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Abstract—Stochastic variation of process parameters within
a die and technology-limitation-driven variation from die-to-die
give rise to unique distribution patterns for manufacturing pro-
cess parameters. These patterns work as a process signature that
is transferred from the device level to the system level through
electrical circuits and can be used to make a distinction among
the processes. In this work, we propose an in-situ manufacturing
process technology distinction method, ‘Radio Frequency Process
Specific Functions (RF-PSF)’, that uses process-specific inherent
properties of an IC manifested in the transmitted radio frequency
signal. Among many desirable testing criteria, RF-PSF addresses
the question of fabrication with the intended process technology.
This information plays an important role in modern zero-trust
architecture and IC clone detection, a counterfeiting method
where the IC is manufactured using a different process. An RF
transmitter with RF-DAC power amplifier for QPSK modulation
has been designed and simulated in 14 nm, 22 nm, and 65 nm
processes for 5 process corners (TT, FF, FS, SF, and SS) in
Cadence. The simulated data have been processed in MATLAB. A
Multilayer Perceptron (MLP), trained with the constellation data,
provides an average accuracy of ~90% for process distinction.
Realizing that (i) a higher order modulation will have even more
process information and (ii) we can harness the Convolutional
Neural Network’s (CNN) improved capability on pattern recog-
nition, we can feed image-like constellation plots to a CNN to get
better and consistent performance. Using the baseband constel-
lations for 64-QAM modulated data as images, we have achieved
~100% accuracy with commonly used, pretrained CNN models
(ResNet18, ResNet50, and GoogleNet) through transfer learning.
The separation among 5 process corners within a process, termed
intra-process variation, is also analyzed. The effect of baseband
sampling rate and ADC resolution, two practical limitations in
RF systems, have been explored. An extensive study has been
performed on the effect of a key design parameter at the RF
circuit level i.e. W/L or aspect ratio, leading to design insights,
proper CNN selection, and some control parameters. This work
establishes RF-PSF as a zero-power, zero-area overhead, in-situ
process distinction method.

Index Terms—radio frequency, CNN, transfer learning, zero-
power, zero-trust, manufacturing process, counterfeit IC

I. INTRODUCTION

A. Harnessing Process Variation in Radio Frequency Machine
Learning Systems

ROCESS parameters of a particular process technology

drift significantly from their intended values due to the
inherently stochastic nature of the processes and the limitations
in process control. Variation of process parameters in the IC
fabrication process is classified into two classes: (1) local
variation or within die variation (fluctuation of the process
parameters within a chip) and (2) global variation that includes
die-to-die variation, wafer-to-wafer variation, and lot-to-lot
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Fig. 1. (a) IC counterfeiting (e.g., IC cloning) poses a big threat to the
whole semiconductor industry. To counter it, (b) zero-trust architecture can
be a viable solution where there is no predefined trust and all the ICs are
tested extensively. However, this approach increases testing costs and time,
so it is desirable to extract as much information as possible from the simple
electrical signal. (c) Process dependent system-level nonidealities are termed
‘process specific functions’ and work as the process identity that can be used
to distinguish among processes at the system level. Here devices from 22
nm and 28 nm processes are considered (unlike RF-PUF which distinguishes
devices of the same process, RF-PSF considers devices of the same process
as the same class). RF nonidealities in the transmitted wave contain process
information that can be picked up by a neural network at the receiver end to
distinguish between these two processes.

variation. Local variation stems from the inherent randomness
associated with any semiconductor manufacturing process, e.g.
random variation in doping density, edge roughness variation
created randomly during lithography, random variation of the
grain orientation in the metal gate or polysilicon leading to
the work function variation, random distribution of dangling
bonds and their capture of carriers, etc [1]-[3]. Unlike local
variation, the root of global variation lies in the limitation of
process technology and process control, e.g. oxide thickness
variation during deposition, etching, or polishing [2], [4], [5].

Random local variation creates differences among devices
of the same class, i.e., within-chip variation creates a unique
device signature for a particular device pertaining to a device
class. This signature is manifested as various system-level
nonidealities in the transmitted signal. For example, the ‘n’
number of ZigBee devices fabricated using the same process
technology in the same fab house will have slightly different
nonidealities in their transmitted signal due to their unique
device identity derived mostly from process variation. A
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receiver with an in-situ machine-learning system can extract
the embedded ‘device signature’ from the received wave
to uniquely identify the device. This is the basis of Radio
Frequency Physical Unclonable Function or RF-PUF [6]-[8]
which is used for RF fingerprinting.

