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18 LAY SUMMARY

19 Precision technologies are revolutionizing animal agriculture by enhancing the management of 

20 animal welfare and productivity. To fully realize the potential benefits of PLF, the development 

21 and application of digital technologies are needed to facilitate the responsible and sustainable 

22 intensification of livestock production over the next several decades. Importantly, the digitalization 

23 of agriculture is expected to provide collateral benefits of ensuring audibility in value chains while 

24 assuaging concerns associated with labor shortages. In this paper, we analyze the multilayered 

25 network of sensors, actuators, communication, and analytics currently in use in precision livestock 

26 farming. We analyze the various aspects of sensing, communication, networking, and intelligence 

27 on the farm leveraging dairy farms as an example system. We also discuss the potential 

28 implications of advancements in communication, robotics, and AI on the security and welfare of 

29 animals.

30

31 TEASER TEXT

32

33 PLF needs current technologies to adapt to suit its unique needs. We analyze cutting-edge 

34 sensor, networking, communication, and analytics advancements from the perspective of PLF. 
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36 ABSTRACT

37 Precision livestock farming (PLF) offers a strategic solution to enhance the management 

38 capacity of large animal groups, while simultaneously improving profitability, efficiency, and 

39 minimizing environmental impacts associated with livestock production systems. Additionally, 

40 PLF contributes to optimizing the ability to manage and monitor animal welfare while providing 

41 solutions to global grand challenges posed by the growing demand for animal products and 

42 ensuring global food security. By enabling a return to the "per animal" approach by harnessing 

43 technological advancements, PLF enables cost-effective, individualized care for animals through 

44 enhanced monitoring and control capabilities within complex farming systems. To fully realize the 

45 potential benefits of PLF, the development and application of digital technologies are needed to 

46 facilitate the responsible and sustainable intensification of livestock production over the next 

47 several decades. Real-time continuous monitoring of each animal is expected to enable more 

48 precise and accurate tracking and management of health and wellbeing. Importantly, the 

49 digitalization of agriculture is expected to provide collateral benefits of ensuring audibility in value 

50 chains while assuaging concerns associated with labor shortages. Despite notable advances in PLF 

51 technology adoption, a number of critical concerns currently limit the viability of these state-of-

52 the-art technologies. The potential benefits of PLF for livestock management systems which are 

53 enabled by autonomous continuous monitoring and environmental control can be rapidly enhanced 

54 through an Internet of Things (IoT) approach to monitoring and (where appropriate) closed-loop 

55 management. In this paper, we analyze the multilayered network of sensors, actuators, 

56 communication, networking, and analytics currently used in PLF, focusing on dairy farming as an 

57 illustrative example. We explore the current state-of-the-art, identifying key shortcomings, and 

58 propose potential solutions to bridge the gap between technology and animal agriculture. 
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59 Additionally, we examine the potential implications of advancements in communication, robotics, 

60 and artificial intelligence (AI) on the health, security, and welfare of animals.

61 Key words: precision livestock farming, artificial intelligence, Internet of Things, sensors, 

62 networking

63

64 LIST OF ABBREVIATIONS

65 AFS: Automated feeding systems 

66 CNCPS: Cornell Net Carbohydrate and Protein System

67 FCC: Federal Communications Commission

68 GPS: Global Positioning Satellite technology

69 IMU: Inertial Measurements Units 

70 IoT: Internet of Things

71 LoRa: Long-range communication

72 MIP: Molecular imprinted polymer

73 NIR: Near-infrared

74 PLF: Precision Livestock Farming

75 RF: Radio frequency

76 SARA: Subacute ruminal acidosis

77 THI: Temperature and humidity index

78
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79 INTRODUCTION

80 Modern farming is under unprecedented pressure to feed a growing world population that 

81 is expected to reach 9.8 billion by the year 2050 (FAO, 2017). With the consumption of animal 

82 products expected to outpace crops, with a 51% to 60% increase in 2050 over 2010 levels (FAO, 

83 2017; Dijk et al., 2021). Consequently, there is an imminent need to increase the production 

84 efficiency of animal farms. 

85 Historically, productivity advancements in livestock production involved consolidating 

86 farms and working within economies of scale to vertically integrate production systems. Although 

87 these industry shifts have led to dramatic enhancements in the per-animal output (Brito et al., 

88 2021b), public discontent is growing due to the neglect of individual animal welfare within modern 

89 farming systems. Moreover, traditional methods of delivering individualized care fail to scale to 

90 current systems due to infeasible labor demands (Steeneveld and Hogeveen, 2015). Also, 

91 monitoring animal welfare requires the availability of longitudinal measurements on numerous 

92 welfare indicators that evolve over the lifecycle of the animal (Brito et al., 2020, 2020a). 

