JOURNAL OF KX CLASS FILES, VOL. X, NO. X, JUN 2025

A Computational Harmonic Detection Algorithm to
Detect Data Leakage through EM Emanation

Md Faizul Bari, Student Member, IEEE, Meghna Roy Chowdhury, Student Member, IEEE, Shreyas Sen, Senior
Member, IEEE

Abstract—Unintended electromagnetic emissions, called EM
emanations, can be exploited to recover sensitive information,
posing security risks. Metal shielding, used by defense orga-
nizations to prevent data leakage, is costly and impractical
for widespread use. This issue is particularly significant for
IoT devices due to their sheer volume and varied deployment
environments. Therefore, there is a research need for an auto-
mated detection method to monitor facilities and address data
leakage promptly. To resolve this challenge, in the preliminary
version of this work [1], a CNN-based detection method was
proposed using HDMI cable emanations that provided ~95%
accuracy up to 22.5 m but had limitations due to training
data. In this extended version, we augment the initial study by
collecting and characterizing emanation data from IoT devices,
everyday electronics, and cables. We propose a harmonic-based
emanation detection method by developing a computational
harmonic detection algorithm. The proposed method addresses
the limitations of the CNN-based method and provides ~100%
accuracy not only for HDMI emanation (compared to ~95% in
the earlier CNN method) but also for all other tested devices and
cables. Finally, it has also been tested in different environments
to prove its efficacy in practical scenarios.

Index Terms—emanation, unintended radiated emission, side
channel, electromagnetic compatibility, CNN, harmonic detec-
tion, Arduino, Zighbee, EMSEC, URE

I. INTRODUCTION
A. Background

IGITAL signal switching between logic states causes
unintended electromagnetic (EM) emissions from elec-
tronic devices and connecting wires. This unintentional switch-
ing emission is called ‘electromagnetic emanation’. It creates
electromagnetic interference (EMI) to the nearby desired sig-
nals and may lead to the violation of electromagnetic compat-
ibility (EMC) regulations. In addition to that, the emanation
signal contains a significant correlation with the source signal,
leading to the recovery of the bit pattern of the source data
from it. Essentially emanation provides a ‘side-channel for
information leakage’ that the attackers can exploit to exfiltrate
data, posing a crucial threat to data security.
Fig. 1(a) explains the concept and characteristics of EM
emanations. Such EM side-channel leakage has been exploited
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Fig. 1. (a) Emanation is unintentional emission from electronic devices and
cables. It is a byproduct of signal switching. (b) The challenges in emanation
detection stem from the fact that these are weak signals as they weren’t
designed to be transmitted. They are often overcast by strong interference
from communication signals. (c) A CNN, trained with the processed power
spectrum, can distinguish the emanation peaks from other signals. However,
it’s hardware-dependent, cannot distinguish multiple sources if present, strug-
gles at low SNR, and has a high computation cost. (d) Proposed harmonic-
based emanation detection method. A peak detector finds the energy peaks
in the spectrum and our computational harmonic detector finds the harmonic
patterns. This method addresses all the limitations of the CNN-based method.

for cryptographic key recovery [2]-[4], keystroke inference
[5], [6], monitoring USB device activity [7], detecting DNN
architecture [8], monitoring smartphone camera activity [9],
cryptographic algorithm and key length detection [10], pro-
gram activity monitoring [11], covert communication [12],
[13], reconstructing screen images [14]-[17], etc. To secure
sensitive facilities, a metal shielding (Faraday Cage) is de-
ployed to contain the emission within it. However, this is not
always feasible for government facilities in the wild (e.g., a
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Fig. 2. Our algorithm development journey from traditional threshold-based method to initial CNN-based method to currently proposed harmonic-based
method. (a) Traditionally used threshold-based method compares the emission peaks against a threshold value. However, too high or too low threshold results
in false negatives and false positives respectively. In general, this method has the worst performance. (b) In the CNN-based method, FFT plots are treated as
images and fed to a CNN which learns to distinguish between the emanation and other signals. This approach renders much higher accuracy, though it has
some limitations stemming mostly from the training data. (c) The harmonic-based method exploits emanations’ distinct harmonic and IMP patterns compared
to other signals. This method performs the best of the three with ~100% accuracy.

temporary base in a foreign country). Also, for non-military
facilities, shielding is not the best solution because almost
all electronic devices leak EM emanation. Shielding the huge
number of electronic devices being used every day leads to
a massive cost and inconvenience. This is an even more
substantial issue for Internet of Things (IoT) devices which
are already deployed in large numbers and growing rapidly.
Research company IoT Analytics has predicted that there will
be nearly 18.8 billion IoT devices by the end of 2024 [18].
Also, even if the shielding is deployed, it may deteriorate
over time or be damaged by a malicious adversary, leading
to the failure in leakage containment. The best solution is to
dynamically monitor the RF spectrum for EM side channel
leakage and take steps if significant emanation is detected.
However, the current emanation detection method involves RF
spectrum sensing using EM probes or SDRs and analyzing
them manually. This calls for a research need to develop
a smart and automatic emanation detection method which
prompted several agencies to fund such research projects (e.g.
SCISRS [19] project by IARPA).

Fig. 1(b) explains the challenges in detecting EM ema-
nation automatically. Emanations are weak as they are just
leakage signals. From the perspective of emanation detection,
regular communication signals are much stronger and act as
interference. Also, EM emanation is hardware-dependent and
its emission frequency can be anywhere in the spectrum.
Searching such weak signals within the huge RF spectrum
is akin to looking for a needle in a haystack. In our initial
observation, it was found that HDMI cables had relatively
stronger emanations compared to other off-the-shelf electronic
components and peripherals. So, in the preliminary version of
this work [1], we collected data from HDMI cables of 3 differ-
ent shielding types (unshielded, single-shielded, and double-
shielded) using Ettus B210 SDR as a receiver (RX) in an office
environment. Improving SNR through time and frequency-
domain processing and applying transfer learning approach (a

pretrained ResNet50 has been retrained using spectrum plots
as images), we achieved ~100% detection accuracy up to 16 m
from the target cable and ~95% accuracy at 22.5m, even
in the presence of strong communication signals. This is the
highest reported range for HDMI emanation in the literature.
Fig. 1(c) shows the principle of CNN-based detection. Despite
having a high accuracy and detection range, the CNN-based
detection approach had some limitations. Firstly, it cannot
differentiate between emanations from multiple sources. Ad-
ditionally, the characteristics of emanations are dependent
on the hardware, making it impractical to train a CNN on
every possible type of hardware. Consequently, the CNN-
based algorithm struggles with new or unfamiliar hardware.
Furthermore, the accuracy decreases in low SNR conditions
(maximum SNR <3 dB) because the fine details often get lost
during the conversion from signal to image domain. Lastly,
the CNN-based method is computationally intensive due to
the complexity of the ResNet50 network, and converting each
spectrum to the image domain requires extra computation for
the same information content.