B. Proposed Radio Frequency Process Specific Functions

The deviation of output due to process technology is per-
ceived as process-dependent nonidealities. In effect, process
parameters and their distributions due to random local and
process limitation-based global variations form a unique sig-
nature of a process. This signature can be thought of as a
unique function, which we define as Process Specific Function
(PSF). For radio frequency integrated circuits (RF IC), these
functions are expressed in the transmitted RF signal which we
call RF-PSF, and can be used to make a distinction among
different process technologies. This is process identity instead
of device identity, which separates it from the idea of RF-PUF.
To elaborate the difference even further, devices fabricated
using the same process technology are labeled as the same
class by RF-PSF, whereas they are uniquely identified by RF-
PUF. In other words, RF-PUF utilizes intra-process variation
whereas RF-PSF utilizes inter-process variation.

This concept of the in-situ process distinction method is
explained in fig. 1(c). Red and blue devices are fabricated
using a 22nm process and 28 nm process respectively. Red
devices are labeled as class ‘X’ and blue devices are labeled as
class Y’ (RF-PUF would consider each device as a separate
class, but RF-PSF considers them as same class as long as
they are fabricated using the same process technology). Since
the distributions of process parameter variations are different
between the processes, the transmitted electromagnetic signal
will contain different process-dependent nonidealities (RF-
PSF) embedded in it. A receiver (RX) captures waves from
both classes and processes them. The constellation diagram at
the RX end will contain the signatures associated with the pro-
cesses and a neural network trained with the constellation data
can make a distinction between 22 nm and 28 nm processes.

The impact of both types of variations on output is not
the same. This is explained with a nice thought experiment
involving matched transistors of a differential pair in [1].
If the local variation is much less compared to the global
variation, the differential pair will still be matched and the
common mode gain will not change. However, if the local
variation is very high, the transistors within a chip will no
longer match and the designer will have to think of a way to
adjust the common mode gain. So, the same circuit is behaving
differently based on the process variation pattern which in
turn depends on the process technology. We can think of it as
the circuit is mapping process technology-related information
from the device level to the system level. If the same circuit is
implemented in different process technologies, the response of
the same circuit at the system level will be slightly different
as we have established that different process variation impacts
the circuit performance differently.

Fig. 2 shows how the device-level process information is
transferred to the system level by properly designed circuits.

Fig. 2(a)(i) shows different types of process variation at the
device level. In Fig. 2(a)(ii), the distribution of a hypothetical
process parameter ‘P1’ has been shown for both X nm and
Y nm processes. The distribution of hundreds of similar
process parameters creates a unique cluster/group/class for
each process as shown in Fig. 2(a)(iii). RF-PSF distinguishes
these clusters (processes). Fig. 2(b) shows that this information
is passed to the circuit from the device level. While a circuit
designer tries to suppress most process-related information
(to avoid process-driven nonidealities at the output), some
information still passes. The amount of information can be
increased even further by adjusting the operating points of the
circuit. Hence, we propose two modes of operation:

1) Communication mode: where the operating condition of
the circuit is optimized for regular communication and
maps less process-specific nonidealities at the system
level. RF-PSF will provide less accuracy in this mode,
but it will not interfere with regular operation and can
make process distinctions on the go.

2) Test mode: where the operating condition of the circuit
is pushed towards the limits where process-dependent
nonidealities become maximum. The RF IC can be
operated in this mode just to check process information
for a brief time, and then switched back to regular
communication.

As an example, we consider a power amplifier (PA) circuit
which is the heart of any RF transmitter. The operating point
can be shifted slightly towards saturation without hamper-
ing its performance too much. This is our communication
mode where we get some process information but the regular
performance remains primarily similar. The yellow point in
fig. 2(b)(ii) shows this operating point. Now we can push the
operating point to the edge of saturation which will increase
nonideality at the output. However, that nonideality (phase
noise, compression, etc.) is dependent on process parameters
and contains significant process information. This is test mode
and is shown as the red point in fig. 2(b)(ii). Significant
process information is transferred to the system-level output
as shown in fig. 2(c). Here, both the time domain signal and
consequent constellation diagram contain significant process-
dependent nonideality. A neural network can be trained using
this information which can intelligently distinguish between
processes X and Y.