93 Precision Livestock Farming aims to return to the “per animal approach” by leveraging 

94 the use of sensing technology for continuous, real-time monitoring of individual animals. This 

95 approach aims to ensure welfare, promote optimal health, and enhance productive and 

96 reproductive performance while also enabling efficient management of large animal groups 

97 without the traditional labor investment (Halachmi et al., 2019a; Halachmi et al., 2019b). 

98 Furthermore, PLF technologies may further enhance the efficiency of livestock production by 

99 unlocking opportunities to select animals more efficiently through automated phenotyping 

100 (Gengler, 2019; Brito et al., 2021a), breed animals more efficiently through precise and 

101 individualized estrous detection (Sova et al., 2014; Souza et al., 2022), and feed animals more 
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102 efficiently through individualized ration formulation and more precise and accurate mixing (Sova 

103 et al., 2014; Souza et al., 2022).

104 Despite the potential benefits, PLF technologies have had limited adoption by livestock 

105 producers. The limited adoption can be attributed to various factors, including uncertainty 

106 regarding the suitability of new technologies, limited market availability, and uncertainties 

107 surrounding the benefits and profitability (Russell and Bewley, 2013; Chavas and Nauges, 2020). 

108 Despite the current limited uptake, PLF aligns well with the dairy farmer's aspirations for labor-

109 saving technologies, improved job quality, and increased efficiency and profitability (Steeneveld 

110 and Hogeveen, 2015). Customizing technologies specifically to suit the needs of PLF is essential 

111 to ensuring these tools better serve the livestock community and live up to their potential for 

112 enhancing productivity and improving animal welfare (Tedeschi et al., 2021). 

113 The Internet of Things (IoT) is a paradigm-shifting technology that connects physical 

114 devices, globally. While IoT technology has transformed fields such as medicine, personal health, 

115 and personal technology (Awad et al., 2021), recent innovations have also transformed crop 

116 farming with “connected” sensors being used to predict soil health and optimize water use (Farooq 

117 et al., 2019). However, the introduction of IoT in animal farming has been slow. Although PLF 

118 emphasizes the need for continuous real-time monitoring and management of livestock to ensure 

119 animal health and safety (Berckmans, 2014; Halachmi et al., 2019b), such systems are challenging 

120 to develop due to the nuances of livestock farming (Morrone et al., 2022). Important factors such 

121 as continuously evolving animal health, the size of farms, and the span needed from data 

122 communication technologies, the harsh environmental conditions, and the long periods of 

123 relatively uninteresting and redundant data gathering punctuated by infrequent but highly-critical 
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124 data with potentially life-or-death implications, all place extreme burdens on electronic sensing 

125 and computing equipment that stress operating lifetimes and reliability (Navarro et al., 2020).

126 Despite these challenges, simple technologies that monitor daily milk production, milk 

127 composition, activity, cow temperature, milk conductivity, estrus detection monitoring, and daily 

128 body weight are already commonplace on many dairy farms (Borchers and Bewley, 2015; Rutten 

129 et al., 2018; Halachmi et al., 2019a). Using the latest long-range communication technologies, 

130 such as LoRa (Long Range Radio) networks, farmers can precisely monitor animals’ location and 

131 activity, health, and productive indexes (dos Reis et al., 2021). However, these products need 

132 special setups and have limited life which makes their cost-benefit analysis questionable. Further, 

133 these products often only act as data aggregators, rarely providing useful or reliable “actuation” to 

134 support management. Thus, despite existing commercial technologies, a number of advances in 

135 technological tools will be needed to enhance PLF to a point where it can be whole-scale adopted 

136 on commercial farms. Although the primary goal of the integration of technologies in the farms is 

137 to aid in the decision-making process, it can also help in overcoming labor shortages. Moreover, 

138 use of technology and the automation of many processes in both crop production and animal 

139 farming such as, automated milking systems (AMS), automated calf feeders, autonomous tractors, 

140 automatic temperature and humidity control in barns, and even automated administrative systems, 

141 such as inventory control and ordering systems have the potential to improve labor use and 

142 efficiency at dairies (Gargiulo et al., 2018; Hogan et al., 2022; Hogan et al., 2023).

143 In recent years, there has been notable progress in developing innovative applications of 

144 the Internet of Things (IoT) within the realm of animal agriculture. In this paper, we aim to 

145 comprehensively review these networked innovations, using dairy farming as a representative use 
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146 case. Within the specific context of dairy farming, we present a visual representation of such a 

147 system in Figure 1. The foundational elements of IoT systems are smart sensors, which serve as 

148 the physical layer. Hence, we provide a thorough examination of the diverse array of sensors 

149 currently deployed in agricultural settings. The data generated by these sensors are subsequently 

150 aggregated and transmitted through specialized communication networks, forming the 

151 communication layer of the IoT system. In this work, we also analyze the implication of the place 

152 of deployment of such networked sensors, commonly referred as edge, fog, and cloud nodes. To 

153 extract valuable insights and actionable information, an extensive range of analytics and prediction 

154 tools are employed in the analytics layer of the system. In this work, we conduct a detailed analysis 

155 of each layer within the IoT system, identifying pivotal technological advancements and persistent 

156 research challenges. Additionally, we assess the feasibility of deploying these IoT systems in the 

157 context of animal agriculture, further broadening the scope of this review.

