Loop Parallelization Techniques

• Data-Dependence Analysis
• Dependence-Removing Techniques
• Parallelizing Transformations
• Performance-enhancing Techniques
Some motivating examples

Do $i = 1, n$
 $a(i) = b(i)$ \hspace{1cm} S_1
 $c(i) = a(i-1)$ \hspace{1cm} S_2
End do

Is it legal to
 • Run the i loop in parallel?
 • Put S_2 first in the loop?

Do $l = 1, n$
 $a(i) = b(i)$
End do

Is it legal to
 • Fuse the two i loops?

In general, it is desirable to determine if two references access the same memory location, and the order they execute, so that we can determine if the references might execute in a different order after some transformation.
Dependence, an example

Do i = 1, n
 a(i) = b(i) \text{ } S_1
 c(i) = a(i-1) \text{ } S_2
End do

Indicates dependences, i.e. the statement at the head of the arc is somehow dependent on the statement at the tail.

\begin{tabular}{ccccccc}
 i = 1 & i = 2 & i = 3 & i = 4 & i = 5 & i = 6 \\
 b(1) & b(2) & b(3) & b(4) & b(5) & b(6) \\
 a(1) & a(2) & a(3) & a(4) & a(5) & a(6) \\
 a(0) & a(1) & a(2) & a(3) & a(4) & a(5) \\
 c(1) & c(2) & c(3) & c(4) & c(5) & c(6) \\
\end{tabular}
Can this loop be run in parallel?

Assume 1 iteration per processor, then if for some reason some iterations execute out of lock-step, bad things can happen. In this case, read of $a(2)$ in $i=3$ will get an invalid value!
Can we change the order of the statements if the loop is serial?

Do i = 1, n
a(i) = b(i) \[S_1\]
c(i) = a(i-1) \[S_2\]
End do

Do i = 1, n
c(i) = a(i-1) \[S_2\]
a(i) = b(i) \[S_1\]
End do

No problem with a serial execution.

Access order before statement reordering

\[
\begin{align*}
\text{b}(1) & \quad \text{a}(1) & \quad \text{a}(0) & \quad \text{c}(1) & \quad \text{b}(2) & \quad \text{a}(2) & \quad \text{a}(1) & \quad \text{c}(2) & \quad \text{b}(3) & \quad \text{a}(3) & \quad \text{a}(2) & \quad \text{c}(3) & \quad \text{b}(4) & \quad \text{a}(4) & \quad \text{a}(3) & \quad \text{c}(4)
\end{align*}
\]

\[
\begin{align*}
i=1 & \quad & i=2 & \quad & i=3 & \quad & i=4
\end{align*}
\]

Access order after statement reordering

\[
\begin{align*}
\text{a}(0) & \quad \text{c}(1) & \quad \text{b}(1) & \quad \text{a}(1) & \quad \text{a}(1) & \quad \text{c}(2) & \quad \text{b}(2) & \quad \text{a}(2) & \quad \text{a}(2) & \quad \text{c}(3) & \quad \text{b}(3) & \quad \text{a}(3) & \quad \text{a}(3) & \quad \text{c}(4) & \quad \text{b}(4) & \quad \text{a}(4) & \quad \text{a}(4)
\end{align*}
\]

\[
\begin{align*}
i=1 & \quad & i=2 & \quad & i=3 & \quad & i=4
\end{align*}
\]
Types of dependence

\[\delta^f \]
\[a(2) = \ldots \]
\[\ldots = a(2) \]
Flow or true dependence – data for a read comes from a previous write (write/read hazard in hardware terms).

\[\delta^a \]
\[\ldots = a(2) \]
\[a(2) = \ldots \]
Anti-dependence – write to a location cannot occur before a previous read is finished.

\[\delta^o \]
\[a(2) = \ldots \]
\[a(2) = \ldots \]
Output dependence – write a location must wait for a previous write to finish.

Dependences always go from earlier in a program execution to later in the execution.

Anti and output dependences can be eliminated by using more storage.
Eliminating anti-dependence

... = a(2) Anti-dependence – write to a location cannot occur before a previous read is finished
a(2) = ...