C. Motivation: Zero-Trust Architecture

Now that the concept of RF-PSF has been established as
an in-situ process distinction method, the question arises as
to why we need to extract manufacturing process information
from the IC itself which the vendor already provides. The
answer lies in ‘IC counterfeiting’. Counterfeiting electronic
components is a rising threat to the semiconductor supply
chain. In 2011, IHS has reported a $169B annual risk due to
counterfeiting, with an annual growth of 25%. This is termed a
“ticking bomb” for the semiconductor industry. IC counterfeit-
ing involves recycling and remarking, overproduction, cloning,
out-of-the-spec production, tampering, faking documentation,
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(a)(i) Random fluctuation of process parameters leads to local variation (within die) whereas process technology limitation gives rise to global

variation (die-to-die of a wafer, wafer-to-wafer of a lot, and lot-to-lot). (ii) Distribution of process parameter P1 that can distinguish two processes in the
non-overlapping portion. (iii) Distribution of n process parameters creates unique clusters for both ‘X’ and ‘Y’ mm processes. (b) The unique signature of
a process is transferred to the circuit level. A proper circuit design can harness more of this signature and reflect it as system-level output. Here, a power
amplifier operating point is adjusted with a certain back-off to trade some nonlinearity for process information. (c) The process signature manifests itself as
system-level nonidealities which can be seen in both (i) time-domain signal and (ii) constellation plot. A neural network can be trained with this information

which can then make a distinction between process X and process Y.

etc. In the battle against IC counterfeiting, ‘zero-trust’ archi-
tecture [9] poses itself as a promising solution. It is a unique
environment where there is no predefined trust and everyone
is treated as a potential threat and access to information and
resources is granted only when they get verified. The term
‘zero-trust’ got popular in early 2020 due to the rise of cyber
threats as most of the employees had to work from home and
were no longer in the security bubble of the workplace. ‘zero-
trust’ concept can be applied to the semiconductor supply
chain, which is vulnerable as the design is usually performed
in one country but fabrication and assembly are done offshore.
There are many points of vulnerability in the whole supply
chain even for large manufacturers. A senate hearing in the US
shows that 15% of the spare and replacement parts purchased
by the Pentagon are counterfeited in some ways [10]. In a zero-
trust environment, even the ICs from an authorized vendor are
tested extensively before utilization, leaving no space for a
breach of trust (as there is none by default!).

But the zero-trust approach increases test load tremendously
as shown in fig. 1(b). Traditional counterfeiting detection
methods require both physical inspection (X-Ray imaging,
Scanning Acoustic Microscopy or SAM, Scanning Electron

Microscopy or SEM, optical inspection, Raman spectroscopy,
Ion Chromatography or 10, etc.) and electrical testing (DC/AC
characteristics test, fault test, etc.). While these methods are
efficient, they put significant time and cost overhead and most
of the methods are intrusive. This is especially problematic
in the zero-trust approach where the testing load is much
heavier. So, it is desirable to extract some of the manufacturing
information noninvasively from the electrical signal of the
ICs. RF-PSF is an attractive choice here as it can provide
manufacturing process information in a non-invasive manner
without any additional area and power overhead (as it needs
no additional block in the transmitter) with trivial time, cost,
and effort. But how to use process information to detect coun-
terfeited IC? One particular counterfeiting method, IC cloning,
involves IC fabrication using a different process than it was
originally intended. RF-PSF can be used here to determine
whether the IC was fabricated in the authorized manufacturing
facility using the intended process technology. RF-PSF itself
doesn’t detect IC cloning, rather it makes a distinction among
different process technology. That information is an important
part of cloning detection.

In this work, we have designed and simulated a simple
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Fig. 3. (a) Simulation block diagram. The transmitter is simulated in Cadence where PRBS data are transmitted using QPSK modulation. The receiver is
simulated in MATLAB where the RF signal is processed. (b) Transmitter circuit diagram. (c) The initial transient in the received signal shows irregularity in
the wave. Although the transient contains some process information, it has been discarded for steady-state operation. (d) Due to DC offset, the falling edge
of the signal doesn’t match (right inset) when the rising edge is matched (left inset) with the reference clock. This can lead to a constant time difference At
(hence, a constant phase difference wAt) erroneously. (e) Edge corrected (50% duty cycle) and normalized wave with a reference clock (sine).

RF transmitter with an RF DAC power amplifier in 3 dif-
ferent process technologies: 14 nm (GlobalFoundries), 22 nm
(GlobalFoundries), and 65nm (TSMC) for QPSK and 64-
QAM modulation. Again, for specific process technology,
simulation is performed for 5 process corners, namely: TT
(typical-typical), FF (fast-fast), FS (fast-slow), SF (slow-fast),
and SS (slow-slow). The transmitter is simulated in Cadence
and the output RF signal is processed in a receiver designed
in MATLAB. A deep learning block, initially a multilayer
perceptron or neural network (NN) and later a convolutional
neural network (CNN), is added at the end of the receiver
chain. This block is trained with the I-Q data from the
RF receiver which can then infer the variation among the
processes and their corners. The variation within a specific
process due to process corners is referred to as intra-process
variation and the variation among different process technology,
irrespective of process corners, is defined as an inter-process
variation.

