
461

An introduction to OpenCL A
CHAPTER OUTLINE

A.1	Background..461
A.2	Data Parallelism Model...462
A.3	Device Architecture...464
A.4	Kernel Functions...466
A.5	Device Management and Kernel Launch...466
A.6	Electrostatic Potential Map in OpenCL..469
A.7	Summary..473
A.8	Exercises..474
	References..474

In this appendix, we will give a brief overview of OpenCL for CUDA programers.
The fundamental programing model of OpenCL is so similar to CUDA that there is
a one-to-one correspondence for most features. With your understanding of CUDA,
you will be able to start writing OpenCL programs with the material presented in this
appendix. In our opinion, the best way to learn OpenCL is actually to learn CUDA
first and then map the OpenCL features to their CUDA equivalents.

A.1  BACKGROUND
OpenCL is a standardized, cross-platform parallel computing API based on the C
language. It is designed to enable the development of portable parallel applications
for systems with heterogeneous computing devices. The development of OpenCL
was motivated by the need for a standardized high-performance application devel-
opment platform for the fast growing variety of parallel computing platforms. In
particular, it addresses significant application portability limitations of the previous
programing models for heterogeneous parallel computing system.

CPU-based parallel programing models have been typically based on standards
such as OpenMP but usually do not encompass the use of special memory types or
SIMD execution by high-performance programers. Joint CPU–GPU heterogeneous

APPENDIX

462 APPENDIX A  An introduction to OpenCL

parallel programing models such as CUDA have constructs that address complex
memory hierarchies and SIMD execution but have been platform-, vendor-, or
hardware-specific. These limitations make it difficult for an application developer
to access the computing power of CPUs, GPUs, and other types of processing units
from a single multiplatform source code base.

The development of OpenCL was initiated by Apple and managed by the Khronos
Group, the same group that manages the OpenGL standard. On one hand, it draws
heavily on CUDA in the areas of supporting a single code base for heterogeneous par-
allel computing, data parallelism, and complex memory hierarchies. This is the reason
why a CUDA programer will find these aspects of OpenCL familiar once we con-
nect the terminologies. The reader will especially appreciate the similarities between
OpenCL and the low-level CUDA driver model, which was not used in this book.

On the other hand, OpenCL has a more complex platform and device manage-
ment model that reflects its support for multiplatform and multivendor portability.
OpenCL implementations already exist on AMD/ATI and NVIDIA GPUs, × 86
CPUs as well as some digital signal processors (DSPs) and field programable gate
arrays (FPGAs). While the OpenCL standard is designed to support code portabil-
ity across devices produced by different vendors, such portability does not come
for free. OpenCL programs must be prepared to deal with much greater hardware
diversity and thus will exhibit additional complexity. Also, many OpenCL features
are optional and may not be supported on all devices. A portable OpenCL code will
need to avoid using these optional features. However, some of these optional fea-
tures allow applications to achieve significantly more performance in devices that
support them. As a result, a portable OpenCL code may not be able to achieve its
performance potential on any of the devices. Therefore, one should expect that a
portable application that achieves high performance on multiple devices will employ
sophisticated runtime tests and choose among multiple code paths according to the
capabilities of the actual device used.

The objective of this chapter is not to provide full details on all programing fea-
tures of OpenCL. Rather, the objective is to give a CUDA programer a conceptual
understanding of the basic OpenCL programing model features. It also provides
some basic host and kernel code patterns for jump starting an OpenCL coding pro-
ject. With this foundation, the reader can immediately start to program in OpenCL
and consult the OpenCL specification [KHR, 2011] and programing guides [AMD,
NVIDIA] on a needs basis.

A.2  DATA PARALLELISM MODEL
OpenCL employs a data parallel execution model that has direct correspondence
with CUDA. An OpenCL program consists of two parts: kernels that execute on
one or more OpenCL devices, and a host program that manages the execution of
kernels. Fig. A.1 summarizes the mapping of OpenCL data parallelism concepts to
their CUDA equivalents. Like CUDA, the way to submit work for parallel execu-
tion in OpenCL is to launch kernel functions. We will discuss the additional kernel

463A.2  Data parallelism model

preparation, device selection and management work that an OpenCL host program
needs to do as compared to its CUDA counterpart in Section A.4.