In this extended version, we augment our previous study
by collecting and characterizing emanation data from a wide
range of IoT devices (Arduino, PSoC, ESP32, and Zigbee),
other commonly used electronic devices (PC and monitor), and
cables (HDMI and USB). Analyzing the data, we find that: (1)
the emanation signal consists of energy peaks in the frequency
domain with harmonics and intermodulation products or IMP
(also forms a harmonic pattern with much smaller frequency
separation), (2) the fundamental frequency of the harmonics
and frequency separation of intermodulation products (IMP)
vary from device to device. While a harmonic detector is
an obvious choice to detect the emanations with harmonic
patterns, traditional harmonic detectors designed for power
systems require apriori knowledge about the fundamental
frequency to detect harmonics. Hence, they are infeasible here.
Also, frequency separations for intermodulation products are
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much smaller than fundamental frequency (=harmonic steps)
and will require a second harmonic detector. In the field of
audio/speech signal processing, there are many works on pitch
(=fundamental frequency) estimation, but they do not detect
all the other harmonic components. Also, they are not usable
for intermodulation products.

Hence, in this work, we have developed a computational
harmonic detection algorithm that doesn’t require any apriori
knowledge about the fundamental frequency, can detect IMPs
simultaneously, and covers a wide range of harmonic patterns
found in the experimental data such as regular harmonics,
harmonics with one or more missing frequencies, different
harmonic groups with 1 common frequency, overlapping IMPs
from multiple sources with the same separation, etc. (later,
Fig. 6 shows and section VI-A explains these cases in detail).
More importantly, the proposed algorithm addresses the lim-
itations of the CNN-based detection method. Fig. 1(d) shows
the proposed harmonic-based emanation detection method and
its advantages. This algorithm is hardware agnostic, can detect
multiple emanation sources simultaneously, and can detect low
SNR emanations (~1 dB). Since it works in the signal domain
and there is no signal-to-image conversion and heavy CNN,
it is computationally much more efficient. The computational
harmonic-based emanation detection method provides ~100%
accuracy up to 22.5m for HDMI emanation, compared to
~95% accuracy achieved in earlier CNN-based methods.
Also, it provides ~100% accuracy for the IoT and electronic
devices that we have experimented with. Fig. 2 shows our
complete journey from the traditional threshold-based method
(78.89%) to our initial CNN-based method (95%) and from
CNN to our latest harmonic-based detection method (~100%).
This manuscript represents > 60% work compared to the
conference version [1], especially in the following aspects:
(1) extensive emanation data collection from diverse devices,
(2) analysis of those data to reveal device-dependent harmonic
patterns with intermodulation products, and (3) development
of a computational harmonic detection algorithm towards
harmonic-based emanation detection method.

B. Our Contribution

o In the preliminary study, using 3 types of HDMI ca-
bles (unshielded, single shielded, and double shielded)
as target and Ettus B210 SDR as receiver, we have
collected HDMI emanation data along with background
profiling over 3 days from 0.5m to 22.5m in an office
environment. Harnessing the power of DSP techniques
to improve the SNR and exploiting the advanced
image recognition capability of modern CNN, we have
improved the emanation detection range from 4 m to
22.5m for an iso-accuracy of ~95%. Also, ~100%
accuracy is achieved up to a distance of 16 m from the
target. Comparing the maximum emanation power from
HDMI cables with 3 types of shielding, we have evaluated
the efficacy of multi-layer shielding for commercially
available cables. Also, we have distinguished emanation
signals based on their screen content with an accuracy of
~91.7% at 16 m.

o In this extended version, we have collected and charac-
terized emanation data from a wide range of IoT de-
vices (Arduino, PSoC, ESP32, and Zigbee), electronic
devices (PC and monitor), and cables (HDMI and USB
cables). Our analysis reveals that these emanations have
distinct harmonic patterns with intermodulation products.

« Based on our study, we have developed a computational
harmonic detector that is device agnostic, requires no
a priori information about the harmonic pattern, can
detect low SNR (~1dB) emanations, covers a wide
variety of test cases, and works in the signal domain
(unlike CNN-based method, it doesn’t require trans-
formation from signal to image). It provides ~100%
accuracy up to 22.5m in the office corridor, compared
to ~95% of the CNN-based method. It also achieves
~100% detection accuracy for emanations from a wide
range of electronic devices and cables.

o The proposed algorithm has been tested in different
environments (anechoic chamber, office building with
both line-of-sight and non-line-of-sight cases) to ensure
its efficacy in practical scenarios.

C. Organization of the Paper

The rest of the paper is structured as follows: section II dis-
cusses the relevant works published in the literature. Section III
describes our experimental setup and measurement results.
This includes both earlier data collection from HDMI for the
conference version of this work and new data collection from
IoT devices (Arduino, PSoC, Zigbee, and ESP32), other day-
to-day electronics (PC, monitor), and cable (USB cable). In
Section IV, the traditional threshold-based emanation detection
method is explored. Section V describes our initially proposed
CNN-based detection method in detail. It also analyzes the
effect of multi-layer shielding to suppress emanation. Sec-
tion VI explains the newly proposed harmonic-based emana-
tion detection method. At the heart of this approach, there is
a computational harmonic detection algorithm which has been
described in detail with pseudocode. Section VII evaluates
the performance of the harmonic-based detector, analyzes its
device-agnostic detection feature, and compares it with other
emanation detection methods proposed in the literature. Also,
it is tested in different environments to show its efficacy in
various deployment scenarios. Finally, section VIII concludes
the paper with a summary.