Simulation results show that process distinction accuracy
among the 3 aforementioned processes is ~ 90% on average
using QPSK modulation and NN, with a best-case accuracy
of 99% and worst-case accuracy of > 80%. Using higher
order modulation (64-QAM) and CNN (specifically CNN with
DAG architectures, as will be explained in section VI-C),
100% accuracy can be achieved. A detailed analysis has been
performed on intra-process variation as well. In a real RF
receiver, the sampling rate is limited due to the requirement
for faster circuits and the ADCs have a finite resolution. The
effect of the sampling rate in the baseband and the ADC
resolution (quantization) has been explored in detail. A circuit
design parameter, aspect ratio or W/L, has been varied and

the whole study has been performed again for different W/L
to gain more insight into how the process information is being
transferred from the device level to the system level. This
analysis and resulting constellation plots not only help us
understand RF-PSF better but also aids in selecting the proper
deep-learning method as well as offer some design control
knobs that can be used to put the IC in test mode or normal
operation mode (hence eliminating the performance trade-off
in normal operation).

D. Our Contribution

1) In this work, for the first time, manufacturing process-
specific properties or functions, manifested in the trans-
mitted RF signal, are used to make a distinction among
different process technologies. Using simulation data of an
RF transmitter with QPSK modulation in 14 nm, 22 nm, and
65 nm processes, it has been shown that ~ 90% accuracy can
be achieved on average using a neural network with raw data,
with a best-case accuracy of 99%.

2) Intra-process and inter-process variations are scru-
tinized in terms of time-domain signal, constellation di-
agram, and neural network performance using data from
5 different process corners (TT, FF, FS, SF, and SS) and 3
different process technologies.

3) The effect of two practical circuit limitations: base-
band sampling rate and ADC resolution, has been ad-
dressed and their impact on detection accuracy has been
analyzed.

4) Higher-order modulation (i.e. 64-QAM) has been used
with RF-DAC PA structure that provides significantly more
RF nonidealities. It is exploited to form a robust feature set.
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5) The effect of a key design parameter, aspect ratio or W/L,
has been explored in detail. The effect is discussed in terms of
constellation plots. Using data from varying W/L along with
some commonly used CNN architecture, ~ 100% process
distinction accuracy has been achieved.

E. Organization of the Paper

The rest of the paper is structured as follows: Section II
briefly discusses relevant works. Section III discusses the
simulation methodology and data processing steps in detail.
In section IV, we show the intra and inter-process distinction
in time domain signal and constellation data and how that
translates to NN accuracy. We also explore the effects of
baseband sampling rate and ADC resolution. The conference
paper version of this work [11] covers up to this point. The rest
of the sections discuss additional works that improve process
distinction accuracy from ~ 90% all the way up to ~ 100%.

Section V explains how we have used process-dependent
distortion in higher order constellation to harness more
process-specific information. The new PA (same RF-DAC
architecture, modified for higher order modulation) structure
has been explained with detailed parameter calculations and
performance has been evaluated. In section VI, we have ex-
plored a circuit parameter, i.e. aspect ratio or W/L, which helps
map the process information better at the system level. Using
image-like constellations for different W/L in commonly used
CNN structures, we have reached our targeted ~ 100%
accuracy. We have also explored the effect of environmental
noise on RF-PSF performance. Finally, we conclude this work
with a summary in section VIL.

II. RELATED WORKS

Due to the significant effect on circuit and system per-
formance, manufacturing process variation has been studied
extensively over decades [12]-[21]. With the scaling of feature
size, the importance of process parameters and their impact
is even more crucial now for modern processes [22]-[24].
The modeling and statistical distribution of process parameters
have evolved vastly [25]-[27] with device scaling which
paves the way for mapping a particular manufacturing process
technology to extract process-specific signatures at the system
level. Even for a particular feature size, process parameters
and their distribution vary significantly from one fab house to
another. This provides an opportunity to exploit the process-
dependent signature present in the transmitted electromagnetic
signal of an RF transmitter in order to extract process infor-
mation at the system level. This information can be used in
sensitive and critical applications.

Sensitive networks face a wide attack surface which forced
the defense agencies to adopt a “zero-trust” architecture [9]-
[28]. Borrowing that concept to the semiconductor supply
chain raises the issue of time and cost overhead for additional
testing and requires low-power, cost-effective, time-saving
methods. Among many specifications, process-related infor-
mation can be found through the process-specific functions in
the RF signal. As a byproduct, manufacturing process informa-
tion is an important part of cloning (a counterfeiting method)

detection as well [29], which requires time-consuming, costly
physical and electrical tests [30]- [31]. Considering the heavy
damages caused by counterfeiting, its detection and prevention
have been a major research domain for decades. According
to a review, counterfeits cost the industry more than $100B
per year back in 2007 [32]. In 2010, the U.S. Department of
Commerce released an assessment of counterfeit electronics
on the defense industrial base (sponsored by the US Navy).
The assessment shows an increase of 141% in counterfeit
cases over four years [33]. The same assessment mentions
that the US Government Accountability Office (GAO) had
concluded that counterfeit electronics being sold as military-
grade were readily accessible for purchase via online vendors
and the US military was vulnerable to counterfeit ICs via the
Department of Defense (DoD) supply chain. A police raid on a
suspected counterfeiter in China’s Guangdong province found
fake computer parts worth US $1.2 million, which is enough
to make computer servers and a lot of personal PCs [34].