Let the program in be:

\[
\begin{align*}
a(2) &= \\
... &= a(2) \\
a(2) &= \\
\end{align*}
\]

= ... a(2)

The new program is:

\[
\begin{align*}
a(2) &= \\
... &= a(2) \\
a(2) &= \\
\end{align*}
\]

aa(2) = ...

= ... aa(2)

No more anti-dependence!
Getting rid of output dependences

Output dependence – write a location must wait for a previous write to finish

Let the program be:

\[a(2) = \ldots \]
\[\ldots = a(2) \]
\[a(2) = \ldots \]
\[\ldots = a(2) \]

Again, by creating new storage we can eliminate the output dependence.

The new program is:

\[a(2) = \ldots \]
\[\ldots = a(2) \]
\[a(2) = \ldots \]
\[\ldots = a(2) \]
\[aa(2) = \ldots \]
\[\ldots = aa(2) \]
Eliminating dependences

• In theory, can always get rid of anti- and output dependences
• Only flow dependences are inherent, i.e. must exist, thus the name “true” dependence.
• In practice, it can be complicated to figure out how to create the new storage
• Storage is not free – cost of creating new variables may be greater than the benefit of eliminating the dependence.
Can we fuse the loop?

Do i = 1, n
 a(i) = b(i) \quad S_1
End do

Do i
 c(i) = a(i-1) \quad S_2
End do

In original execution of the unfused loops:
1. A(i-1) gets value assigned in a(i)
2. Can’t overwrite value assigned to a(i) or c(i)
3. B(i) value comes from outside the loop

1. Is ok after fusing, because get a(i-1) from the value assigned in the previous iteration
2. No “output” dependence on a(i) or c(i), not overwritten
3. No input flow, or true dependence on a b(i), so value comes from outside of the loop nest
Data Dependence Tests: Other Motivating Examples

Statement Reordering

Can these two statements be swapped?

```
DO i=1,100,2
  B(2*i) = ...
  ... = B(3*i)
ENDDO
```

Loop Parallelization

Can the iterations of this loop be run concurrently?

```
DO i=1,100,2
  B(2*i) = ...
  ... = B(2*i) + B(3*i)
ENDDO
```

An array data dependence exists between two data references iff:
- both references access the same storage location
- at least one of them is a write access
Dependence sources and sinks

• The *sink* of a dependence is the statement at the head of the dependence arrow.

• The *source* is the statement at the tail of the dependence arrow.

```plaintext
for (i=1; i < nl i++) {
    a[i] = ...
    ... = a[i-1]
}

a[1] =
    = a[0]
a[2] =
    = a[1]
a[3] =
    = a[2]
a[4] =
    = a[3]
```
Data Dependence Tests: Concepts

Terms for data dependences between statements of loop iterations.

- **Distance (vector):** indicates how many iterations apart are the source and sink of dependence.

- **Direction (vector):** is basically the sign of the distance. There are different notations: (<,=,>) or (+1,0,-1) meaning dependence (from earlier to later, within the same, from later to earlier) iteration.

- **Loop-carried** (or cross-iteration) dependence and **non-loop-carried** (or loop-independent) dependence: indicates whether or not a dependence exists within one iteration or across iterations.
 - For detecting parallel loops, only cross-iteration dependences matter.
 - *Equal* dependences are relevant for optimizations such as statement reordering and loop distribution.

- **Iteration space graphs:** the un-abstracted form of a dependence graph with one node per statement instance.
Data Dependence Tests: Iteration space graphs

- **Iteration space graphs**: the un-abstracted form of a dependence graph with one node per statement instance.

```plaintext
do i_1 = 1, n
do i_2 = 1, n
    a(i_1, i_2) = a(i_1-2, i_2+3)
end do
end do
```

This is an iteration space graph (or diagram)
Data Dependence Tests: Distance Vectors

Distance (vector): indicates how many iterations apart are the source and sink of dependence.

\[
\begin{align*}
do i_1 = 1, n \\
da(i_1,i_2) &= a(i_1-2,i_2+3) \\
d&\text{end do} \\
de&\text{nd do}
\end{align*}
\]

\[l=(1,4) \Rightarrow l' = (3,1)\]
\[l' - l = (2,-3)\]
Data Dependence Tests: Direction Vectors

