
Accelerated Computing

GPU Teaching Kit

Warps and SIMD Hardware
Module 5.1 – Thread Execusion Efficiency

2

Objective
– To understand how CUDA threads execute on SIMD Hardware

– Warp partitioning
– SIMD Hardware
– Control divergence

3

Warps as Scheduling Units

– Each block is divided into 32-thread warps
– An implementation technique, not part of the CUDA programming

model
– Warps are scheduling units in SM
– Threads in a warp execute in Single Instruction Multiple Data

(SIMD) manner
– The number of threads in a warp may vary in future generations

…
t0 t1 t2 … t31

…
…

t0 t1 t2 … t31
…Block 1 Warps Block 2 Warps

…
t0 t1 t2 … t31

…Block 3 Warps

4

Warps in Multi-dimensional Thread Blocks
– The thread blocks are first linearized into 1D in row major order

– In x-dimension first, y-dimension next, and z-dimension last

4

Figure 6.1: Placing 2D threads into linear order

5

Blocks are partitioned after linearization
– Linearized thread blocks are partitioned

– Thread indices within a warp are consecutive and increasing
– Warp 0 starts with Thread 0

– Partitioning scheme is consistent across devices
– Thus you can use this knowledge in control flow
– However, the exact size of warps may change from

generation to generation

– DO NOT rely on any ordering within or between
warps
– If there are any dependencies between threads, you must

__syncthreads() to get correct results (more later).

6

SMs are SIMD Processors
– Control unit for instruction fetch, decode, and control is shared

among multiple processing units
– Control overhead is minimized (Module 1)

Memory

Processing Unit

I/O

ALU

Processor (SM)

Shared
Memory

Register
File

Control Unit

PC IR

7

SIMD Execution Among Threads in a Warp
– All threads in a warp must execute the same instruction

at any point in time

– This works efficiently if all threads follow the same
control flow path
– All if-then-else statements make the same decision
– All loops iterate the same number of times

8

Control Divergence
– Control divergence occurs when threads in a warp take

different control flow paths by making different control
decisions
– Some take the then-path and others take the else-path of an if-

statement
– Some threads take different number of loop iterations than others

– The execution of threads taking different paths are
serialized in current GPUs
– The control paths taken by the threads in a warp are traversed one

at a time until there is no more.
– During the execution of each path, all threads taking that path will

be executed in parallel
– The number of different paths can be large when considering

nested control flow statements

9

Control Divergence Examples
– Divergence can arise when branch or loop

condition is a function of thread indices
– Example kernel statement with divergence:

– if (threadIdx.x > 2) { }
– This creates two different control paths for threads in a block
– Decision granularity < warp size; threads 0, 1 and 2 follow

different path than the rest of the threads in the first warp
– Example without divergence:

– If (blockIdx.x > 2) { }
– Decision granularity is a multiple of blocks size; all threads in

any given warp follow the same path

10

Example: Vector Addition Kernel

// Compute vector sum C = A + B
// Each thread performs one pair-wise addition

__global__
void vecAddKernel(float* A, float* B, float* C,
int n)

{
int i = threadIdx.x + blockDim.x * blockIdx.x;

if(i<n) C[i] = A[i] + B[i];
}

10

Device Code

11

Analysis for vector size of 1,000 elements
– Assume that block size is 256 threads

– 8 warps in each block

– All threads in Blocks 0, 1, and 2 are within valid range
– i values from 0 to 767
– There are 24 warps in these three blocks, none will have control divergence

– Most warps in Block 3 will not control divergence
– Threads in the warps 0-6 are all within valid range, thus no control divergence

– One warp in Block 3 will have control divergence
– Threads with i values 992-999 will all be within valid range
– Threads with i values of 1000-1023 will be outside valid range

– Effect of serialization on control divergence will be small
– 1 out of 32 warps has control divergence
– The impact on performance will likely be less than 3%

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 5.1 – Thread Execusion Efficiency
	Objective
	Warps as Scheduling Units
	Warps in Multi-dimensional Thread Blocks
	Blocks are partitioned after linearization
	SMs are SIMD Processors
	SIMD Execution Among Threads in a Warp
	Control Divergence
	Control Divergence Examples
	Example: Vector Addition Kernel
	Analysis for vector size of 1,000 elements
	Slide Number 12