III. SIMULATION METHOD AND DATA PROCESSING
A. Simulation Method

The transmitter (TX) is simulated in Cadence and the
receiver (RX) is designed in MATLAB as shown in fig. 3(a). A
7-bit pseudo-random bit sequence (PRBS) is used to generate
random bits at the rate of 10 Mbps. The serial bit stream is
converted to 2-parallel streams (marked BO and B1) which
were modulated using a sine and a cosine carrier of 2.4 GHz
to provide a QPSK modulated output signal. A low-power
PA with 502 antenna impedance is used at the end of the
transmitter chain which resonates at 2.4 GHz to produce the
final RF output signal (shown in fig. 3(b)). The transient
analysis is performed for a duration of 15 ps for five different
process corners, namely: TT (typical-typical), FF (fast-fast),
FS (fast-slow), SF (slow-fast), and SS. The simulation is done
in 3 different process technologies, namely 65 nm technology
(TSMC), 22nm technology (GlobalFoundries), and 14nm
technology (GlobalFoundries). Collected data are then pro-
cessed in MATLAB.

B. Discarding Initial Transients to Focus on Steady State
Signature

Fig. 3(c) shows that the received signal has initial transients
that lead to phase irregularity and shape distortion. Simulated
results benefit from initial transients that are significantly
affected by the process variation but may not be available
in real time. To analyze the steady-state operation and make
RF-PSF more realistic, we discard the initial transients. For
this purpose, initial 1ps is discarded from the 15 us data.

C. Edge Matching for DC Offset Correction

Shifting the wave along the time axis matches the rising
edge of it with the reference clock, but the falling edge doesn’t
match as shown in the insets of fig. 3(d). This is because the
output RF wave contains a certain DC offset. In this step, that
offset is removed to make it a wave of 50% duty cycle.
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Fig. 4. (a) The received signal is multiplied by a sine wave to produce the in-phase demodulated signal. (b) The received signal is multiplied by a cosine
wave to produce the quadrature-demodulated signal. (c) Frequency response of the designed low-pass filter (LPF). (d) In-phase filtered signal (the filtered
envelope shown on top of the demodulated wave). (e) Quadrature filtered signal (the filtered envelope shown on top of the demodulated wave). (f) Resampling
of the filtered wave at baseband. All the figures are produced for 65 nm technology with TT corner, sampling rate = 100 MHz, ADC resolution = 64 bit.

D. Normalization to Avoid Process-independent Amplitude
Variation

Different process technology has different supply voltage
for optimum operation (For both 14 nm and 22nm it’s 0.8 V,
for 65 nm it’s 1V). This difference in supply voltage already
creates a difference between the processes based on signal
amplitude. Since it is not a process-specific function, the RF
signal is normalized to bring it in the range of 1V. Fig. 3(e)
shows the edge-matched and normalized wave with a reference
sine clock.

E. Demodulation

Two reference clocks of 90° phase-difference (sine and
cosine) and 2.4 GHz frequency are generated in MATLAB.
The edge-matched and normalized RF signal is multiplied with
the sine wave to produce the I-channel (in-phase channel) and
with the cosine wave to produce the Q-channel (quadrature
channel). Fig. 4(a) and fig. 4(b) show the I and Q channel
respectively.

F. Filtering

Fig. 4(c) shows the frequency response of a low-pass filter
(LPF) that is designed using Hamming window. This is used
to filter out the high-frequency RF components from the
demodulated signal. Fig. 4(d) and fig. 4(e) show the filtered
signals (envelopes) on top of the demodulated signals.

G. Resampling at Baseband

Fig. 4(f) shows the resampling of the filtered, baseband
signal. The initial sampling rate of the received signal was
high as it was in the high-frequency RF domain. The sampling
rate is made even higher when it is interpolated. During
the conversion from analog to digital domain, such a high
sampling rate cannot be maintained. So, the filtered signal is
sampled to convert it to a sampling rate of 100 MHz (10 times
the original data rate). Later in subsection IV-A3, the effect of
different sampling rates is explored in detail. The resampled I
and Q channel data are plotted in the constellation diagram.