II. RELATED WORKS

Unintended electromagnetic leakage or emanation has long
been exploited by defense agencies for eavesdropping. During
World War II, Bell engineers accidentally noticed such leakage
from a 131-B2 mixer that was provided to the Signal Corps by
Bell Telephone [20]. With further investigation, the engineers
succeeded in recovering 75% of the plain text of so-called
encrypted data, proving the extent of the threat posed by
such leakage. After that, emanation was studied by different
agencies, leading to many policies and security protocols.
The codename TEMPEST is used to refer to the classified
US government program that studies the ‘emission security’
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Fig. 3. (a) HDMI emanation data collection setup in the office corridor using Ettus B210 SDR (connected to a wideband telescopic antenna) as a receiver.
The target HDMI is connected between a PC and a monitor (shown in inset). (b) (c) (d) (e) physical setup for emanation data collection from Arduino,
PSoC, ESP32, and Zigbee respectively. Emanation is picked up using an H20 magnetic probe, amplified using a 40-dB wideband amplified, and analyzed in
a spectrum analyzer. (f) block diagram of the CNN-based emanation detection method that was proposed in the preliminary version of this work [1] (g) block
diagram of the newly proposed harmonic-based emanation detection method (this work).

(EMSEQC) issues, possible exploitation, countermeasures, and
standardizations (e.g., NATO SDIP-27 Level A, Level B, etc.)
[21]. Most information regarding TEMPEST is still classified.
The first unclassified research work on EM side-channel
emission was published by Wim van Eck in 1985 [22]. In
a BBC program titled “Tomorrow’s World”, he demonstrated
that the screen content can be successfully reconstructed at
a long range using very cheap equipment. Electromagnetic
emanations are sometimes called ‘van Eck radiation’ after
him [21]. Repaired cables also show such emanation [23]. As
mentioned in the introduction, electromagnetic emanation is
mostly used for various data exfiltration purposes. However,
it can also be used for defensive purposes as well. Authors
in [24] have used EM emanation to fingerprint IoT devices.
Human-induced EM emanation has been used for access
control (touch to unlock) as well [25]. Authors in [26] have
utilized such EM leakage to detect the presence of a rogue

device in a secure facility. Emanation signal from mobile
devices has been proposed to be used for digital forensics
[27]. Authors in [28] have used emanation signals to identify
motherboard components to find suspicious ICs (probably
counterfeited) on board.

The emanation spectrum varies with hardware (even for
different programs being executed on the same device). How-
ever, a common feature in almost all of them is harmonic
patterns and intermodulation products (IMP) forming upper
and lower sidebands. So, harmonic detectors can be used to
detect their presence. These detectors are widely studied in
power systems where they are deployed in the active power
filters to detect the harmonics on the power signal created
by nonlinear loads and cancel them (by injecting signals with
the same magnitude but opposite phase). There are harmonic
detectors based on FFT [29]-[31], wavelets [32]-[35], space
vector transformation [36], instantaneous reactive power [37],
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TABLE I

DESCRIPTION OF TARGET EQUIPMENT FOR EMANATION DATA COLLECTION

Equipment type

Target device/cable

Description

IoT Devices

Arduino

It’s a microcontroller board used in many academic projects, robotics, home automation, low-cost
scientific instruments, etc. Our specific board is Arduino Uno R3 with ATMega328P MCU [49].

PSoC

It’s a family of programmable embedded systems based on the ARM Cortex-M processor. PSoC is
used in industrial automation, household appliances, medical devices, security systems, etc. Our specific
model is 32-bit PSoC SLP Arm Cortex-M3 [50] with CY8CS58LP family SoC.

Zigbee

These devices are used to create wireless mesh networks for building automation, lighting, smart city,
medical, and asset tracking [51]. It is based on IEEE 802.15.4 specifications. Our specific model is
Xbee S2C.

ESP32

It is a series of low-cost, low-power microcontroller modules with Wi-Fi and Bluetooth connectivity.
They are used for a wide range of applications including smart industrial devices, PLCs, smart medical
devices, smart energy devices (HVAC, thermostats, etc.), wearable health monitors, etc. We use ESP32-
DevKitC with ESP32-WROOM-32E module on board [52].

Other Electronic

Desktop Computer

We have used a Dell OptiPlex PC with an Intel core™ i7-6700 processor and 8 GB of RAM (2400
MHz)

Devices
Monitor We have used a Dell P2319H monitor which is a 1080p 60Hz LED monitor.
USB cables are most commonly used to connect USB peripherals. We have used an unshielded USB
USB Cable
Cables cable.
HDMI Cable HDMI is the most common display cable nowadays [53]. In our preliminary version of this work [1],

we used 3 types of HDMI 2.0 cables (shielded, single-shielded, and double-shielded).

[38], adaptive variational mode decomposition (AVMD) [39],
ensemble empirical mode decomposition (EEMD) [40], neural
networks [41], etc. A common observation on power system
harmonic detectors is that the design and system parameters
are selected according to the power grid and fundamental fre-
quency (power supply frequency) which is known beforehand.
This approach is not feasible for emanation detection as the
fundamental frequency can be anywhere in the RF spectrum.

There are extensive studies in audio signal processing
to estimate the pitch or fundamental frequency of speech
or music [42]-[48]. However, these algorithms also have
some assumptions stemming from speech and music signal
properties. Also, they don’t detect the full harmonic pattern.
Hypothetically, it is possible to estimate the pitch using these
audio processing algorithms and then use the power harmonic
detectors to find the rest of the harmonics. But none of these
are designed for the RF spectrum which is humongous (up to
~300 GHz) compared to both audio spectra (usually limited to
20 kHz) and power spectra (50/60 Hz fundamental depending
on the country, with harmonics within a few kHz range). A
slight error in pitch estimation will lead to missing detection
of several harmonics. Let’s assume a pitch detector with a
2% error. So, a 100 MHz fundamental may be estimated as
98 MHz and the harmonic detector will try to find the 10"
harmonic at 980 MHz, which is 20 MHz off. Considering the
bandwidth of many SDRs, this harmonic may not even get
detected at all. Finally, these approaches will not work for
intermodulation products. To sum it up, a dedicated harmonic
detector is required for electromagnetic emanation detection.

III. DATA COLLECTION
A. Target Equipment

For emanation data collection, the target devices are chosen
in such a way that a diverse set of electronic devices with var-
ious microcontrollers and system-on-chips (SoC) are included.

It is impossible to cover all types of leaking electronics, but
with careful selection, the collected data can be representative
of the majority of the electronic devices being used every day
without the loss of generality. With that in mind, data were
collected from 3 groups of devices (IoT, everyday electronics,
and commonly used cables) which are described in Table I.