158 IOT SENSING INFRASTRUCTURE FOR DAIRY FARMS

159 Precision Livestock Farming involves the application of technologies to assess 

160 physiological, behavioral, and production indicators in individual animals, with the goal of 

161 enhancing overall management practices. Many activities take place in dairy farming, including: 

162 (i) nutrition management, (ii) production management, (iii) reproductivity management, (iv) health 

163 and welfare management, and (v) selective breeding and genomic management. Each of these 

164 areas has particular importance to the overall operation and together are the major drivers of the 

165 long-term sustainability of the system. IoT-based systems with smart sensors and actuators 

166 connected through agile communication networks can realize autonomous and systematic 

167 operation for these management areas. 
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168 The sensors that are currently available in dairy systems have been used for monitoring 

169 animal production, physiological, and behavioral indices. Available sensors can be divided into 

170 three categories: 1) wearable/indwelling sensors or those that are found attached to the cow, 

171 including reticulorumen sensors and sensors inserted in the reproductive tract; 2) remote sensors 

172 that use Global Positioning Satellite (GPS) technology to track cow’s location; and 3) sensors used 

173 to measure and monitor products from the cow such as milk, excreta, and biological fluids. In this 

174 section, we review existing IoT sensing systems that has been developed to monitor the health and 

175 welfare of the animals, including body temperature, mastitis, and lameness. We also review the 

176 sensing technology in milk quality and feed automation as it is highly relevant to the overall well-

177 being of the animals. Further, since the farm environment is key to ensuring overall health, we also 

178 talking about and air and water quality tracking through IoT technology. In Table 1, we tabulate 

179 the various sensing technology as described in this section. The technology is compared along 

180 common parameters to highlight their distinctive points.

181

182 Health Sensing: Body Temperature and Rumen pH

183 Body temperature and deviation from normal body temperature have been used to monitor 

184 the health and well-being of both animals and humans. While anomalous fluctuation of core body 

185 temperature can indicate distress (Sharma and Koundal, 2018), consistently elevated body 

186 temperature could signify a systemic infection, an early sign of mastitis, or systematic heat stress.  

187 Existing IoT temperature monitors employ three types of body temperature monitoring 

188 core, mid-peripheral, and surface. Core body temperature is particularly valuable as it remains 
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189 unaffected by surface or environmental changes, making it a reliable standard for health 

190 diagnostics (Sellier et al., 2014). However, measuring core body temperature is a challenge as the 

191 probe needs to be in contact with core body areas, such as the vaginal cavity or the rectum (Sellier 

192 et al., 2014). Manual measurement methods are not only time-consuming, but may also result in 

193 distress to the animal (Sellier et al., 2014). While IoT sensors are easier to use, their sustained 

194 placement is a challenge in such body areas (Torrao et al., 2011).  The rumen is a much more 

195 preferred site for measuring core temperature. Sensors like the LiveCare Bolus (Kim et al., 2019) 

196 and Cow Temp (Prendiville et al., 2002) are commercial sensors that are placed in the rumen. 

197 These are wireless sensors and transmit data to a receiver, thereby providing real-time monitoring, 

198 however, they have a limited life cycle of about 120 days. BioBolus, an alternative product, 

199 promises six to seven years of operation, but its effectiveness still needs to be tested in commercial 

200 settings (Kim et al., 2019). Also, rumen temperature measurement is often impacted by the activity 

201 of animals, such as drinking water, that creates short term anomalies in the data.

202 The mid-peripheral areas are close to the internal body but not as deeply embedded as core 

203 body site, such as subcutaneous regions. Alternatively, the mid-peripheral temperature can be 

204 measured by placing a probe in the subcutaneous space or between tissue layers (Sellier et al., 

205 2014). Although this technique has not been widely adopted commercially, because specialized 

206 skills are needed to insert the sensor, it has been used in experimental settings with some success 

207 (Abecia et al., 2015).

208 Surface temperature is by far the easiest to measure and infrared technology has emerged as the 

209 primary approach for monitoring surface body temperature in livestock (Sellier et al., 

210 2014). However, it suffers from interference in measurements due to environmental factors, such 
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211 as wind velocity which can interfere with data collected by the thermal imaging cameras. 