Direction (vector): is basically the sign of the distance. There are different notations: (<,=,>) or (-1,0,+1) meaning dependence (from earlier to later, within the same, from later to earlier) iteration.

\[
\begin{align*}
do & \ i_1 = 1, \ n \\
\quad & \ do \ i_2 = 1, \ n \\
\quad & \ a(i_1,i_2) = a(i_1-2,i_2+3) \\
\end{align*}
\]

\[
\begin{align*}
I=(1,4) & \Rightarrow I' = (3,1) \\
I' - I & = d = (2,-3) \\
\text{Direction} & = (<,>) \text{ (or} \\
\text{sign}(2) \text{,sign}(-3) & = (+1,-1) \text{ in some papers}
\end{align*}
\]
Data Dependence Tests: Loop Carried

- **Loop-carried** (or cross-iteration) dependence and **non-loop-carried** (or loop-independent) dependence: indicates whether or not a dependence exists within one iteration or across iterations.

```
do i_1 = 1, n
  do i_2 = 1, n
    a(i_1, i_2) = a(i_1, i_2-1)
  end do
end do
```

Dependence on the i_2 loop is loop carried.

Dependence on the i_1 loop is not.
A quick aside

A loop

\[
\text{do } i = 4, n, 3 \\
\text{a}(i) \\
\text{end do}
\]

Can be always be normalized to the loop \[\text{do } i = 0, (n-1)/3-1, 1 \\
a(3i+4) \\
\text{end do} \]

This makes discussing the data-dependence problem easier since we only worry about loops from 1, n, 1

More precisely, do \(i = \text{lower}, \text{upper}, \text{stride} \) \{ a(i) \} becomes

\[\text{do } i' = 0, (\text{upper} - \text{lower} + \text{inre})/\text{stride} - 1, 1 \{ a(i'\times\text{stride} + \text{lower}) \} \]
Data Dependence Tests: Formulation of the Data-dependence problem

```cpp
DO i=1,n
  a(4*i) = . . .
  . . . = a(2*i+1)
ENDDO
```

the question to answer: can \(4i\) ever be equal to \(2i' + 1\) where \(i, i' \in [1,n]\)? If so, what is the relation of \(i\) and \(i'\) when they are equal?

In general, given:
- two subscript functions \(f(i)\) and \(g(i')\) and
- loop bounds lower, upper.

Does \(f(i) = g(i')\) have an integer solution such that \(lower \leq i, i' \leq upper\)?
Diophantine equations

• An equation whose coefficients and solutions are all integers is a Diophantine equation.

• Determining if a Diophantine equation has a solution requires a slight detour into elementary number theory.

• Let \(f(i) = a*i + c \) and \(g(i') = b*i' + c' \), then

 \[f(i) = g(i') \implies a*i - b*i' = c' - c \]

 • fits general form of linear or \textit{affine} Diophantine equation of \(a_1*i_1 + a_2*i_2 = c \).
Does $f(i) = g(i)$ have a solution?

- The Diophantine equation
 \[a_1i_1 + a_2i_2 = c \]
 has a solution iff \(\text{gcd}(a_1,a_2) \) evenly divides \(c \)

Examples:
- \(15i + 6j - 9k = 12 \) has a solution \(\text{gcd}=3 \)
- \(2i + 7j = 3 \) has a solution \(\text{gcd}=1 \)
- \(9i + 3j + 6k = 5 \) has no solution \(\text{gcd}=3 \)

Euclid Algorithm: find \(\text{gcd}(a,b) \)
\[
\begin{align*}
\text{Repeat} \\
a &\leftarrow a \mod b \\
\text{swap } a,b \\
\text{Until } b=0 \\
\end{align*}
\]
\(\rightarrow \) The resulting \(a \) is the \(\text{gcd} \)

for more than two numbers:
\(\text{gcd}(a,b,c) = (\text{gcd}(a,\text{gcd}(b,c))) \)
Why \(\gcd(a_1, a_2) \) evenly divides \(c \) implies equation has a solution

Let \(g = \gcd(a_1, a_2) \), can rewrite the equation as:

\[
g*a'_1*i_1 + g*a'_2*i_2 = c \implies g*(a'_1*i_1 + a'_2*i_2) = c
\]

Because \(a'_1 \) and \(a'_2 \) are relatively prime, all integers can be expressed as a linear combination of \(a'_1 \) and \(a'_2 \).