When a kernel function is launched, its code is run by work items, which correspond
to CUDA threads. An index space defines the work items and how data are mapped to
the work items. That is, OpenCL work items are identified by global dimension index
ranges (NDRanges). Work items form work groups that correspond to CUDA thread
blocks. Work items in the same work group can synchronize with each other using
barriers that are equivalent to __syncthreads() in CUDA. Work items in different
work groups cannot synchronize with each other except by terminating the kernel
function and launching a new one. As we discussed in Chapter 3, Scalable parallel
execution, this limited scope of barrier synchronization enables transparent scaling.

Fig. A.2 illustrates the OpenCL data parallel execution model. The NDRange
(CUDA grid) contains all work items (CUDA threads). For this example, we assume
that the kernel is launched with a 2D NDRange.

OpenCL Parallelism Concept CUDA Equivalent

Kernel Kernel

Host program Host program

NDRange (index space) Grid

Work item Thread

Work group Block

FIGURE A.1

Mapping between OpenCL and CUDA data parallelism model concepts.

Lo
ca

l s
iz

e(
1)

Local size(0)

Work group

Group ID
0,0 0,1 …

…

………

1,11,0

G
lo

ba
l s

iz
e(

1)

Global size(0)

Work item

FIGURE A.2

Overview of the OpenCL parallel execution model.

464 APPENDIX A  An introduction to OpenCL

All work items have their own unique global index values. There is a minor dif-
ference between OpenCL and CUDA in the way they manage these index values.
In CUDA, each thread has blockIdx values and threadIdx values. These values
are combined to form a global thread ID value for the thread. For example, if a
CUDA grid and its blocks are organized as 2D arrays, the kernel code can form
a unique global thread index value in the x dimension as blockIdx.x*blockDim.
x+threadIdx.x. These blockIdx and threadIdx values are accessible in a CUDA
kernel as predefined variables.

In an OpenCL kernel, a thread can get its unique global index values by calling an
API function get_global_id() function with a parameter that identifies the dimen-
sion. See get_global_id(0) entry in Fig. A.3. The functions get_global_id(0) and
get_global_id(1) return the global thread index values in the x dimension and the
y dimension respectively. The global index value in the x dimension is equivalent to
the blockIdx.x*blockDim.x+threadIdx.x in CUDA. See Fig. A.3 for get_local_
id(0) function which is equivalent to threadIdx.x. We did not show the parameter
values in Fig. A.3 for selecting the higher dimension indices: 1 for the y dimension
and 2 for the z dimension.

An OpenCL kernel can also call an API function get_global_size() with
a parameter that identifies the dimensional sizes of its NDRanges. The calls get_
global_size(0) and get_global_size(1) return the total number of work items in
the x and y dimensions of the NDRanges. Note that this is slightly different from the
CUDA gridDim values which are in terms of blocks. The CUDA equivalent for the
get_global_size(0) return value would be gridDim.x * blockDim.x.

A.3  DEVICE ARCHITECTURE
Like CUDA, OpenCL models a heterogeneous parallel computing system as a host
and one or more OpenCL devices. The host is a traditional CPU that executes the
host program. Fig. A.4 shows the conceptual architecture of an OpenCL device.

OpenCL API Call Explanation CUDA Equivalent
get_global_id(0) Global index of the

work item in the x
dimension

blockIdx.x*blockDim
x+threadIdx.x

get_local_id(0) Local index of the work
item within the work
group in the x
dimension

threadIdx.x

get_global_size(0) Size of NDRange in
the x dimension

gridDim.x*blockDim.x

get_local_size(0) Size of each work
group in the x
dimension

blockDim.x

FIGURE A.3

Mapping of OpenCL dimensions and indices to CUDA dimensions and indices.

465A.3  Device architecture

Each device consists of one or more compute units (CUs) that correspond to CUDA
streaming multiprocessors (SMs). However, a CU can also correspond to CPU cores
or other types of execution units in compute accelerators such as DSPs and FPGAs.