212 Nevertheless, the use of thermal windows or areas of the body that are least affected by ambient 

213 temperature can overcome some of the impact of the environment on surface temperature 

214 monitoring of livestock (Poikalainen et al., 2012; Soerensen and Pedersen, 2015). Hence, 

215 measurements of the temperature of these areas are presently a focus of research using thermal 

216 tomography. One of the current obstacles to development is the workflow needed for the analysis 

217 of collected thermograms and analyze video or image feeds (Daltro et al., 2017). Furthermore, the 

218 surface temperature can capture micro-environment temperature instead of the real skin 

219 temperature, especially in animals with longer and/or denser hair coats.

220 In addition to body temperature, rumen pH is another important biomarker that has been 

221 used to assess animal health and productivity due to the close relationship between rumen pH, 

222 microbial efficiency, and cow health (Krause and Oetzel, 2006; Dijkstra et al., 2012). Ruminal pH 

223 is monitored for early detection of subacute ruminal acidosis (SARA), which is a common 

224 condition affecting early lactating dairy cattle (Duffield et al., 2004). The ECow bolus (Mottram 

225 et al., 2008), BioBolus (Kim et al., 2019), and Well Cow pH (Phillips et al., 2009) are examples 

226 of commercially available rumen pH sensors. Although these are selected for examples, numerous 

227 similar sensors have been developed (Duffield et al., 2004; Penner et al., 2006; Alzahal et al., 

228 2007). A challenge with many indwelling rumen pH sensors is the short battery life, per-unit 

229 expense, measurement drift, and the inability to retrieve the device from cattle (Halachmi et al., 

230 2019a). Recent works have investigated ultra-long life pH sensors with Ag/AgCI reference 

231 electrodes that have an estimated life of two years but are yet to be developed into commercial 

232 products (Higuchi et al., 2020). Another drawback of current commercially available products is 
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233 the access to data and data ownership (Tedeschi et al., 2021). Most such products limit direct 

234 access to the data that impedes precise data-driven decision making by farmers.    

235 While a sustained drop in rumen pH is commonly associated with SARA there are 

236 potentially other indicators including rumen histamine that are linked to the onset of SARA. 

237 Histamine-producing bacteria are active in animals that experience SARA, resulting in an increase 

238 in the concentration of histamine in rumen fluid from 0.5 µM to 64 µM (Wang et al., 2013). 

239 Techniques for histamine analysis include thin-layer chromatography, high-performance liquid 

240 chromatography (HPLC), gas chromatography (GC), fluorometry, capillary zone electrophoresis, 

241 and enzyme-linked immunosorbent assay (ELISA) (Mattsson et al., 2017; Han et al., 2022). 

242 However, these techniques are not conductive to real-time sensing systems as they need 

243 specialized conditions and careful experimentation. Molecular imprinted polymer (MIP) and 

244 electrochemical histamine sensors show potential for histamine detection in ruminants due to their 

245 low-cost, simplicity of design, fast response, and high sensitivity. MIPs are synthetic receptors for 

246 a targeted molecule and are similar to the natural antibody-antigen systems (Horemans et al., 

247 2012). MIP sensors are also robust and stable in extreme environments such as a wide range of pH 

248 environments. Recently, an impedimetric histamine biosensor based on an organic semiconductor: 

249 poly (3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT: PSS) has been developed that 

250 can detect concentrations of histamine from 0.1 μM to 1 mM (Bai et al., 2020). This sensor shows 

251 promise for adaptation to the in-rumen monitoring environment due to its robustness and ease of 

252 use (Bai et al., 2020). Such sensors can shed new light on rumen dynamics, thereby enriching our 

253 understanding and subsequent care for the animals.

254
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255 Physiology Monitoring: Body Weight, Body Condition Scoring and Lameness Detection

256 The physiology of the animal is affected in modern farming systems as they are 

257 restricted to small areas with hard ground, such as concrete. Such conditions can lead to 

258 debilitating diseases. Therefore, monitoring body weight and body condition is key to ensuring 

259 overall welfare for animals. The first step in this is tracking the body weight. Body weight 

260 measurement is also key from a productivity standpoint. The weight measurement of dairy cows 

261 is facilitated by a range of sensors and technologies. Traditional methods involving manual 

262 weighing can be labor-intensive and time-consuming (Martins et al., 2020; Kaya and 

263 Bardakcioglu, 2021). However, advancements in automated systems have revolutionized the 

264 process (Wang et al., 2021). Embedded in milking parlors or feeding stations, load cells provide 

265 real-time weight measurements as cows stand or walk on the platform (Martins et al., 2020). Walk-

266 over weighing systems, integrated into walkways or feeding areas, allow for weight monitoring 

267 without disrupting the cow's natural movement. Weighing gates in alleyways or passageways offer 

268 a convenient solution for measuring cow weights during movement. In these systems, electronic 

269 ear tags equipped with RFID enable individual cow identification and weight estimation based on 

270 activity patterns (Kuzuhara et al., 2015).