B. Experimental Setup

Fig. 3(a) shows our experimental setup for emanation data
collection from an HDMI cable in an office corridor (the inset
shows a zoomed-in view of the target HDMI). An Ettus B210
SDR connected with a wideband telescopic antenna is used as
a receiver. A GNURadio interface collects the received data,
samples at 4 MS/sec, and stores them. Fig. 3(b)-(¢) shows
our experimental setup for Arduino, PSoC, ESP32, and Zigbee
respectively. Emanation signals are picked up by an EM probe
(H20), amplified by a 40-dB wideband LNA, and fed to a
spectrum analyzer.

Fig. 3(f) shows the block diagram of the CNN-based emana-
tion detection method. Captured samples are processed in the
time and frequency domain to improve SNR and converted to
images (spectrum plots). These plots are then fed to a CNN to
detect the emanation signal. Fig. 3(g) shows the block diagram
of the newly proposed harmonic-based emanation detection
method. Captured 1Q data are processed to improve SNR. But
then instead of converting to spectrum images, energy peaks
are detected using a peak detector. The peaks are fed to our
computational harmonic detector to find the harmonic group(s)
and corresponding emanation signal(s), if any.

C. Measurement Results and Analysis

1) Background Measurement: For the CNN-based method
(preliminary version of this work), HDMI emanation was
considered as positive class, while RF background data (HDMI
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Fig. 4. (a) RF background signal (HDMI disconnected, PC and monitor off) shows the presence of DC offset, LTE band signal, and other interferer. (b)-(i)
Unintended electromagnetic emission spectrum for HDMI, Arduino, PSoC, ESP32, ZigBee, Desktop, Monitor, and Unshielded USB cables respectively.

disconnected and there is no HDMI emanation) was labeled
as negative class. To make the background profile robust, we
collected background data on 3 separate days at 3 separate
times: in the morning, at noon, and at night. Fig. 4(a) shows a
sample background spectrum. We chose 742.5 MHz or the 5"
harmonic as the target frequency where HDMI emanation was
observed to be the strongest. Coincidentally, it overlaps with
the LTE band (lower SMH block, from 729 MHz to 746 MHz).
Fig. 4(a) clearly shows the LTE signal energy. Also, there
are multiple experimental labs and office rooms on both sides
of the corridor, contributing to some additional interference.
Furthermore, the DC offset can be seen at the center. For
the positive class, HDMI emanation data were collected from
0.5m to 22.5m, at 0.5m intervals for 3 types of cables:
unshielded, single-shielded, and double-shielded.

2) Spectral Analysis: Fig. 4(B)—(1) shows emanation spec-
tra from HDMI, Arduino, PSoC, ESP32, Zigbee, PC, monitor,
and USB cables respectively. The key observation is that each
device has its distinct electromagnetic leakage with unique har-
monic patterns and sidebands (consisting of intermodulation
products or IMP). These patterns can be utilized to identify

them uniquely. Table II lists the fundamental frequency and
intermodulation product values for each device.

TABLE 11
HARMONIC AND IMP PATTERNS OF TEST DEVICES
Emanation source | Fundamental frequency (MHz) | IMP step (MHz)

HDMI 148.5 0.07
Arduino 16 many IMPs
PSoC 64 1.6
ESP32 6 0.525
ZigBee 24 3
Desktop 33 -
Monitor 148.5 0.07

USB 480 0.00025

IV. TRADITIONAL THRESHOLD-BASED DETECTION

A. Detection Method

Threshold-based peak detection is widely used in literature,
including some recent ones [26]. The collected I-Q data are
transformed into the frequency domain via FFT and compared
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Fig. 5. (a) Using Welch’s method of power spectrum estimation (along with Kaiser window), we get ~15dB SNR improvement. (b) Comparison of 3 types
of HDMI (unshielded, single-shielded, and double-shielded) in terms of maximum emanation power. The unshielded cable is much louder in most cases while
the difference between the other two is trivial. (c) Performance comparison between threshold-based detection (in the best case at -55 dBm threshold) and
CNN-based detection (both for direct FFT and Welch’s method). SNR improvement provides a better detection range for iso-accuracy and a better accuracy
for iso-distance than FFT from raw data. In both cases, the CNN-based method outperforms the threshold-based method by a high margin. (d) ResNet50
network which is used in the CNN-based method. Images in our dataset are augmented to match the input size (224x224x3). The fully connected layer and
the output layer are modified to classify two groups: emanation vs every other signal.

TABLE III
PERFORMANCE ANALYSIS OF THRESHOLD-BASED DETECTION

Threshold (dBm) | FP (%) | FN (%) | Accuracy (%)
-45 0 74.07 62.96
-55 26.67 15.56 78.89
-65 100 0 50

against a threshold level. If there is a power peak above the
threshold, we detect the presence of an emanation signal.

However, the accuracy is dependent on the threshold. If
the threshold is too high, there will be a lot of false negative
(FN) values, whereas too-low thresholds result in a lot of false
positives (FP). We have tested the detection performance of
our dataset for 3 threshold levels. Table III shows that the
—55dB m threshold provides the best accuracy, which is still
pretty low (78.89%).

B. Challenges

Table III shows that threshold-based detection does not
perform well (best-case accuracy < 80%). There are several
reasons for that. The key issue is the strong interference from
other signals (LTE signals, emanations from other cables,
etc.). These peaks in the background are falsely detected as
emanations for low thresholds, leading to high FP values. On
the other hand, raising the threshold does not help much as
emanation signals are weak and cannot cross the high thresh-
old bar. This leads to high FN values. Also, the background
noise level keeps changing based on the environment. This
poses a challenge for adaptive threshold selection. Another

issue is the peak at the center frequency due to DC offset. To
address these issues, we resort to CNN-based detection.

V. CNN-BASED DETECTION
A. SNR Improvement using DSP Techniques

Before training a CNN, we want to improve the perceived
SNR of the collected signal. To that end, we apply some known
techniques in the DSP domain.

1) Windowing in Time Domain: Our data is finite in the
time domain, which is equivalent to applying a rectangular
window to an infinite time sequence of data. However, the
rectangular window has a significant spectral leakage from
the main lobe to the side lobe [54]. There are better windows
(Hanning, Hamming, Kaiser, etc.) with lower spectral leakage.
The downside is the larger main lobe width. However, the main
lobe width is inversely proportional to the data length and
we have significantly long data to overcome this limitation.
The spectral leakage for the Kaiser window (5 = 5.66) is
only 0.01% compared to 9.28% for the rectangular window.
Also, relative side-lobe attenuation reduces from —13.3dB
to —41.4dB. We have windowed our data with the designed
Kaiser window (5 = 5.66).