Each CU, in turn, consists of one or more processing elements (PEs), which cor-
responds to the streaming processors in CUDA. Computation on a device ultimately
happens in individual PEs.

Like CUDA, OpenCL also exposes a hierarchy of memory types that can be used
by programers. Fig. A.4 illustrates these memory types: global, constant, local, and
private. Fig. A.5 summarizes the supported use of OpenCL memory types and the
mapping of these memory types to CUDA memory types. The OpenCL global mem-
ory corresponds to the CUDA global memory. Like CUDA, the global memory can
be dynamically allocated by the host program and supports read/write access by both
host and devices.

Unlike CUDA, the constant memory can be dynamically allocated by the host.
Like CUDA, the constant memory supports read/write access by the host and read-
only access by devices. To support multiple platforms, OpenCL provides a device
query that returns the constant memory size supported by the device.

The mapping of OpenCL local memory and private memory to CUDA memory
types is more interesting. The OpenCL local memory actually corresponds to CUDA
shared memory. The OpenCL local memory can be dynamically allocated by the
host or statically allocated in the device code. Like the CUDA shared memory, the
OpenCL local memory cannot be accessed by the host and supports shared read/
write access by all work items in a work group. The private memory of OpenCL cor-
responds to the CUDA automatic variables.

Compute device

Compute unit 1 Compute unit N

Private
memory 1

Local
memory 1

Local
memory N

Global/constant memory data cache

Global memory

Constant memory

Compute device memory

Private
memory 1

PE 1 PE M PE 1 PE M

Private
memory M

Private
memory M

… … …

FIGURE A.4

Conceptual OpenCL device architecture. The host is not shown.

466 APPENDIX A  An introduction to OpenCL

A.4  KERNEL FUNCTIONS
OpenCL kernels have identical basic structure as CUDA kernels. All openCL ker-
nel declarations start with a “__kernel” keyword, which is equivalent to the “__
global__” keyword in CUDA. Fig. A.6 shows a simple OpenCL kernel that performs
vector addition.

The kernel takes three arguments: pointers to the two input arrays and one pointer
to the output array. The “__global” declarations in the function header indicate that
the input and output arrays all reside in the global memory. Note that this keyword
has the same meaning in OpenCL as in CUDA, except that there are two underscore
characters (__) after the global keyword in CUDA.

The body of the kernel function is instantiated once for each work item. In
Fig. A.6, each work item calls the get_global_id(0) function to receive their unique
global index. This index value is then used by the work item to select the array ele-
ments to work on. Once the array element index i is formed, the rest of the kernel is
virtually identical to the CUDA kernel.

A.5  DEVICE MANAGEMENT AND KERNEL LAUNCH
OpenCL defines a much more complex model of device management than CUDA.
The extra complexity stems from the need for OpenCL to support multiple hard-
ware platforms. OpenCL supports runtime construction and compilation of kernels

Memory
Type

Host Access Device Access CUDA
Equivalent

Global
memory

Dynamic allocation;
read/write access

No allocation; read/write
access by all work items in
all work groups, large and
slow but may be cached in
some devices.

Global memory

Constant
memory

Dynamic allocat ion;
read/write access

Static allocation; r ead-only
access by all work items.

Constant memory

Local
memory

Dynamic allocation;
no access

Static allocation; s hared
read-write access by all
work items in a work
group.

Shared memory

Private
memory

No alloc ation; no
access

Static allocation;
read/write access by a
single work item.

Registers and local
memory

FIGURE A.5

Mapping between OpenCL and CUDA memory types.

467A.5  Device management and kernel launch

to maximize an applications ability to address portability challenges across a wide
range of CPUs and GPUs. Interested readers should refer to OpenCL specification
for more insight into the work that went into the OpenCL specification to cover as
many types of potential OpenCL devices as possible [KHR, 2011].