271 However, the limitations of several of these systems are related to the failure to measure 

272 the weight of all cows that pass through them (Halachmi et al., 2019b; Martins et al., 2020; Kaya 

273 and Bardakcioglu, 2021; Nilchuen et al., 2021). The failures can happen due to non-reading of the 

274 identification tag influenced by the speed at which the cows pass through the platform, or even the 

275 proximity of two cows. Additionally, small variations often cannot be accurately identified 
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276 (Dickinson et al., 2013). Therefore, the need is for scalable low-cost solutions that can improve 

277 the precision as well as resolution of current systems. 

278 Body Condition Score (BCS) is a crucial measure for assessing cattle welfare and has 

279 significant implications for productivity, health, and reproductive success (Wildman et al., 1982; 

280 Rodriguez Alvarez et al., 2019). Accurate body condition scoring can help identify early signs of 

281 distress in cattle, and help prevent worsening of conditions such as lameness. In crowded modern 

282 farms, this is particularly challenging as for accurate scores the expert must have clear sight of the 

283 animal and its regular motion. Therefore, manual method of body scoring needs trained personnel, 

284 wherein significant time is required for evaluating the entire herd (Halachmi et al., 2013; Sun et 

285 al., 2019; Kaya and Bardakcioglu, 2021). Further, the subjective nature of the estimation varying 

286 greatly between evaluators and the inability to directly feed data into herd management software 

287 complicates the process more (Salau et al., 2014; Spoliansky et al., 2016). Consequently, there is 

288 a pressing need for objective and accurate BCS measurements.

289 In recent years, the utilization of 2D and 3D sensors has gained traction in capturing cattle 

290 body parameters for BCS evaluation (Bercovich et al., 2013). Vision-based approaches have 

291 emerged as a non-intrusive method, involving visual feature extraction and model construction to 

292 estimate BCS (Lynn et al., 2017). While 2D camera-based methods focusing on rear or top views 

293 have been widely explored, 3D sensors, such as Time of Flight (ToF) cameras, offer the advantage 

294 of capturing richer body surface information (Spoliansky et al., 2016; Sun et al., 2019). Machine 

295 learning techniques, including deep learning frameworks, have also been employed to improve 

296 BCS classification and prediction accuracy (Rodriguez Alvarez et al., 2019; Sun et al., 2019; 

297 Martins et al., 2020).
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298 Despite the advancements in sensor technologies, challenges remain. An extended dataset 

299 with equitable distribution is essential to enhance system accuracy, and a more accurate BCS 

300 ground-truth apparatus is needed to eliminate subjective errors in scoring. Additionally, 

301 incorporating a broader range of body features and parameters, both global and local, is crucial to 

302 improving the robustness and accuracy of BCS evaluation. While 3D sensors offer detailed 

303 information, they are more expensive and complex than 2D tools, and the processing of 3D data 

304 and related algorithms poses additional challenges.

305 Lameness is a debilitating disease that, if diagnosed late, can result in culling. Lameness 

306 management in dairy herds depends on the early diagnosis of the lame cow, determination of the 

307 causing agent, and effective treatment (Whay and Shearer, 2017). However, due to the stoic nature 

308 of the animal, large herd sizes, limited visibility, and easily missed markers, lameness detection is 

309 becoming increasingly tricky for human observers (Chapinal et al., 2010). Hence, automated 

310 detection of the lame cow by means of foot pressure sensors, cameras, and gait monitoring, is a 

311 potential solution that could result in early detection and treatment. Moreover, such technologies 

312 can also provide herd information thereby helping in the development of preventive strategies to 

313 minimize incidences of lameness, wherever possible.   

314 The identification of a lame cow by automated methods is, most of the time, based on the 

315 direct comparison of the cow’s gait to a normal/expected gait of a healthy cow (Kang et al., 2020). 

316 Image processing techniques assess the characteristics of the cow's gait based on the movement of 

317 specific points on the feet, leg joints, withers, or backline, compared to the gait of the healthy cow. 

318 However, the true challenge for these methods is individualizing their assessment based on the 
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319 cows physiology. To achieve this, they rely on creating massive datasets with expert annotations 

320 of gait (Zhao et al., 2018).   