2) Power Spectrum Estimation using Welch’s Method:
We have used Welch’s method of power spectrum estimation
(modified periodogram with averaging) as a better spectrum
estimate. A sequence of 4 x 10° samples (0.1s data) is taken
and divided into 8 segments with 50% overlap. A modified
periodogram (FFT of autocorrelation, instead of direct FFT)
is applied to each segment and the output is averaged. Fig. 5(a)
compares the spectrum of I-Q data corresponding to emana-
tions from unshielded HDMI cable at 1m distance, found
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Fig. 6. (a) Regular harmonic frequencies with fundamental frequency f. (b) Missing single harmonic (here, 4t" harmonic is missing). (c) Missing multiple
harmonic frequencies (here, 27d and 37 harmonics are missing). (d) Two harmonic groups have a common frequency (f4) in them. (e),(f),(g) are more
specific to IMPs only. (e) Two overlapping IMP groups with same frequency separation d. (f) Two separate IMP groups with same frequency separation d,
but far away from each other (group separation = = nd, where n is large. Essentially, they are part of same IMP group. (g) Similar to the previous case, two
separate IMP groups with same frequency separation d, but far away from each other. However, group separation x # nd, where n is large. Hence, they are

two distinct IMP groups.

using direct FFT and Welch’s method. It is shown that the
maximum peak is similar for both, but the noise level is
reduced. We gain ~ 15dB SNR improvement.

3) Averaging in Frequency Domain: Frequency domain
averaging reduces noise power, keeping the signal peaks
almost intact. We apply Welch’s method for 9 consecutive
sequences with 50% overlap in the time domain. The spectra
of the sequences are averaged to reduce the noise power.

B. Effect of Multi-Layer Shielding on Emanation

After improving the SNR, we want to check the efficacy
of multi-layer shielding before moving on to training CNN.
Fig. 5(b) shows the emanation power for 3 types of HDMI
cables from 0.5m to 10.5m at 1 m intervals. Except for a few
outliers, the maximum emanation power for the unshielded
cable (blue line) is significantly higher than the other two,
which is expected. However, the difference between the single
and double-shielded cables is trivial.

C. Transfer Learning using ResNet50

Our final step is to evaluate the performance of the CNN-
based detection method. For that, we have used transfer
learning approach where a widely used, pretrained CNN (e.g.
VGG16 [55], AlexNet [56], GoogLeNet [57], ResNet50 [58],
etc.) is retrained [59], [60] with a new dataset. These networks
are carefully designed and reviewed by experts in the field
and are known to classify images in standard datasets (e.g.
ImageNet) with high accuracy. Our initial testing shows that
ResNet50 works best for our case.

Residual Neural Network or ResNet revolutionized the use
of the ultra-deep network by using ‘skip connection’ to address
the issue of ‘vanishing gradient’ and ‘degradation problem’.
It performed much better compared to VGG or GoogLeNet
on the ‘ImageNet dataset’ [61]. We will exploit the enhanced
image classification capability of ResNet50 for our dataset. For
training purposes, we have used the frequency domain plots
as images. The rationale behind using the plots instead of the
1D sequence is to exploit the advanced image classification

capability of CNN (ResNet50). Our images are augmented to
match the input size. The fully connected layer and the output
layer are adjusted for binary classification (emanation vs
others). The train, test, and validation data ratio was 70:20:10.
We have used an initial learning rate = 0.001, mini-batch size
= 8§, and max epoch = 30. Data are shuffled at each epoch.

D. Performance Evaluation

Fig. 5(c) shows the performance of ResNet50 via transfer
learning for a distance of 4m to 22.5m. For data with better
SNR (thanks to Welch’s method), we get ~ 100% accuracy
up to 16 m which gradually reduces to ~ 95% at 22.5m. This
figure also compares the performance benefit with improved
SNR. Compared to direct FFT, we get a longer distance for
iso-accuracy (e.g. for 100% accuracy, we get 16 m compared
to 12m) and higher accuracy for the same distance (e.g. at
22.5m, we get ~ 95% accuracy compared to ~ 88.9%). In
both cases, the CNN-based method outperforms the threshold-
based method by a high margin.

E. Monitor Content Type Detection - Still vs Video

In the literature review section, we have discussed that
some works have reconstructed screen images with plain text
and some geometric shapes. Some recent works have tried to
reconstruct video signals. However, these works assume that
the monitor is running solely a video or just an image. An
automated method is necessary to detect the content type of the
monitor (still image vs video) and switch to the corresponding
detection algorithm. In this subsection, we try to fill that void.

Our data collection method is the same as before, except
that a video was playing on the monitor. The emanation signal
captures the changes due to the video playback. We have used
the same data processing steps before training ResNet50 with
the data to check whether it can distinguish between the two.
Our evaluation shows that we get 91.7% accuracy at a distance
of 16 m which gradually drops at a further distance.
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Fig. 7. (a) Flow diagram of the harmonic-based emanation detection algorithm. At the 4*" step, it requires harmonics and intermodulation products detection,
where our computational harmonic detector comes into play. (b) Logical flow diagram of the computational harmonic detector.

VI. HARMONIC-BASED EMANATION DETECTION
A. Harmonic and Intermodulation Product (IMP) Types

Fig. 6 shows various harmonic and IMP patterns. Fig. 6(a)
shows a group of regular harmonic frequencies where the
fundamental frequency is f. However, in practical scenarios,
often 1 or 2 harmonics are missing. Fig. 6(b) shows 4"
harmonic missing and Fig. 6(c) shows both 2"¢ and 37¢
harmonics are missing. A little complicated scenario is shown
in Fig. 6(d) where we have two overlapping harmonic groups
marked by blue (consisting of frequencies f1, f3, f1, f5, and
f7) and red color (consisting of frequencies fo, fs, fs, and
fs). Both have a frequency f, common in them. Fig. 6(e), (f),
and (g) show several cases that are mainly found for IMPs.
Fig. 6(e) shows two different IMP groups having the same
frequency difference d. Fig. 6(f) shows two IMP groups with
the same frequency separation d, but far away from each other.
The separation between the groups is * = nd, where n is a
large number. Hence, they are essentially the same IMP group.
A contrasting scenario to this is shown in Fig. 6(g). Here, we
also have two IMP groups with separation = # nd. Hence,
they are distinct IMPs from different sources. Our algorithm
is developed to cover all these cases.