In OpenCL, devices are managed through contexts. Fig. A.7 illustrates the main
concepts of device management in OpenCL. In order to manage one or more devices
in the system, the OpenCL programer first creates a context that contains these
devices. A context is essentially an address space that contains the accessible mem-
ory locations to the OpenCL devices in the system. This can be done by calling either
clCreateContext() or clCreateContextFromType() in the OpenCL API.

Fig. A.8 shows a simple host code pattern for managing OpenCL devices. In
Line 4, we use clGetContextInfo() to get the number of bytes needed (parmsz) to
hold the device information, which is used in Line 5 to allocate enough memory to
hold the information about all the devices available in the system. This is because
the amount of memory needed to hold the information depends on the number of
OpenCL devices in the system. We then call clGetContextInfo() again in Line
6 with the size of the device information and a pointer to the allocated memory
for the device information so that the function can deposit information on all the
devices in the system into the allocated memory. An application could also use the

__kernel void vadd(__global const float *a,
__global const float *b, __global float *result) {

int i = get_global_id(0);
result[i] = a[i] + b[i];

}

FIGURE A.6

A simple OpenCL kernel.

Application Kernel

Kernel

OpenCL context

Cmd queue

Cmd queue

OpenCL device OpenCL device

FIGURE A.7

OpenCL contexts are needed to manage devices.

468 APPENDIX A  An introduction to OpenCL

clGetDeviceIDs() API function to determine the number and types of devices that
exist in a system. The reader should read the OpenCL programing guide on the
details of the parameters to be used for these functions [Khronos].

In order to submit work for execution by a device, the host program must first
create a command queue for the device. This can be done by calling the clCreate-
CommandQueue() function in the OpenCL API. Once a command queue is created for
a device, the host code can perform a sequence of API function calls to insert a kernel
along with its execution configuration parameters into the command queue. When
the device is available for executing the next kernel, it removes the kernel at the head
of the queue for execution.

Fig. A.8 shows a simple host program that creates a context for a device and
submits a kernel for execution by the device. Line 2 shows a call to create a context
that includes all OpenCL available devices in the system. Line 4 calls clGetContext
Info() function to inquire about the number of devices in the context. Since Line
2 asks that all OpenCL available devices be included in the context, the application
does not know the number of devices actually included in the context after the con-
text is created. The second argument of the call in Line 4 specifies that the informa-
tion being requested is the list of all devices included in the context. However, the
fourth argument, which is a pointer to a memory buffer where the list should be
deposited, is a NULL pointer. This means that the call does not want the list itself.
The reason is that the application does not know the number of devices in the context
and does not know the size of the memory buffer required to hold the list.

Rather, Line 4 provides a pointer to the variable parmsz. After Line 4, the parmsz
variable holds the size of the buffer needed to accommodate the list of devices in the
context. The application now knows the amount of memory buffer needed to hold the
list of devices in the context. It allocates the memory buffer using parmsz and assigns
the address of the buffer to pointer variable cldevs at Line 5.

Line 6 calls clGetContextInfo() again with the pointer to the memory buffer
in the fourth argument and the size of the buffer in the third argument. Since this is

…
1. cl_int clerr = CL_SUCCESS;

2. cl_context clctx=clCreateContextFromType(0, CL_DEVICE_TYPE_ALL,
 NULL, NULL, &clerr);

3. size_t parmsz;
4. clerr= clGetContextInfo(clctx, CL_CONTEXT_DEVICES, 0, NULL, &parmsz);

5. cl_device_id* cldevs= (cl_device_id *) malloc(parmsz);
6. clerr= clGetContextInfo(clctx, CL_CONTEXT_DEVICES, parmsz, cldevs, NULL);

7. cl_command_queue clcmdq=clCreateCommandQueue(clctx, cldevs[0], 0, &clerr);

FIGURE A.8

Creating OpenCL context and command queue.

469A.6  Electrostatic potential map in openCL

based on the information from the call at Line 4, the buffer is guaranteed to be the
right size for the list of devices to be returned. The clGetContextInfo function now
fills the device list information into the memory buffer pointed to by cldevs.