321   Thirty-two experts in ruminant lameness were asked to weigh 6 aspects of gait when 

322 determining lameness in a survey. The results ranked each aspect as follows: general symmetry 

323 (24%), tracking (20%), spine curvature (19%), head bobbing (15%), speed (12%), and abduction 

324 and adduction (9%) of final gait score (Jones, 2017). These data suggest that even among experts, 

325 there is minimal agreement as to the most important indicators of lameness in cows. Due to this 

326 limited agreement among experts, sensors aiming to identify lameness using image analysis likely 

327 must be able to detect most of these aspects of gait abnormalities to be successful in the timely 

328 detection of lameness. Despite the diversity of biomechanical indicators of lameness, most of the 

329 published research has focused on spine arc and head bobbing (Zhao et al., 2018). 

330 Apart from image-based analysis, several other sensors using different sensing modalities 

331 have been tested to diagnose cow's lameness: pressure-sensitive walkway (Maertens et al., 2011; 

332 Van Nuffel et al., 2015), accelerometers (Mangweth et al., 2012; Weigele et al., 2018), ground 

333 reaction force systems (Dunthorn et al., 2015; Thorup et al., 2015), four-scale weighing platform 

334 (Chapinal et al., 2010; Pastell et al., 2010), thermography (Alsaaod and Büscher, 2012), indirectly 

335 by the correlation with milk production (Kamphuis et al., 2013), feed intake and behavior (Weigele 

336 et al., 2018), and even the grooming behavior (Weigele et al., 2018).  While many of these methods 

337 have achieved high accuracies of detection, they fail to be feasible for large-scale commercial 

338 deployment. Pressure sensors, ground reaction systems, and weighing scales are expensive to be 

339 deployed around the farm and demand individual analysis of the animal with an observer noting 
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340 the difference. Further, thermography demands a specialized camera and setup which proves to be 

341 expensive. 

342

343 Milk Quality Sensing and Mastitis Detection

344 Milk quality sensors are automated in-line sensors that check the milk collected to not only 

345 ensure the quality of the product but also check for the health biomarkers of the animal (Knight, 

346 2020). Milk component sensors represent a key part of herd management technologies, allowing 

347 monitoring of cows' nutrition and metabolic abnormality detection of the cow (Mulligan et al., 

348 2006; Aernouts et al., 2011; Melfsen et al., 2012). The majority of in-line milk composition 

349 analysis is currently carried out with in-line near-infrared (NIR) equipment (Melfsen et al., 2012) 

350 providing accurate data following international recommendations for reproducibility specified for 

351 in-line analytical devices. The prediction of the fat, protein, lactose, non-fat solids, and milk urea 

352 nitrogen using NIR spectra of non-homogenized milk during milking over a wavelength range of 

353 700 to 1,050 nm was assessed, and high levels of precision and accuracy were observed (Iweka et 

354 al., 2020). Although, it is important to note that to obtain high precision in the prediction of milk 

355 components the calibration model needs to be applied to different samples from different farms, 

356 and over different seasons. This is necessary due to the influence of the characteristics of the cows 

357 (such as age, number of lactations, lactation status, health, and reproductive status, diet, and 

358 seasonal effects) on the NIR spectra (Melfsen et al., 2013).  

359 The sensors used to diagnose mastitis include sensor of milk electrical conductivity 

360 (Norberg et al., 2004; Kamphuis et al., 2010; Sun et al., 2010; Gao et al., 2020), milk colorimetry 
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361 (Hovinen et al., 2006; Kamphuis et al., 2010), milk lactate dehydrogenase concentrations by 

362 enzymatic reaction (Hovinen et al., 2006; Kamphuis et al., 2010), mammary gland temperature 

363 measured by thermography (Colak et al., 2008; Zaninelli et al., 2018) and real-time SCC 

364 assessment (Kamphuis et al., 2008). The information collected using the sensors can be used 

365 individually or in combination (which increases detection performance) to develop algorithms for 

366 mastitis prediction. The algorithm will be used to generate an alert of mastitis 

367 based on data collection. The early detection of mastitis is important in several ways. In the 

368 automated system because the visual identification of mastitis is not possible the detection by the 

369 sensor prevents the contamination of the farm milk changing the destination of the milk from the 

370 sick cow. Moreover, it allows the early treatment of the cow which will result in fewer days of 

371 treatment and milk waste and higher chances of full mammary gland recovery (Sargeant et al., 

372 1998).  

373

374 Activity Monitoring and Virtual Fencing

375 Animal activity monitoring can provide key information not only about animal physiology 

376 and behavior but also about the farm environment. Changes in activity are highly indicative of 

377 estrus, especially for high-yielding (Rivera et al., 2010) and confined cows (Stevenson and Phatak, 

378 2010). Increased activity in animals, in the absence of external factors, are potent indicators of 

379 estrus and positively correlated with the rate of pregnancy after artificial insemination (López-

380 Gatius et al., 2005). Several automatic activity monitors are available and vary in their location in 

381 the animal's body (e.g., neck and feet) and type of measured movement (e.g., step counts, 

382 acceleration of movement, rumination time or frequency, lying time, or bouts). The collected data 

383 is analyzed to define baseline and outlier behavior which is further used for identifying estrus. 
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384 Overall studies have reported satisfactory efficiency of sensors in estrus detection using neck-

385 mounted sensors (Aungier et al., 2012; Valenza et al., 2012; Silper et al., 2015) or pedometers 

386 (Roelofs et al., 2005; Holman et al., 2011). 