H. Neural Network

The resampled data are also used to train an artificial neural
network. The raw I-Q samples in each quadrant are taken
as features (2 I-Q points x 4 quadrants = 8 features). The
feature set is divided into 70%, 15%, and 15% ratios for train,
validation, and test purposes.

IV. PROCESS DISTINCTION FOR QPSK
A. Intra-process Variation

1) Comparison in Constellation Diagram: Fig. 5(a) and (b)
shows the constellation plot for TT, FF, FS, SF, and SS corners
of 14nm and 65 nm respectively. It is observed that the larger
feature-size process technology (65nm) has a much larger
variation. This is because larger feature-size technology has
more delay and the percent variation of the delay for a fixed
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Fig. 5. (a) Comparison of process corners of 14nm process in the con-
stellation diagram. (b) Comparison of process corners of 65nm process in
the constellation diagram. (c) Accuracy of process corner detection for both
14 nm and 65 nm processes. Sampling rate = 100 MHz, resolution = 64 bit.

data rate is higher. That’s why the process corners show more
variation for 65 nm compared to 14 nm.

2) Detection Accuracy: A simple NN with 3 hidden layers
and a varying number of neurons per layer is trained with
5 target classes (each corner is considered a separate target
class). Fig. 5(c) shows the intra-process detection accuracy

Effect of sampling rate at baseband
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Fig. 6. Effect of different sampling rates at baseband. Below the Nyquist rate
(light red region), the accuracy drops significantly. However, at or above the
Nyquist rate (light green region), the accuracy remains high.
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Fig. 7. Effect of quantization (ADC resolution) on detection accuracy. It is
found that the accuracy remains almost unchanged even for 8 bit resolution.

for 14 nm and 65 nm process technology. The accuracy is very
low for a smaller feature-size process like 14 nm but high for a
larger feature-size process like 65 nm. This is expected from
the constellation diagram as it is already observed that the
14nm has less variation among corners compared to 65 nm.

3) Effect of Sampling Rate: Fig. 6 shows the effect of
the sampling rate at the baseband. The original data rate is
10 Mbps, which reduces to 5 Mbps for each bitstream due to
serial-to-parallel conversion. So, the Nyquist rate is 10 MHz.
It can be seen that below the Nyquist rate, the accuracy drops
significantly due to loss of information. However, at or above
the Nyquist rate, the accuracy remains high.

4) Effect of Quantization: While processing in MATLAB,
the data have 64 bit resolution by default. However, in actual
ADC, it can be 8, 16, or 32 bits. So, it is important to see if
our results hold for low resolution. Fig. 7 shows that even at
8 bit, accuracy remains almost unchanged. So, practical ADC

resolution has a trivial impact on our results as long as it is
>8 bits.
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Fig. 8. (a) Comparison of the time domain received signal for 14 nm, 22 nm,
and 65nm processes (FF corner for each process). (b) Comparison of 3
processes in the constellation plot (5 corners from each process are plotted
as one). (c¢) Detection accuracy of inter-process variation for different NN
configurations. Sampling rate = 100 MHz, resolution = 64 bit.

B. Inter-Process Variation

1) Comparison of the Received Signal: Fig. 8(a) shows the
received signal in the time domain for all 3 processes (only
FF corner is shown). A reference sine clock is also plotted for
comparison. It is observed that the time domain signals can
be distinguished based on amplitude and signal distortion.

2) Comparison in Constellation Diagram: Fig. 8(b) com-
pares 3 process technology in terms of a constellation diagram.
Here, all 5 process corner data are plotted as one combined
group. It can be observed from the plot that, the 3 processes
form distinct regions with some overlapping.

3) Detection Accuracy: Simple NN with a different number
of hidden layers and neurons in each layer are trained with the
constellation data. Fig. 8(c) shows the detection accuracy of 3
processes for different NN configurations. It can be observed
that the accuracy is always > 80% and can reach up to 99%.
But on average, it remains ~ 90%.

V. EFFICIENT PROCESS DISTINCTION USING HIGHER
ORDER MODULATION — 16 AND 64-QAM

A. Motivation

For higher-order modulation (16-QAM, 64-QAM, etc.), the
outer constellation points suffer from phase noise or distortion
due to power amplifier (PA) nonlinearity. This is dependent
on the PA and in turn, depends on the process as well. This
distortion or compression at higher order modulation can be
exploited for process distinction as this is a function of the
process. Hence, we switch to 64-QAM from QPSK. To that
end, the same digital-friendly RF-DAC power amplifier has
been used with switched capacitor-based matching network
[35] and modified for higher-order modulation.