Line 7 creates a command queue for the first OpenCL device in the list. This
is done by treating cldevs as an array whose elements are descriptors of OpenCL
devices in the system. Line 7 passes cldevs[0] as the second argument into the
clCreateCommandQueue(0) function. Therefore, the call generates a command queue
for the first device in the list returned by the clGetContextInfo() function.

The reader may wonder why we did not see this complex sequence of API calls
in our CUDA host programs. The reason is that we have been using the CUDA runt-
ime API that hides all this type of complexity for the common case where there
is only one CUDA device in the system. The kernel launch in CUDA handles all
the complexities on behalf of the host code. If the developer wanted to have direct
access to all CUDA devices in the system, he/she would need to use the CUDA driver
API, where similar API calling sequences would be used. To date, OpenCL has not
defined a higher-level API that is equivalent to the CUDA runtime API. Until such
a higher-level interface is available, OpenCL will remain much more tedious to use
than the CUDA runtime API. The benefit, of course, is that an OpenCL application
can execute on a wide range of devices.

A.6  ELECTROSTATIC POTENTIAL MAP IN OPENCL
We now present an OpenCL case study based the DCS kernel in Fig. 15.9. This case
study is designed to give a CUDA program a practical, top to bottom experience with
OpenCL. The first step in porting the kernel to OpenCL is to design the organization of
the NDRange, which is illustrated in Fig. A.8. The design is a straightforward mapping
of CUDA threads to OpenCL work items and CUDA blocks to OpenCL work groups.
As shown in Fig. A.9, each work item will calculate up to eight grid points and each work
group will have 64–256 work items. All the efficiency considerations in Chapter 15,
Application case study—molecular visualization and analysis also apply here.

The work groups are assigned to the CUs the same way that CUDA blocks are
assigned to the SMs. Such assignment is illustrated in Fig. A.10. One can use the
same methodology used in Chapters 5 and 15, Performance considerations and
Application case study—molecular visualization and analysis to derive high perfor-
mance OpenCL DCS kernel. Although the syntax is different, the underlying thought
process involved in developing a high-performance OpenCL kernel is very similar
to CUDA.

Fig. A.10 assumes the work assignment and work group organization shown in
Fig. A.9. These work groups are assigned to CUs. The number of work groups that
can be assigned to each CU depends on the resource requirements of each group and
the resources available in each CU.

The OpenCL kernel function implementation matches closely the CUDA imple-
mentation. Fig. A.11 shows the key differences. One is the __kernel keyword in

470 APPENDIX A  An introduction to OpenCL

OpenCL vs. the __global keyword in CUDA. The main difference lies in the way
the data access indices are calculated. In this case, the OpenCL get_global_id(0)
function returns the equivalent of CUDA blockIdx.x*blockDim.x+threadIdx.x.

Fig. A.12 shows the inner loop of the OpenCL kernel. The reader should com-
pare this inner loop with the CUDA code in Fig. 15.9. The only difference is that

(unrolled, coalesced)

Grid of thread blocks:

Work groups:

Work items compute up to
eight potentials, skipping by
memory coalescing width

Padding waste

0,0 0,1

1,11,0

… … …

…

…64–256 work items

Unrolling increases
computational tile size

FIGURE A.9

DCS kernel version 3 NDRange configuration.

NDRange containing
all work items,
decomposed into
work groups

Atomic
coordinates

charges

Host

GPUConstant memory

Texture Texture Texture Texture

Global memory

Texture Texture

Work items compute
up to eight potentials,
skipping by coalesced

memory width

Lattice padding

Work groups
64–256 work items

Parallel data
cache

Parallel data
cache

Parallel data
cache

Parallel data
cache

Parallel data
cache

Parallel data
cache

FIGURE A.10

Mapping DCS NDRange to OpenCL Device.

471A.6  Electrostatic potential map in openCL

__rsqrt() call has been changed to native_rsqrt() call, the OpenCL way for using
the hardware implementation of math functions on a particular device.

