) sin(3 / 2)as sm s sm s smN P N P   

2

0

n ( ) u(n ( ))xy xy xyN d


   
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Properties of Distributed Windings
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Symmetry Conditions
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, 2 / ,yx i S P x iN N 

, / ,yx i S P x iN N  

n ( 4 / ) n ( )x m x mP   

n ( 2 / ) n ( )x m x mP    



Symmetry Conditions
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Winding Arrangements
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 1 18 0 0 01 2 21 0 0 0 0 0 1 2 2 1 0 0as N


    N



Winding Arrangements

22



Lecture 45

The Discrete Winding Function
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Introduction to Winding Functions

• The winding function is a measure of how many times a 
winding links flux at a given place

• The winding function will be used to
– Find self-inductance of a distributed winding
– Find mutual-inductance between distributed windings
– Find the mmf associated with a distributed winding
– It can be expressed in terms of both discrete and continuous 

winding descriptions
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The Discrete Winding Function

• Wx,i is the discrete winding function of phase ‘x’ of 
the stator or rotor 

• It is the number of times the winding links flux 
through the i’th tooth

• It is the number of turns around tooth i
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Derivation of Discrete Winding Function

 turns turns

ixN , 1, ixN1, ixN
Tooth 

i
Tooth
i+1
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Derivation of Discrete Winding Function

 turns turns

ixN , 1, ixN1, ixN
Tooth 

i
Tooth
i+1
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Derivation of Discrete Winding Function

 turns turns

ixN , 1, ixN1, ixN
Tooth 

i
Tooth
i+1
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Derivation of Discrete Winding Function
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Derivation of Discrete Winding Function

• Summarizing:
/

,1 ,
1

1
2

yS P

x x i
i

W N


 

, 1 , ,x i x i x iW W N  
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Example

• Suppose we have

 Tx 102010102010102010102010 N
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Example

• Finally we obtain …

 Tx 101020101020101020101020 W
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The Continuous Winding Function
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Notation

•  = rm for rotor windings
•  = sm for stator windings
• wx() = winding function
– Number of times a winding links flux at position 
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Derivation of The Cont. Winding Function
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Derivation of The Cont. Winding Function



Derivation of The Cont. Winding Function
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Derivation of The Cont. Winding Function

• Thus we have

2 /

0 0

1w ( ) n ( ) n ( )
2

mP

x m x m m x m md d


      
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Example

• Consider the following geometry

• We might have

• Find the winding function

)sin(100 smasn 



40

Example
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Example
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Comparison of Winding Functions

42



Example
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 1 18 0 0 01 2 21 0 0 0 0 0 1 2 2 1 0 0as N


    N

 7.221sin( ) 4.4106sin(6 )as sm smn N    

 1 18 3 3 3 3 2 0 2 3 3 3 3 3 3 2 0 2 3 3as N


        W

7.221 4.4106cos( ) cos(6 )
2 6as sm smw N      

 



Comparison of Winding Functions
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Distributed MMF
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The Idea

• In a distributed machine, the MMF source is 
associated with a winding is a function of 
position as well as the current

• We will focus on the continuous winding 
distribution

• We can show

( ) w ( ) 
S

S m x m x
x X

i


 F ( ) w ( ) 
R

R m x m x
x X

i


 F

( ) ( ) ( )  g m S m R m F F F



Lumped vs Distributed MMF
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Airgap MMF

• Before we start, define airgap MMF in a rotating 
machine:

• Since the integration is in radial direction

( ) ( ) 
stator

g m m
rotor

d  H lF

( ) H ( )
stator

g m r m
rotor

dl  F
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Air Gap MMF

• Now consider the following
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Air Gap MMF



51

Air Gap MMF
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Air Gap MMF
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Air Gap MMF
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Air Gap MMF
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Air Gap MMF
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Reasons to Care About Airgap MMF
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Air Gap Flux Density

• Thus we have
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Total Field

( ) ( )x
x X

F F 


 

 


g
FB )(0
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Field Associate With a Winding

 


g
FB x

x
)(0
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Example

• Suppose 
– was=100cos(4sm); ias=5 A
– wbs=50sin(4sm); ibs= 10 A
– g = 1 mm

• What is the peak B-field ?
• At what position is the peak B-field ?
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Example
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Example
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Rotating MMF
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Rotating MMF

• Another concept from the MMF is that the fields 
rotate
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Rotating MMF in Two-Phase Systems

• Suppose

• And that

• What is the MMF ?

