Lecture Set 4: DC Machines and Drives

S.D. Sudhoff Spring 2021

About this Lecture Set

- Reading
 - *Electromechanical Motion Devices, 2nd Edition,* Sections 3.1-3.9
- Goal
 - Become familiar with DC machines and drives

Lecture 28

Physical Configuration of the DC Machine

General Comments on DC Machines

• Attractive Features

• Drawbacks

DC Machine Cutaway View

DC Machine Cutaway View

Lecture 29

An Elementary DC Machine

Configuration

Flux Linkage Equations

Flux Linkage Equations

Armature Voltage

Operation

12

Operation

A More Practical DC Machine

Lecture 30

An Ideal DC Machine

Configuration

Flux Linkage Equations

Flux Linkage Equations

Armature Voltage Equation

Armature Voltage Equation

Field Voltage Equation

Field Voltage Equation

Torque

Torque

Model Summary

Mechanical Dynamics

Lecture 31

Separately Excited DC Machine

Separately Excited Machine

A Quick Example

- Consider a machine with following parameters
 - $-r_a=200 \text{ m}\Omega$
 - $-L_{AF} = 200 \text{ mH}$
 - $-R_f=10 \Omega$
- Suppose the armature voltage is 100 V, the field voltage is 10 V, and the speed is 4600 rpm. Compute the torque, output power, input power and efficiency

A Quick Example

A Quick Example

Derivation of Torque Speed Curve

Derivation of Torque Speed Curve

Capability Curve

- Let's consider a machine with the following parameters
 - $-r_a = 200 \text{ m}\Omega$
 - $L_{AF} = 200 \text{ mH}$
 - $-r_{f}=10 \ \Omega$
- And subject to the following limits
 - Armature current: 20 A
 - Armature voltage: 150 V
 - Field Current: 1 A

Lecture 32

Separately Excited DC Machine Capability Curve

Derivation
Derivation

Derivation

Torque

Capability Curve: Torque

Power

Capability Curve: Power

Lecture 33

Shunt Connected DC Machine

Torque Versus Speed

Torque Versus Speed

Lecture 34

Series Connected DC Machine

Series Connected Machine

Torque Versus Speed

Torque Versus Speed

Lecture 35

Permanent Magnet DC Machine

PM DC Machine

Torque Speed Curve

A Simple Example

• Consider a machine with an armature resistance of 0.4 Ohms and a back emf constant of 0.2 Vs. Suppose it is desired to operate at a load torque requiring 10 Nm at a speed of 500 rad/s. What is the required armature voltage ?

- Let's look at the performance of a machine with the following properties: armature resistance $20 \text{ m}\Omega$, torque constant 30 mVs.
- We will look at a speed range of 0 to 750 rad/s
- We will apply 10 V and 20 V to the armature

Notes

Torque

Output Power

Input Power

Efficiency

Lecture 36

Permanent Magnet DC Machine Capability Curve and Parameter ID

• Consider a machine with a armature resistance of 0.2 Ω , and a back emf constant of 0.2 Vs. If the armature current is limited to 20 A, and the armature voltage to 150 V, what is the operating range

Capability Curve

Capability Curve

Capability Curve (Separately Excited)

Parameter Identification

• One approach

• Another approach

Parameter Identification

Parameter Identification Example

- At operating point 1, the armature voltage is 100 V, the armature current is 20 A, and the speed is 400 rad/s
- At operating point 2, the armature voltage is 90 V, the armature current is 10 A, and the speed is 800 rad/s
- Find the machine parameters

Parameter Identification Example

Lecture 37

Permanent Magnet DC Machine Drives

• Motivation: How do we control the armature voltage or current in a dc machine ?

Single Quadrant Chopper

Operating Waveforms (Continuous Mode)

• Definition of Steady State Average

$$\overline{x} = \frac{1}{T_{sw}} \int_{t_{ss}}^{t_{ss} + T_{sw}} x(t) dt$$

• Definition of Fast Average

$$\hat{x}(t) = \frac{1}{T_{sw}} \int_{t-T_{sw}}^{t} x(\tau) dt$$

• Armature Voltage Equation

• Torque Equation

• Mechanical Dynamics

• Derivation of Average Armature Voltage

• Thus we have

$$\hat{v}_a = (v_{dc} - v_{fsw})d - v_{fd}(1 - d)$$

• Derivation of armature current

• Thus we have

$$\hat{i}_s = \hat{i}_a d$$

Average Value Model (VSO, Cont Mode)

- Comments on Power
 - Power into converter

 $p_{cnv} = v_{dc} i_s$

– Power into motor

 $p_{mtr} = v_a i_a$

- Power into mechanical system

 $p_{mech} = T_e \omega_r$

A Quick Example

- Consider a model with the following parameters - $k_v = 0.2 \text{ Vs}$
 - $-r_a = 100 \text{ m}\Omega$
- The converter has the following parameters

$$-v_{fd} = 2.0$$

$$-v_{fsw} = 2.4$$

$$- v_{dc} = 100 \text{ V}$$

• Suppose the duty cycle is 0.7 and the speed is 300 rad/s. Find the average armature current, the average switch current, the converter efficiency, the motor efficiency, and the system efficiency.

A Quick Example (Continued)

A Quick Example (Continued)

Lecture 38

Permanent Magnet DC Machine Drive Current Ripple

• It can be shown that

$$i_{mx} - i_{mn} = \frac{T_{sw}}{L_{aa}} \left(v_{dc} - v_{fsw} + v_{fd} \right) d(1 - d)$$

- Consider the previous example. Suppose - $L_{44} = 0.2 \text{ mH}$
- Find (1) the switching frequency so the peak-to-peak ripple is less than 5% of the average current (2) the minimum switching frequency for continuous operation

Lecture 39

Permanent Magnet DC Machine Drive VSO Discontinuous Mode

• Peak current

$$i_{mx} = \frac{2d\left(v_{dc} - v_{fsw} - k_{v}\omega_{r}\right)}{2L_{aa}f_{sw} + dr_{a}}$$

• Time required for current to go to zero

$$t_d = \frac{L_{aa}i_{mx}}{v_{fd} + r_a \frac{i_{mx}}{2} + k_v \omega_r}$$

• Average Current

$$\bar{i}_{a} = \frac{1}{T_{sw}} \left(\frac{1}{2} dT_{sw} i_{mx} + \frac{1}{2} t_{d} i_{mx} \right) = \frac{1}{2} i_{mx} \left(d + \frac{t_{d}}{T_{sw}} \right)$$

Example

- Consider a machine with the following parameters
 - $-V_{dc} = 20 \text{ V}$ $-r_{a} = 1 \Omega$ $-k_{v} = 0.05 \text{ Vs}$ $-L_{aa} = 3 \text{ mH}$ $-v_{fsw} = 1 \text{ V}$ $-v_{fd} = 0.8 \text{ V}$ $-f_{sw} = 1 \text{ kHz}$
- Plot the torque speed curve for a duty cycles of 0.2, 0.4, 0.6, and 0.8

Solution Algorithm

Results

105

Lecture 40

Permanent Magnet DC Machine Drive Current Source Operation

Hysteresis Current Control

Current Source Operation
Current Source Operation

Current Source Operation

Lecture 41

Permanent Magnet DC Machine Drive Two and Four Quadrant Converters

Two Quadrant Converter

Two Quadrant Converter

Two Quadrant Converter

Four Quadrant Converter