OpenCL adopts a dynamic compilation model. Unlike CUDA, the host program
can explicitly compile and create a kernel program at run time. This is illustrated in
Fig. A.13 for the DCS kernel. Line 1 declares the entire OpenCL DCS kernel source
code as a string. Line 3 delivers the source code string to the OpenCL runtime system
by calling the clCreateProgramWith Source() function. Line 4 sets up the compiler
flags for the runtime compilation process. Line 5 invokes the runtime compiler to
build the program. Line 6 requests that the OpenCL runtime create the kernel and its
data structures so that it can be properly launched. After Line 6, clkern points to the
kernel that can be submitted to a command queue for execution.

Fig. A.14 shows the host code that launches the DCS kernel. It assumes that the
host code for managing OpenCL devices in Fig. A.8 has been executed. Lines 1 and

Device
OpenCL:
__kernel voidclenergy(…) {
unsigned int xindex= get_global_id(0);
unsigned int yindex= get_global_id(1);
unsigned int outaddr= get_global_size(0) * UNROLLX
*yindex+xindex;

CUDA:
__global__ void cuenergy(…) {
Unsigned int xindex= blockIdx.x *blockDim.x +threadIdx.x;
unsigned int yindex= blockIdx.y *blockDim.y +threadIdx.y;
unsigned int outaddr= gridDim.x *blockDim.x *
UNROLLX*yindex+xindex

FIGURE A.11

Data access indexing in OpenCL and CUDA.

…
for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory -atominfo[atomid].y;
float dyz2= (dy * dy) + atominfo[atomid].z;
float dx1 = coorx –atominfo[atomid].x;
float dx2 = dx1 + gridspacing_coalesce;
float dx3 = dx2 + gridspacing_coalesce;
float dx4 = dx3 + gridspacing_coalesce;
float charge = atominfo[atomid].w;
energyvalx1 += charge* native_rsqrt(dx1*dx1 + dyz2);
energyvalx2 += charge* native_rsqrt(dx2*dx2 + dyz2);
energyvalx3 += charge* native_rsqrt(dx3*dx3 + dyz2);
energyvalx4 += charge* native_rsqrt(dx4*dx4 + dyz2);
}

FIGURE A.12

Inner loop of the OpenCL DCS kernel.

472 APPENDIX A  An introduction to OpenCL

FIGURE A.13

Building OpenCL kernel.

1. doutput= clCreateBuffer(clctx, CL_MEM_READ_WRITE,volmemsz,
 NULL, NULL);
2. datominfo= clCreateBuffer(clctx, CL_MEM_READ_ONLY,
 MAXATOMS *sizeof(cl_float4), NULL, NULL);
…
3. clerr= clSetKernelArg(clkern, 0,sizeof(int), &runatoms);
4. clerr= clSetKernelArg(clkern, 1,sizeof(float), &zplane);
5. clerr= clSetKernelArg(clkern, 2,sizeof(cl_mem), &doutput);
6. clerr= clSetKernelArg(clkern, 3,sizeof(cl_mem), &datominfo);
7. cl_event event;
8. clerr= clEnqueueNDRangeKernel(clcmdq,clkern, 2, NULL,
 Gsz,Bsz, 0, NULL, &event);
9. clerr= clWaitForEvents(1, &event);
10. clerr= clReleaseEvent(event);
…
11. clEnqueueReadBuffer(clcmdq,doutput, CL_TRUE, 0,
 volmemsz, energy, 0, NULL, NULL);
12. clReleaseMemObject(doutput);
13. clReleaseMemObject(datominfo);

FIGURE A.14

OpenCL Host code for kernel launch and parameter passing.

2 allocate memory for the energy grid data and the atom information. The clCreate-
Buffer() function corresponds to the cudaMalloc() function. The constant memory
is implicitly requested by setting the mode of access to ready only for the atominfo
array. Note that each memory buffer is associated with a context, which is specified
by the first argument to the clCreateBuffer() function call.

473A.7  Summary

Lines 3–6 in Fig. A.14 set up the arguments to be passed into the kernel function.
In CUDA, the kernel functions are launched with C function call syntax extended
with <<<>>>, which is followed by the regular list of arguments. In OpenCL, there
is no explicit call to kernel functions. Therefore, one needs to use the clSetKernel-
Arg() functions to set up the arguments for the kernel function.