 2/sin smsas PNn 

 2/cos smsbs PNn 

 2/cos2
sm

s
as P

P
Nw 

 2/sin2
sm

s
bs P

P
Nw 

)cos(2 iesas tIi  

)sin(2 iesbs tIi  
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Rotating MMF in Two-Phase Systems
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Rotating MMF in Two-Phase Systems
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Rotating MMF in Two-Phase Systems

• Result

 2 2 cos / 2s s
s sm e i

N I P t
P

    F
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Affect of Number of Poles

 2 2 cos / 2s s
s sm e i

N I P t
P

    F
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Unbalance
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Unbalanced Two-Phase Systems

• Let’s consider another case.  Again starting with

• Suppose the b-phase current is zero; the a-phase 
current given by

    2 cos / 2 sin / 2s
s sm as sm bs

N P i P i
P

  F

)cos(2 iesas tIi  
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Unbalanced Two-Phase Systems
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Unbalanced Two-Phase Systems
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Unbalanced Two-Phase Systems
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Three Phase Systems
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Rotating MMF in Three-Phase Systems

• In this case suppose

• Question: why would I do this ?

1 3n ( ) sin( / 2) sin(3 / 2)as sm s sm s smN P N P   

1 3n ( ) sin( / 2 2 / 3) sin(3 / 2)bs sm s sm s smN P N P     

1 3n ( ) sin( / 2 2 / 3) sin(3 / 2)cs sm s sm s smN P N P     
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Rotating MMF in Three-Phase Systems

• Proceeding, we have 

• Now

1 32 2w ( ) cos( / 2) cos(3 / 2)
3

s s
as sm sm sm

N NP P
P P

   

1 32 2w ( ) cos( / 2 2 / 3) cos(3 / 2)
3

s s
bs sm sm sm

N NP P
P P

     

1 32 2w ( ) cos( / 2 2 / 3) cos(3 / 2)
3

s s
cs sm sm sm

N NP P
P P

     

( ) w ( ) w ( ) w ( )   S sm as sm as bs sm bs cs sm csi i i  F
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Rotating MMF in Three-Phase Systems

• Now let us assume a three-phase balanced set of 
currents

)cos(2 iesas tIi  

)3/2cos(2   iesbs tIi

)3/2cos(2   iescs tIi
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Rotating MMF in Three-Phase Systems

• Combining  yields

 13 2 cos / 2  s s
S sm e i

N I P t
P

  F
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Flux Linkage and Inductance
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Flux Linkage and Magnetizing Inductance

• Flux linkage:

• Inductance

x xl xm   

y
x due to i

xy
y

L
i



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Flux Linkage and Magnetizing Inductance

• Partitioning Inductance

• Inductance Terms

y
xm due to i

xym
y

L
i




xy xyl xymL L L 

y
xl due to i

xyl
y

L
i






Flux Linkage and Magnetizing Inductance

• We can show
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2

0
0

w ( ) w ( )
g( )

  
 


xym x m y m

xym m
y m

L rl d
i

  
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Flux Linkage and Magnetizing Inductance



d

r

Stator
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Flux Linkage and Magnetizing Inductance



d

r

Stator
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Flux Linkage and Magnetizing Inductance



d

r

Stator
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Example Inductance Calculations
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Example 1

• Suppose

and that the air gap is uniform. Find the magnetizing 
inductance between the two phases

)2/sin( smsas PNn 

  22/sin( smsbs PNn

)2/cos(2
sm

s
as P

P
Nw 

)3/22/cos(2   sm
s

bs P
P
Nw
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Example 1

• We obtain

gP
rLN

L s
asbs 2

2
02





Example 2 (IM)
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1n ( ) sin( / 2)ar rm r rmN P 
1n ( ) sin( / 2)as sm s smN P 



Example 2 (Cont.)
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Example 2 (Cont.)
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Example 2 (Cont.)
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