B. Reconfigurable RF-DAC PA with Tapped Capacitor-based
Matching Network

Figure 9(a) shows the reconfigurable power amplifier de-
signed using RF-DAC architecture for 64-QAM, 16-QAM,
QPSK, and OOK modulation (setting by and b5 signals to zero
converts it to 16-QAM; setting bo, by, by and bs signals to zero
converts it to QPSK; setting bo, b1, b3, by and b5 signals to
zero converts it to OOK). It’s a reconfigurable inverse class-D
PA that eliminates the requirement of separate I and Q path
DACs and Mixers. Further details on the design can be found
in [35], [36]. The formulas for the switched capacitor matching
network are shown in fig 9(b). We are designing the PA for a
carrier frequency of 2.4 GHz. Here, an inductor of 1 nH with
@ = 50 is taken. The calculation of other parameters is shown
below:

_ 1
f - 27r,/LC€ff
Hence, Ceyy = 4.4pF
Now, Ry/ny = (1 —|—5O2) X 3
Or, NOW, RJ\IN = 7503
Again, (1 + %)2 = L%N
Or, Cl = 112502
. _ o ¢
Finally, Ceyy = ETeR
Which leads to, C; = 53.9pF, Cy; = 4.8 pF

C. Performance

1) Accuracy with Raw Constellation Data: Figure 9(c)
shows the accuracy plot for intra-process variation. This ac-
curacy is lower meaning less variation among corners which
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a. RF DAC power amplifier with switched capacitor-based matching network

b. Matching network calculations
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Fig. 9. (a) RF-DAC power amplifier with a matching network implemented using a switched capacitor. It’s an inverse class-D PA that doesn’t need a separate
I and Q-path for DACs and mixers. (b) Formulas for matching network parameter calculation. (c) Intra-process detection performance using raw data fed to
a NN. This accuracy is low, which is good for us. (d) Inter-process detection performance using raw data fed to a NN. Accuracy goes up to 80%, which
is lower than expected. () Inter-process detection performance using a robust feature set along with a NN. The accuracy improves slightly, up to 85%, but

there is still room for improvement.

is desired. However, figure 9(d) shows the accuracy plot for
inter-process variation which is also in the range of 70 — 80%
(low) that is not desired. It is apparent that the NN with raw
constellation data is not good enough and we need to switch to
some other method. To that end, we perform intuitive feature
engineering to form a robust feature set.

2) Accuracy with Engineered Feature Set: We formulate 6

features based on intuition.

e 1; and 0; are first two features where r; = mean of
radial distances of the data points for position i=1,2,...,64
and #; = mean of angles of the data points for position
i=1,2,...,64

e 0,; and oy; are the variances of r; and 0;, and are used
as two other features.

o EVM or Error vector magnitude ((7mean —Tideal)/Tideal)
for r and 0 are used as two other features.

In total 6 features for 64 positions form a 64x6 feature matrix.
This matrix was fed into the NN for detecting accuracy.
Figure 9(e) shows the accuracy of inter-process variation
detection. The performance has improved. Previously, it was
70 — 80%, now it is 80 — 85%. However, there is still room
for improvement. At this point, we want to look at the design
parameters and gain insight from there to improve process
detectability.

VI. DESIGN PARAMETER EXPLORATION - W/L RATIO

A. Simulation by Varying W/L

We switched to higher-order modulation to exploit the phase
noise or compression. Since the W/L ratio controls current

flow and hence gain in the PA (as a result, the amount of
distortion as well), we want to investigate it. For this work,
each simulation is done for 4 different W/L ratios: 10, 20, 30,
and 40. W is changed by changing the number of fingers.
This has two advantages: (i) Since our PA structure uses
parallel NMOS, finger number can be used as a control knob
(controlled by gate voltage) for switching to different W/L at
different modes of operation (test mode where the circuit is
optimized for test or mission mode where the regular operation
is done through the transmitter and RF-PSF is a byproduct)
(ii) Processes have a different implementation, e.g. 14nm is
FinFET. The width can be controlled by using the Fin number
as well. To keep consistency among the processes, changing
the number of fingers is the best approach.

B. Constellation Plot Comparison

Fig. 10(a), (b), and (c) show the constellation plots for
different W/L in 14nm, 22nm, and 65nm processes respec-
tively (in each plot, all 5 process corners are plotted). Some
interesting observations can be made from the comparison of
the constellation plots. Firstly, if intra-process constellation
plots are compared, it can be seen that compression or phase
noise increases with increasing W/L, which is expected as
higher W/L pushes the signal more toward the nonlinear
region of the power amplifier. Secondly, if the inter-process
comparison is made, it can be noticed that each process shows
a different rate of change with W/L. For example, if W/L=20 is
considered for each process, 14 nm shows slight compression,
22nm shows trivial compression, and 65nm shows strong
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Fig. 10. Constellation plot for different W/L ratios for 14nm (Fig a-d), 22nm (Fig e-h), and 65nm (Fig i-1) processes. All 5 process corners are plotted in

each figure.