\(a'_1*i_1 + a'_2*i_2 \) is just such a linear combination and therefore \(a'_1*i_1 - a'_2*i_2 \) generates all integers \(i \in \mathbb{I} \), (assuming \(i_1, i_2 \) can range over the integers.)

If remainder\((c/g) = 0 \), \(c \) is a solution since \(c = g*c' \), and \(g*(a'_1*i_1 - a'_2*i_2) \) generates all multiples of \(g \).

If remainder\((c/g) \neq 0 \), \(c \) cannot be a solution, since all values generated by \(g*(a'_1*i_1 - a'_2*i_2) \) are (trivially) divisible by \(g \), and cannot equal any \(c \) that is not divisible by \(g \).
More information on gcd’s and dependence analysis

- General books on number theory
- Books by Utpal Banerjee (Kluwer Academic Publishers), (Illinois, now Intel) who developed the GCD test in late 70’s, Mike Wolfe, (Illinois, now Portland Group) “High Performance Compilers for Parallel Computing
- Randy Allen’s thesis, Rice University
- Work by Eigenman & Blume Purdue (range test)
- Work by Pugh (Omega test) Maryland
- Work by Hoeflinger, etc. Illinois (LMAD)
Other Data Dependence Tests

• The GCD test is simple but not very useful
 – Most subscript coefficients are 1, gcd(1,i) = 1

• Other tests
 – Banerjee-wolfe test: accurate state-of-the-art test, takes direction and loop bounds into account
 – Omega test: “precise” test, most accurate for linear subscripts (See Bill Pugh publications for details). Worst case complexity is bad.
 – Range test: handles non-linear and symbolic subscripts (Blume and Eigenmann)
 – many variants of these tests

• Compilers tend to perform simple to complex tests in an attempt to disprove dependence
What do dependence tests do?

• Some tests, and Banerjee’s in some situations (affine subscripts, rectangular loops) are precise
 – Definitively proves existence or lack of a dependence

• Most of the time tests are conservative
 – Always indicate a dependence if one may exist
 – May indicate a dependence if it does not exist

• In the case of “may” dependence, run-time test or speculation can prove or disprove the existence of a dependence

• Short answer: tests disprove dependences for some dependences
Banerjee’s Inequalities

If \(a^i_1 - b^i_1 = c \) has a solution, does it have a solution within the loop bounds, and for a given direction vector?

```
do i = 1, 100
  x(i) =
  = x(i-1)
end do
```

Note: there is a (<) dependence.

Let’s test for (=) and (<) dependence.

By the mean value theorem, \(c \) can be a solution to the equation \(f(i) = c, i \in [lb,ub] \) iff

- \(f(lb) \leq c \)
- \(f(ub) \geq c \)

(assumes \(f(i) \) is monotonically increasing over the range \([lb,ub]\)). **Linearity of \(f \) insures monotonicity, switch \(ub, lb \) if not increasing.**

The idea behind **Banerjee’s Inequalities** is to find the maximum and minimum values the dependence equation can take on for a given direction vector, and see if these bound \(c \). **This is done in the real domain since integer solution requires integer programming (in NP)**
Example of where the direction vector makes a difference

\[
\text{do } i = 1, 100 \\
x(i) = \\
= x(i-1) \\
\text{end do}
\]

Note: there is a \(<\) dependence.

Let's test for (=) and (\(<\)) dependence.

Dependence equation is \(i-i' = -1\)

If \(i = i'\), then \(i-i' = 0\), \(\forall \) \(i, i'\)

If \(i < i'\), then \(i-i' \neq 0\), and when \(i' = i+1\), the equation has a solution.
Banerjee test

If \(a^*i_1 - b^*i'_1 = c \) has a solution, does it have a solution within the loop bounds for a given direction vector (\(<\)) or (\(=\)) in this case?

For our problem, does \(i_1 - i'_1 = -1 \) have a solution

- For \(i_1 = i'_1 \), then it does not (no (\(=\)) dependence).
- For \(i_1 < i'_1 \), then it does ((\(<\)) dependence).
When can a loop be made parallel?