B. Top Level Algorithm

Fig. 7(a) shows the top-level abstract of the harmonic-based
emanation detection algorithm. First, the spectrum of interest
is scanned. If the spectrum is enormous, it is divided into
smaller chunks of uniform frequency span to ensure good
enough frequency resolution to distinguish intermodulation

products (IMP). Next, the scanned data are processed using
DSP techniques described in subsection V-A to improve SNR.
Then, the spectrum data are fed into a peak detector that
detects all the energy peaks in the frequency domain. These
are suspected emanations. In the next step, the list of peak
frequencies is fed into our computational harmonic detector,
which finds all the harmonics and intermodulation products.
The ‘HARMONIC DETECTION’ step from Fig. 7(a) has been
expanded into Fig. 7(b) to show the flow diagram of the
underlying computational harmonic detector algorithm. This
algorithm is explained later in subsection VI-E. Finally, by
analyzing the detected harmonic and IMP pattern, it is inferred
whether any unintended emission is present.

C. Peak Detection

Emanations appear as spurious peaks in the frequency do-
main. A simple peak detector can detect those peaks and send
that frequency list to the computational harmonic detector. The
wavelet transform-based peak detector [62] is widely used and
available as a built-in function in the SciPy Python module
[63]. This built-in function is used in our code.

D. Helper Functions Development

To keep the main algorithm organized and modular, two
helper functions are developed. The first helper function is
a custom quicksort function that keeps track of the original
indices. Let’s assume we have a 3 x n array whose first
row contains pixel values while the second and third rows
contain its coordinates or (x,y) indices. We want to sort the
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pixel values while keeping their original indices with them. To
achieve this, a modified version of the well-known quicksort
algorithm is implemented where the comparison is made based
on 1% row values, but during binary grouping, the whole
column is appended. Algorithm 1 shows this custom quicksort
method.

In the experimental data, harmonic values are often not
exact multiples of each other. Rather, the harmonics have
slightly different frequencies than expected. To address this, a
second helper function is defined which takes a tolerance limit
and finds the group of values that differ within that tolerance
range. Then it replaces the whole group with the average of
it. Algorithm 2 shows the pseudocode of this function.

Algorithm 1 Customized Quicksort Algorithm
1: function CUSTOM_QUICKSORT(X)

2: r < no of rows in X

3: ¢ < no of columns in X

4: if ¢ < 2 then

5: | return X

6: X1, X2+ ]

7: forn=20,...,c—2do

8: if X[0][¢] < X[0][c — 1] then

9: append(X1, X[:,1])

10: else

11: - append(X2, X[:,1])

12: return append(CUSTOM_QUICKSORT(X1),
. X[:,c—1],CUSTOM_QUICKSORT(X2))

Algorithm 2 Function to Fix Differences in Harmonic Steps
1: function FIX_FREQ_VAR(D, D;pdes; € freq)

2 140

3: while i < D;,4e. — 1 do

4: J i

5 while | D[0][i] — D{0][j + 11| < €7req x DI0][j + 1]
0

6: j—i+1

7: if j==D;,4e. — 1 then break

8 if j>i then

9: - D[0][i : j + 1] < average(D[0][i : 5 + 1])

10: g +1

11: L return D

E. Computational Harmonic Detector

Fig. 7(b) shows the logical flow diagram of the algorithm
and Algorithm 3 shows its pseudocode. It works in the
following steps:

Stepl: A list of frequencies F' = {f; | j = 1,2,...,n}
is taken as the input. From this frequency list, differences
between every possible pair of frequencies are calculated
(djr = f; — fe | J,k = 1,2,...,n) to form a difference
matrix D. However, such a matrix will be symmetric, with
the principal diagonal being all ‘0’. Hence, for computational
efficiency, dj;, is calculated only for j < k. The values are
stored as a 3 x n array with differential values (d;) in the first

row and the frequency indices (7, k) in the second and third
rows. Now, if there is only 1 column in the difference array,
then there are no harmonics and the process is terminated.
Otherwise, the algorithm moves on to the next step.

Step2: In this step, the helper functions that were developed
before are used. First, the difference array is sorted using our
custom quicksort function, keeping frequency indices tracked.
Next, for the harmonic detection case (not IMP), the slight
variation in difference values is fixed using our helper function.

Step3: Certain d;;, values are unique, while other values
are multiples of these. Next, these unique difference val-
ues are found. For each unique value, its integer products
are taken with it to form a product group. From each of
these groups, one or more harmonic sets are found using
the FIND_HARMONICS function. But before calling that
function, certain groups are ignored.

Assume 3 frequencies (f1, fo, and f3) with 2 difference
values: d12 = d and do3 = Nd, where N € Z. However, there
must be another differential value d13 = (N+1)d in the group.
In other words, there cannot be only 2 values in the product
group in practical scenarios. Groups with < 2 elements are
created numerically, while they cannot exist experimentally.
Hence, such groups are discarded. Also, specifically for IMPs,
there might be some groups with > 2 elements while all
of them are the same. Let’s assume (N + 1, N € Z) IMP
frequencies with N number of difference values, all being d.
It’s apparent that such N element group can not exist in reality
as there must be at least another element with a differential
value Nd. Hence, such groups are discarded.

Step4: For each group formed in the previous step,
FIND_HARMONICS function is called. Its pseudocode is
given in Algorithm 4. For the first column of the group, a
new harmonic list is formed with the 2 frequency indices of
that column. For all other columns, if any (or both) of the
frequency indices are already in an existing list, it’s simply part
of that harmonic or IMP group. If only one frequency index
matches, the other frequency index is appended to that list. But
what happens if none of the indices are part of any existing
harmonic lists? That can never happen for harmonics because
2 harmonic groups with the same difference (=fundamental
frequency) are basically the same harmonic group.

However, this condition may arise for IMPs with 2 possible
scenarios as was described in Fig. 6(f) and Fig. 6(g). Firstly,
if the difference between any frequency in one of the existing
lists and the test frequency indices is a multiple of the
fundamental step of that list, the 2 frequency indices of the
test column are part of it (similar to Fig. 6(f)). So the test
column’s indices are appended to that list. However, if the
difference is not a multiple of the fundamental step, the test
column is part of a new IMP group as was shown in Fig. 6(g).
So, a new harmonic list is formed with those two frequency
indices. The loop keeps running till the last column of the
group. In the end, it discards any harmonic list with only 2
frequency elements and returns the other harmonic lists. In the
main harmonic detector function, harmonic lists returned by
the FIND_HARMONICS function (for each unique element
group) are appended together to form a final harmonic or IMP
list.



JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, JUN 2025 11

Algorithm 3 Harmonic and Intermodulation Products Detection Algorithm

1:

28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52: |

# Initializing variables and arrays

Freq_list < Frequencies where peaks are found
D, nin < Minimum difference

Dar < Bandwidth/2

€freq < Tolerance for frequency variation

function DETECTOR(F'req_list, Diminy Dimaz, €freq)
harmonic_freqz «+ { } # Empty Python Dictionary
harmonic_steps < [ ]
unique_steps < |[ |
D[]
n_harmonic_group, Dindes < 0
# Difference matrix D formation in a (3 X n) array
for i in range(len(Freq_list)) do
for j in range(len(Freq_list)) do

dif ference = |Freq_list(j) — Freg_list(i)]

if i>j or dif ference < D,y or dif ference > D, g, then

~ continue

else

L append(D, [difference, i, j])

Dindez +=1

#If D has 1 column, return empty array and dictionary as there are no harmonics
if D;pger < 2 then
| return harmonic_steps, harmonic_freqz

# Sorting difference matrix columns based on difference values (first row) from small to large

D+ CUSTOM_QUICKSORT(D) # CUSTOM_QUICKSORT() function is defined in algorithm 2
if ~flag_subband then

L D« FIX_FREQ VAR(D, Dindcx, €freq) # FIX_FREQ_VAR() function is defined in algorithm 3

# Find harmonics or intermodulation products
for i in range(len(D]0])) do

if i == 0 then
append(unique_steps, D[0, 0])
group < D[:, (D[0] % DI[0][0]) == 0]

else if (D[0,:] % unique_steps) == O then

append(unique_steps, D[0,1])
group + D[:, (D|0] % D[o][i]) == 0]
else
| continue
if len(group) < 2 then
~ continue
else if flag_subband and len(set(group)) < 2 then
- continue
else

# FIND_HARMONICS() function is defined in algorithm 4

temp_harmonic < FIND_HARMONICS (group, Freq_list)

n_temp_harmonic < len(temp_harmonic)

if n_temp_harmonic == 0 then continue

else
append(harmonic_steps, group|0][0] * n_temp_harmonic)
for (j = n_harmonic_group,...,n_harmonic_group + n_temp_harmonic) do
' harmonic_freqz[j]=sort(temp_harmonic[j-n_harmonic_group])
n_harmonic_group += n_temp_harmonic

return harmonic _steps, harmonic_freqz
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Algorithm 4 FIND_HARMONICS Function to Find IMPs of Same Differential Values and Harmonics
1: function FIND_HARMONICS(group, F'req_list)

2: harmonic_subfreqz < { }
3: n_harmonic <+ 0
4: FLAG = False
5: for i in range(len(group[0])) do
6: if 7 == 0 then
7: harmonic_subfreqz[n_harmonic] = [group[1][0], group[2][0]]
8: n_harmonic +=1
9: else
10: for j in range(n_harmonic) do
11: flag_match_first < (harmonic_subfreqz[j| == group|[1][i])
12: flag_match_second < (harmonic_subfreqz[j] == group[2][i])
13: if flag_match_first == True and flag_match_second == True then
14: FLAG = True
15: break
16: else if flag_match_first == True and flag_match_second == False then
17: FLAG =True
18: append(harmonic_subfreqz[j], group[2][i])
19: break
20: else if flag_match_first == False and flag_match_second == True then
21: FLAG =True
22: append(harmonic_subfreqz[j], group[1][i])
23: break
24: else
25: separation < Freq_list[harmonic_subfreqz[j|[—1]] — Freq_list|group[1][i]]
26: if (separation % group[0][0]) == 0 then
27: FLAG =True
28: append(harmonic_subfreqz[j|, [group[1][i], group|2][i]])
29: break
30: else
3L L[ continue
32: if FLAG == True then
33: . FLAG = False
34: else
35: L harmonic_subfreqz[n_harmonic] = [group[1][i], group[2][i]]
36: L n_harmonic +=1
37: Final_Dict + { }
38: 7+0
39: for i in range(n_harmonic) do
40: if len(harmonic_subfreqz[i]) > 2 then
41: Final_Dict[j] = harmonic_subfreqz|i]
42: j+=1
43: else
44: _ continue
45: | return Final_D:ict
VII. RESULTS AND DISCUSSION to which ~100% accuracy is achieved for various types of

. ) devices that we tested.
A. Performance Evaluation of Harmonic-based Detector

Applying our harmonic-based emanation detection method, TABLE IV
we achieve ~100% accuracy for all the test devices. However, PERFORMANCE ANALYSIS OF THRESHOLD-BASED DETECTION
the distance up to which this accuracy is achieved varies from - -
. ) ; . Device type Maximum range (m)
device to device. Hence, accuracy alone doesn’t paint the full ToT device (Arduino Uno)
picture. Both the accuracy and the distance at which that ac- Everyday electronics (desktop) 3
curacy is achieved are required for the complete performance Cables (HDMI) 2.5

evaluation. Table IV shows the maximum detection range up
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TABLE V
COMPARISON OF UNINTENDED RF EMISSION DETECTION METHODS
. Accuracy Detection .
Paper Method Target devices (%) range (m) Environment(s)
Guardiola et al. [64] Nonparametric method Two-way talk radios 63.6 3 Unspecified
Hegarty et al. [65] CNN Arduino Uno 100 0.3 Lab
Short Time Fourier Anechoic chamber, office, &
Vuagnoux et al. [66] Transform (STFT) PS2 Keyboard % 20 residential building
Friedel et al. [67] Simple Act‘élxx)welgh““g IED 86.1 02 Anechoic chamber
Correlation between external
Liu et al. [68] stimulus and spectral pattern Small camera (FLIR 93.23 0.1 Lab
USB camera)
change
. . Arduino Uno,
Alexander et al. [69] Emanatzgr{/l\l\//llf)giaesl e?)nalytlcs Raspberry Pi B+, 100 0.3 RF Shield Box
Teensy LC
Mo et al. [70] Support E/Ses]tl(\)/[r)Machme LCD monitors 98.95 0.1 Semi-anechoic chamber
. Cross-correlation and Hurst RC toy car, wireless .
Hertenstein et al. [71] parameter thresholding doorbell 97.6 (ROC) 0.25 Unspecified
Goksu et al. [72] Wav(‘ii‘f}t, :;‘2;‘3 nalysis Cars 97 103 Lab
Acharya et al. [73] Prlgcnlf le;lSi(io(IlI;g(Xl)ent Two-way radios Unspecified 3 Unspecified
Neural Network or RC toy truck, wireless Anechoic chamber, office
Weng et al. [74] Multilayer Perceptron (MLP) doorbell 98.99 (Ave) 10 corridor
. harmonic and IMP IoT devices, everyday Lab, office room, open
This work pattern-based detection electronics, and cables 100 225 space, & anechoic chamber

Applying our computational harmonic detector-based em-
anation detection method to our previously collected HDMI
dataset (emanation from 3 types of HDMI cable in an of-
fice corridor [1]), ~100% accuracy has been achieved up
to 22.5m range. If we compare this result with our earlier
CNN-based method, for iso-accuracy of ~100%, harmonic
method has an extended detection range of 22.5m, compared
to 16 m for CNN approach. Also, for iso-distance of 22.5m,
harmonic method has a better detection accuracy (~100% vs
~95%). The following subsection compares our harmonic-
based emanation detection method to other methods proposed
in literature.