387 Maintaining consistent environmental conditions is essential for dairy cows’ comfort, 

388 health, and productivity. Activity can be used to draw inferences about a cow’s environment (e.g., 

389 if cows are avoiding a specific area of the barn, it can be indicative of a higher temperature). 

390 Further, it is even more important for grazing cows as activity can be influenced by management 

391 practices or diurnal trends (Turner et al., 2000; Maroto-Molina et al., 2019). The global positioning 

392 system (GPS) is currently used for this objective with a precision of 5 to 30 m that can vary with 

393 the landscape characteristics, earth's atmosphere, the sensitivity of the receiver clock, signal 

394 multipath, proximity of satellites, and satellites constellation (D'Eon et al., 2002). However, the 

395 technology is limited to animals managed outside of barns since the GPS has limited precision 

396 indoors. Indoor localization systems, based on triangulation of radio signals that continually assess 

397 the cow’s position through the association of the cow’s ID tag and sensor in the barn, can provide 

398 location as precise as 50 cm (Tullo et al., 2016). Such precise monitoring can improve the 

399 identification of movements and further improve the prediction and detection of health events. 

400 Another aspect of animal activity monitoring is managing the activity within pasture fields. 

401 By managing the movement of cattle effectively, soil stress, overgrazing, and soil pollution can be 

402 avoided. PLF technology, especially virtual fencing, enables the manual herding and fencing 

403 methods to be easier and less effort intensive. Virtual fencing, an innovative approach in dairy cow 

404 management, offers an alternative to physical barriers by utilizing electronically defined 

405 boundaries (Umstatter, 2011). Although they do not provide complete enclosure, these systems 
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406 have gained significant attention in both research and commercial development. Examples of 

407 virtual fencing systems include BoviGuard, NoFence, and eShepherd™ (Umstatter, 2011; Kaur et 

408 al., 2021).

409 Virtual fencing greatly relies on the global positioning system (GPS) technology to operate 

410 in rural areas. Farmers can use GPS way points to select the boundaries of virtual fences and revise 

411 them as needed (Golinski et al., 2023). While GPS defines the boundary for the herd, each animal 

412 is tracked using an on-body device such as a neck collar (Anderson et al., 2014; Golinski et al., 

413 2023). The neckband-mounted devices emit audible cues and electric stimuli that will guide cows 

414 and restrict their movement within a designated area. To familiarize cows with the virtual 

415 boundaries, these systems introduce visible and audible cues before applying electric stimuli. 

416 While individual cows may have varying learning curves, as a herd, they generally adapt to the 

417 virtual fencing system (Campbell et al., 2019).

418 One key advantage of this method is its ability to direct dairy cows based on pasture 

419 availability instead of completely excluding them from specific areas (Anderson et al., 2014). 

420 However, it is crucial to recognize that physical fences remain necessary for security and property 

421 rights purposes. Yet, virtual fencing has been proven efficient in containing animals within 

422 determined grazing areas with adequate (Langworthy et al., 2021), as well as in situations with 

423 limited (Colusso et al., 2020) pasture availability. Nonetheless, widespread adoption of virtual 

424 fencing on commercial dairy farms faces challenges such as cost considerations, technological 

425 infrastructure limitations, and welfare concerns regarding individual animal behavior and public 

426 perception (Verdon et al., 2021; Golinski et al., 2023).

427
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428 Feed monitoring and Precision Feeding Systems

429 Feed intake and feeding behavior are critical aspects of precision feeding which is critical 

430 for individualized care for animals. Methods to collect feed intake data include stationary devices 

431 equipped with identification sensors (e.g. RFID) and feed weighing systems. Examples of RFID-

432 based systems include GrowSafeG (GrowSafe Systems Ltd., Airdrie, AB, Canada), Calan gates 

433 (American Calan Inc., Northwood, NH) and Hokofarm feeding system (Hokofarm Group B.V., 

434 Veendam, the Netherlands). They are placed in feeding locations to monitor the frequency and 

435 duration of feeding. The amount ingested by the animal is determined by the difference in the 

436 weight of the feed before and after a feeding bout (Chizzotti et al., 2015). Several studies have 

437 been conducted to validate these systems (DeVries et al., 2003; DeVries and G., 2005; Belle et al., 

438 2012). The collected data not only aids in tracking overall health and normal activity but also 

439 facilitates the early detection of diseases.   Acoustics have been used to analyze jaw movement as 

440 an indicator of feeding behavior for cows. In addition, acoustics has been used to detect coughing 

441 and stress in swine (Vandermeulen et al., 2015) and cattle (Vandermeulen et al., 2016). 