- When it has no loop carried dependences
- Distribution can be used to find more parallel loops
- Dependence-like analysis can be used to find data that needs to be sent as messages
No loop carried dependences

for (i=0; i < n; i++) {
 a(i) = . . .
 = a(i) + . . .
}

Each iteration is independent and the loop can be executed in parallel
The usefulness of distribution

```plaintext
for (i=0; i < n; i++) {
    a(i) = ... 
    = a(i-1) ...
}
```

for (i=0; i < n; i++)
 a(i) = ...
 = a(i-1) ...

```plaintext
a(0) = a(1) = a(2) = ...
= a(0) = a(0) = a(1) = ...
```

barrier

```plaintext
a(0) = a(1) = a(2) = ...
= a(0) = a(1) = a(2) = ...
= a(n-1)
```
What messages must be sent?

Let N=100, block distribution over two processes with elements 0:49 on process P0, 50:99 on P2

for (i=0; i < n; i++)
a(i) = . . .

for (i=0; i < n; i++)
= a(i-1) . . .

P0 writes a(0:49)
P1 writes a(50:99)
P0 reads a(-1:48)
P1 reads a(49:98)

P0 sends P1 [0,1,2, ..., 49] \(\cap\) [49,1,2, ..., 98]

This is the solution of the diophantine equation

\[i_1 = i_2 - 1, \quad 0 \leq i_1 \leq 49, \quad 50 \leq i_1 \leq 99 \]
Loop Fusion and Distribution

- necessary form for vectorization
- can provide synchronization necessary for “forward” dependences
- can create perfectly nested loops
- less parallel loop startup overhead
- can increase *affinity* (better locality of reference)

Both transformations change the statement execution order. Data dependences need to be considered!
Loop Fusion and Distribution

DO j = 1,n
 a(j) = b(j)
ENDDO

DO k=1,n
 c(k) = a(k)
ENDDO

DO j = 1,n
 a(j) = b(j)
 c(j) = a(j)
ENDDO

Dependence analysis needed:
- Determine uses/def and def/use chains across unfused loops
- Every def ⇒ use link should have a flow dependence in the fused loop
- Every use ⇒ def link should have an anti-dependence in the fused loop
- No dependence not associated with a use ⇒ def or def ⇒ use should be present in the fused loop
Loop Fusion and Distribution

DO j = 1,n
 S1: a(j-1) = b(j)
ENDDO

DO k=1,n
 S2: c(k) = a(k)
ENDDO

DO j = 1,n
 S1: a(j-1) = b(j)
 S2: c(j) = a(j)
ENDDO

Inter-loop “flow: dependence from S1 to S2

Cross iteration anti-dependence from S2 to S1
Dependence graphs

\[
\text{DO } j = 1, n \\
\quad S1: a(j-1) = b(j) \\
\text{ENDDO}
\]

\[
\text{DO } k = 1, n \\
\quad S2: c(k) = a(k) \\
\text{ENDDO}
\]
Criteria for Parallelization

• Vectorization:
 – no “lexically backward dependence”.
 – If we allow statement reordering: no dependence cycles

• Parallelization:
 – no loop-carried dependence

 Note, loops inside a dependence-carrying loop are dependence free (w.r.t. a given reference pair)
Dependences

• Preclude parallelization on the loop that has loop carried dependences unless they can be eliminated.

• In shared memory programs, dependences result in loads and stores to the same memory location by different tasks.

• In distributed memory programs, dependences result in communication among different processes.
Automatic parallelization

• In the presence of complex access patterns (arrays with non-affine subscripts, pointers, etc.) dependence analysis is often too conservative.

• Dependences on two accesses may not exist every time the accesses are encountered. Some parallelization may be possible but hard to impossible to express statically in code -- must be exploited at runtime.
Dusty deck parallelization impossible for many programs

- But works well for some programs and for vectorization
- The key is how to allow programmers to express parallelism with less effort than fully expressing it
- OpenMP and MPI are two attempts to allow parallelism to be expressed
- Can something better be done?
- We will look at some systems that have tried to do something better.