
1

This contains practice problems for lvalue and rvalue questions, since these are not covered on previous exams.

/X.h

class X { };

// main.cpp

void foo(X& i) {

std::cout << "foo(X& i)" << std::endl;

}

void foo(const X& i) {

std::cout << "foo(const X& i)" << std::endl;

}

void foo(X&& i) {

std::cout << "foo(X&& i)" << std::endl;

}

int main(int argc, char** args) {

X x;

X& xr = x;

const X xc;

const X& xrc = xc;

foo(x); // Q1

foo(xr); // Q2

foo(xc); // Q3

// Q4 is foo(xc) and lvalue or rvalue?

foo(xrc); // Q5

foo(X()); // Q6

X xq = X(); // Q7 is xq and lvallue or rvalue?

// Q8 is X() and lvallue or rvalue?

}

Output:

foo(X& i)

foo(X& i)

foo(const X& i)

foo(const X& i)

foo(X&& i)

Q1: foo(X& i) is called because x is an lvalue
and C++ converts lvalues into references. it
is not const, and thus is passed to the non-
const function rather than f(const X& i).

Q2: foo(X& i) is called because xr is an lvalue
reference. It is not const, and thus is passed
to the non-const function rather than f(const
X& i).

Q3: foo(const X& i) is called because xc is both
a const and an lvalue. C++ uses const and
volatile to decide what function to call.

Q4: foo(xc) is an rvalue, what it returns does
not have an identifiable memory location. In
general, unless a function returns an lvalue
reference (i.e., X&) a function call is an
rvalue.

Q5: foo(const X& i) is called because xrc is both
a const and an lvalue reference.

Q6: foo(X&& i) is called because X() is an
rvalue, and must be passed to a foo that
takes an X rvalue.

Q7: xq is an lvalue, because it has an identifiable
memory location, i.e., the memory that the
variables xq is in.

Q8: X() creates a temporary, the temporary has
no identifiable memory location, and there-
fore X() is an rvalue.