Line 8 in Fig. A.14 submits the DCS kernel for launch. The arguments to the
clEnqueueNDRangeKernel() function specify the command queue for the device that
will execute the kernel, a pointer to the kernel, and the global and local sizes of the
NDRange. Lines 9 and 10 check for errors if any.

Line 11 transfers the contents of the output data back into the energy array in
the host memory. The OpenCL clEnqueueReadBuffer() copies data from the device
memory to the host memory and corresponds to the device to host direction of the
cudaMemcpy() function.

The clReleaseMemObject() function is a little more sophisticated than cudaFree().
OpenCL maintains a reference count for data objects. OpenCL host program modules
can retain (clRetainMemObject()) and release (clReleaseMemObject()) data objects.
Note that clCreateBuffer() also serves as a retain call. With each retain call, the refer-
ence count of the object is incremented. With each release call, the reference count is
decremented. When the reference count for an object reaches 0, the object is freed. This
way, a library module can “hang on” to a memory object even though the other parts of
the application no longer need the object and thus have released the object.

A.7  SUMMARY
OpenCL is a standardized, cross-platform API designed to support portable paral-
lel application development on heterogeneous computing systems. Like CUDA,
OpenCL addresses complex memory hierarchies and data parallel execution. It
draws heavily on the CUDA driver API experience. This is the reason why a CUDA
programer finds these aspects of OpenCL familiar. We have seen this through the
mappings of the OpenCL data parallelism model concepts, NDRange API calls, and
memory types to their CUDA equivalents.

On the other hand, OpenCL has a more complex device management model that
reflects its support for multiplatform and multivendor portability. While the OpenCL
standard is designed to support code portability across devices produced by differ-
ent vendors, such portability does not come for free. OpenCL programs must be
prepared to deal with much greater hardware diversity and thus will exhibit more
complexity. We see that the OpenCL device management model, the OpenCL kernel
compilation model, and the OpenCL kernel launch are much more complex than
their CUDA counterparts.

We have by no means covered all the programing features of OpenCL. The reader
is encouraged to read the OpenCL specification [KHR, 2011] and tutorials [Khronos]
for more OpenCL features. In particular, we recommend that the reader pay special
attention to the device query, object query, and task parallelism model. Further, the
reader is encouraged to learn the new featuresntroduced in OpenCL 2.0.

474 APPENDIX A  An introduction to OpenCL

A.8  EXERCISES

1.	 Use the code base in Appendix A and examples in Chapters 2–5, Data parallel
computing, Scalable parallel execution, Memory and data locality, and
Performance considerations, to develop an OpenCL version of the matrix–
matrix multiplication application.

2.	 Read the “OpenCL Platform Layer” section of the OpenCL specification.
Compare the platform querying API functions with what you have learned in
CUDA.

3.	 Read the “Memory Objects” section of the OpenCL specification. Compare
the object creation and access API functions with what you have learned in
CUDA.

4.	 Read the “Kernel Objects” section of the OpenCL specification. Compare the
kernel creation and launching API functions with what you have learned in
CUDA.

5.	 Read the “OpenCL Programing Language” section of the OpenCL
specification. Compare the keywords and types with what you have learned in
CUDA.

REFERENCES
AMD OpenCL Resources. <http://developer.amd.com/gpu/ATIStreamSDK/pages/Tutorial

OpenCL.aspx>.
Khronos Group. (2011). The OpenCL Specification version 1.1, rev44. <http://www.khronos.

org/registry/cl/specs/opencl-1.1.pdf>.
Khronos OpenCL samples, tutorials, etc. <http://www.khronos.org/developers/resources/

opencl/>.
NVIDIA OpenCL Resources. <http://www.nvidia.com/object/cuda_opencl.html>.

http://developer.amd.com/gpu/ATIStreamSDK/pages/TutorialOpenCL.aspx
http://developer.amd.com/gpu/ATIStreamSDK/pages/TutorialOpenCL.aspx
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/developers/resources/opencl/
http://www.khronos.org/developers/resources/opencl/
http://www.nvidia.com/object/cuda_opencl.html