B. Performance Comparison

Table V compares our work with other notable works
for unintended electromagnetic emission detection. Before
delving into a detailed discussion, two essential factors must
be considered regarding this comparison. Firstly, older devices
used to have much higher EM emanation than newer ones. For
example, PS2 keyboards (used in [66]) had clock signals and
often no shielding. So they used to have much higher emis-
sions compared to modern USB keyboards that use differential
signals (no clock) and shielding. Secondly, the primary goal
of some of these works was not just to detect the emanation
itself but to use it for other applications (covert communication
[65], hidden camera detection [68], vehicle identification [72],
etc.). Despite that, these works provide diverse insight towards
emanation detection and are kept in this table.

The comparison is made in terms of 5 parameters: (1)
detection method, (2) target devices, (3) accuracy, (4) max-
imum detection range, and (5) test environments. Several
observations can be made from this table. Firstly, while other
works focus on a specific type of device and a small test set,

we have covered a wide range of devices (eight devices in
three categories). Since emanation properties are hardware-
dependent, a generalized, device-agnostic method is advan-
tageous over device-specific methods in practical scenarios.
Secondly, we have one of the best accuracies (100%) reported
among published works. While Hegarty et al. [65] and Alexan-
der et al. [69] also achieved 100% accuracy, their detection
range was very short, well below a meter (0.3 m). Combining
accuracy and maximum detection range, our method clearly
renders better performance than others. Finally, our method is
rigorously tested in different environments (anechoic chamber,
lab, office room, open space out of office room, etc.) where
RF background profiles vary widely. The only work that was
found to perform this level of testing was done by Vuagnoux
et al. [66].

C. Device Agnostic Detection

The properties of emanation signals are hardware-
dependent. So, an EM emanation detection method developed
for one type of device will not work with other types.
This limits the deployment feasibility of such methods. Our
previous CNN-based method was also limited to the device
data with which it was trained. However, the harmonic-based
method is more device-agnostic. It has been tested to achieve
100% accuracy for IoT devices (Arduino, PSoC, ESP32, and
ZigBee), everyday electronics (desktop and monitor), and
cables (HDMI and USB). Additionally, it has been tested for
collected data from three other devices (RockPi 4 B+, webcam,
and thumb drive) in our funding agency’s testbed, where it also
achieved ~100% accuracy in emanation detection. So, it is of
statistical significance to claim that our proposed harmonic-
based emanation detection method is mostly device-agnostic.
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c. Outside an office room

Fig. 8. To test the efficacy of the proposed algorithm in different environments, HDMI emanation data are being collected in (a) an anechoic chamber, (b)
open space in a building (line-of-sight or LOS), and (c) outside of an office room (non-line-of-sight or NLOS).

D. Emanation Detection in Other Environments

Environmental variation is a crucial factor as noise and
interference levels change significantly. Also, EM emanation
couples with long metallic elements to travel further. The
presence of such elements also varies with the environment. To
test our algorithm in different environments, an HDMI cable
is used as the target in 3 new environments (in addition to the
previous lab setup), which are shown in Fig. 8.

o An anechoic chamber: The whole setup (both target
HDMI and receiver B210) is placed within the cham-
ber. Data are collected using an extended USB cable
connecting the B210 SDR from inside to a capturing
Macbook outside. The maximum data collection range
in our anechoic chamber is ~5m.

e An open space within a building (line-of-sight trans-
mission): EM emanation can couple with various con-
ducting elements surrounding the emanation source and
travel further. An open space has limited coupling ele-
ments. Hence, the emanation range in such an environ-
ment is more conservative than others. However, due to
the room size, the maximum range for data collection in
this environment is 11 m.

o Outside of an office room (non-line-of-sight trans-
mission): Here, the target HDMI (with the monitor and
PC) is kept inside an office room. The receiving antenna,
along with B210 SDR, was kept outside to mimic prac-
tical eavesdropping scenarios. The target setup is kept
1.5 m away from the separating wall and door. Again, due
to the building geometry, the outside data collection range
was limited to 6 m. Hence, the total separation between
the target and receiver is 7.5 m.

In all cases, our harmonic-based emanation detector renders
~100% accuracy. This shows its robustness against environ-
mental variability.

VIII. CONCLUSION

In this work, we have extended our preliminary work on
emanation detection by collecting data from a wide range of

carefully chosen IoT devices (Arduino, PSoC, Zigbee, and
ESP32), day-to-day electronic devices (PC and monitor), and
cables (HDMI and USB). Data analysis reveals that each
device’s emanation has a unique harmonic pattern with inter-
modulation products, unlike communication signals with fixed
frequency bands, distinct spectra, and modulation patterns.
Leveraging this, we propose a harmonic-based emanation
detection method by developing a computational harmonic
detector. The proposed method addresses all the weaknesses
of the previously proposed CNN-based method. It can detect
multiple emanation sources simultaneously, performs well
even at low SNR (~1 dB), has a lower computation cost, and
is hardware-agnostic. This method provides ~100% accuracy
up to 22.5m, compared to ~95% accuracy at the same dis-
tance using the CNN-based method. It also achieves ~100%
accuracy for all the tested devices, including IoT devices. The
maximum detection ranges for such accuracy are reported.
Furthermore, the performance of our method is compared with
other emanation detection methods reported in the literature in
terms of 5 parameters. Finally, the proposed method has been
tested in 3 new environments to check its practical efficacy:
in an anechoic chamber, an open space (direct line-of-sight
transmission), and outside of an office room (non-line-of-
sight transmission). This work paves the way for a smart and
automated spectrum monitoring system to detect EM side-
channel leakage from electronic devices.
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