been employed for training and testing purposes are VGGI6
(16 layers deep series net), AlexNet (8 layers deep series net),
ResNet18 (18 layers deep DAG), GoogleNet (22 layers deep
DAG), and ResNet50 (50 layers deep DAG) [40]-[43]. The
constellation images are augmented to match the input size
requirement of each network and the final fully connected
layer has been modified to provide 3 output classes. For
C. Using CNN for Constellation Pattern training purposes, the stochastic gradient descent momentum
Since the constellation plots of the processes can be distin- (SGDM) method is used with a learning rate of 0.001 and
guished by visual inspection or from the images, we resort 0atch size of 8. ITmages for W/L ratios of 30 and 40 were
to an unorthodox approach of using convolutional neural taken (constellations with the most compression and phase
networks (CNN) to classify the constellation plots. CNNs are  10ise) as input data and they were divided into 2 datasets
quite good at finding patterns in images and are widely used With an 80% — 20% ratio for training and testing purposes.
for image classification [37]. Here, the legends and texts are
removed from the constellation plots and used for training and

compression. Finally, at high W/L, the compression is so high
that the constellation plot becomes almost circular. At that
point, regular data communication is not possible as that will
cause high bit errors, but it can be used in the testing mode
where the transmitted signal is being captured and analyzed
only for testing purposes, not communication.

D. Performance Comparison using CNN

testing. Fig. 11(a) shows the accuracy plot for each CNN. While
We have used the transfer learning approach [38], [39], the accuracy for simple series networks (AlexNet and VGG16)
is not up to the mark, all the DAG networks provide 100%

where some popular pretrained networks are taken and slightly
modified to our needs. Here, both series and DAG (Directed accuracy. This turns our visual analysis into a good quantitative
performance result.

Acyclic Graph) networks are used. The networks that have
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Fig. 11. (a) Performance comparison plot of a few popular CNNs (VGG16,
AlexNet, ResNetl8, GoogleNet, and ResNet50) trained and tested with
constellation plots for different W/L. (b) Effect of environmental noise on
RF-PSF performance. Low SNR causes low accuracy which quickly increases
with improving SNR.

E. Effect of Noise on Accuracy

RF-PSF exploits process-dependent system-level nonideali-
ties. However, environmental noise also generates system-level
nonidealities which are process independent and random in
nature. So far we have considered the ideal channel, however,
the effect of environmental noise needs to be explored. For that
purpose, White Gaussian Noise (WGN) has been added to the
transmitted wave at different SNR levels. These signals have
been processed just like before to test accuracy. For testing
purposes, we have used GoogLeNet. Fig. 11(b) shows that
the accuracy is low for 0 dB SNR. However, the accuracy
improves quickly as the SNR improves and reaches 100% at
15 dB and beyond.

FE. Future Works

The ultimate goal of RF-PSF is to distinguish between the
two process technology of the same node from different fab-
rication houses (e.g. 22 nm Intel vs 22 nm GlobalFoundries).
Due to the unavailability of two such nodes to us, we cannot
pursue this goal at the moment and have kept it as a future
work. Also, this work proves the concept of RF-PSF with
simulation data. However, experimental validation is needed.
Since RF-PSF is similar to RF-PUF (RF-PSF is process
identity whereas RF-PUF is device identity), PSF properties

(like PUF properties [6], [44]) need to be explored using
experimental data. This is also kept as a future work.

VII. CONCLUSION

In this work, a novel process distinction method, RF-
PSF, has been proposed and proved using simulation data.
Process-dependent properties embedded in the transmitted RF
wave have been used to make a distinction among 3 dif-
ferent process technologies: 14 nm (GlobalFoundries), 22 nm
(GlobalFoundries), and 65 nm (TSMC). Using simulated data
from Cadence and processing it in MATLAB, it has been
shown that, for inter-process variation, 100% accuracy can
be achieved using a DAG CNN fed with constellation data,
whereas ~ 90% accuracy can be achieved using multilayer
perceptrons or artificial neural networks with raw data. An
extensive study has been performed on intra-process variation
using data for 5 process corners of each process technology
and a comparison has been made in terms of the constellation
and intra-process variation detection accuracy. A practical RF
receiver is limited in terms of baseband sampling rate and
ADC resolution. The effect of these two parameters along
with the effect of environmental noise has been explored in
detail. To conclude, the analysis of the time domain signals and
constellation plot, along with performance evaluation using I-
Q data in neural networks proves the existence of PSF in the
RF domain which can be utilized as a zero-power overhead
process distinction method.
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