442 Alternatively, machine vision has been employed to determine feed intake and monitor animal 

443 health (Bezen et al., 2020; Bezen et al., 2022). While machine vision shows promise, its outcomes 

444 have yielded mixed results (Halachmi et al., 2019a), necessitating the development of more robust 

445 machine learning models before they can be considered as viable commercial options.

446 Cows respond as individuals and have unique genetic merit for many production parameter 

447 variables including DMI, milk yield, milk fat percentage, milk fat yield, milk protein percentage, 

448 milk protein yield, milk lactose percentage, milk lactose yield, feed efficiency, and activity. 

449 However, cows are not managed individually to optimize these traits or maximize individual 
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450 animal genetic potential. Individualized precision automated feeding systems (AFS) may help to 

451 increase the overall production of dairy cattle. However, precision feeding and traditional group 

452 feeding require very different feeding and management approaches. First, automation of feeding 

453 systems is necessary to feed cows individually on-farm and the use of different sensing systems 

454 coupled with different precision technologies is needed. 

455 The suitability of an AFS is dictated largely by the housing system. There are several 

456 housing styles of dairies, with single farms often incorporating multiple housing styles. Housing 

457 styles include individual housing (e.g., sick pens, tie stalls, etc.); indoor group housing (e.g., 

458 bedded pack, free stalls, etc.); and outdoor group housing (e.g., pasture, dry lots, etc.), among 

459 others (Bewley et al., 2017). Each of these housing styles differs in terms of its requirements for 

460 AFS. For example, in free-stall systems, an AFS must allow individualized feeding within a group 

461 pen. This requires the AFS to identify individual animals (typically based on RFID technology 

462 (Trevarthen and Michael, 2008; Singh and Mahajan, 2014), exclude access to the feeder to allow 

463 only the target individual to consume feed, dispense a target amount of feed, and clear any 

464 unconsumed feed. For AFS in outdoor settings, the system might additionally be required to resist 

465 extreme weather conditions and stand-alone from other farm resources (e.g., grain hoppers, silos, 

466 etc.). 

467 The utilities of AFS are also defined by daily feed handling capacity and suitability for 

468 different feed types. In previous studies, AFS has been used to feed the concentrate component of 

469 the ration (Wierenga and Hopster, 1991) or to feed the entire ration (Belle and Andr, 2012). In 

470 most systems feeding only a portion of the total ration, the AFS is self-contained and includes a 

471 feed storage area. For AFS designed to feed the entire or majority of a ration, they are either 
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472 connected to the existing farm feed storage and mixing infrastructure (e.g., stationary mixer, rail-

473 mounted feed wagon, feed bunkers, silos, etc.) or require daily manual loading of a pre-mixed 

474 ration. The AFS that require manual loading of feed daily have higher labor requirements but are 

475 also more flexible in terms of the types of feed fed. For example, Oberschätzl-Kopp et al. (2016) 

476 used a rail-guided wagon-based, automated feeding system to feed group-housed animals and were 

477 able to feed a partially mixed ration through the system. Collectively, the housing system 

478 suitability, feed handling capacity, and type of feed dictate the number of cows fed per unit per 

479 day. Although this seems trivial, the number of units needed to feed a group of animals, the amount 

480 of feed fed through the units, and the resultant changes in productivity expected are the major 

481 drivers of whether the system will prove profitable. For example, with the adoption of robotic 

482 milking systems, we expect that the base price of labor and the expected annual inflation of labor 

483 costs will also have a major impact on whether adopting an AFS is a profitable decision (Pezzuolo 

484 et al., 2019). Because of the major differences in the possible applications of AFS and their net 

485 results in on-farm management and cow productivity, systems designed for feeding different types 

486 and amounts of feed should be considered separately because they have very different objectives. 

487 There are many types of automated feed delivery technologies, including rail-guided 

488 wagons, conveyor belts, and self-propelled robots (Grothmann et al., 2010). These different 

489 technologies can be used together within AFS to provide the most suitable combination of 

490 individual technology attributes to enhance system efficiency. For example, a robot could be used 

491 to load rail-guided wagons or conveyor belts. Similarly, a conveyor belt can be used to load wagons 

492 or a robotic feeder. Due to the individual nature of farm design and feeding system requirements, 

493 considering these technologies as possible parts of a larger AFS is likely the most appropriate. In 

494 addition to functioning to deliver feed, AFS can also be used to limit the amount of feed an animal 
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495 can consume (Wierenga and Hopster, 1991) and can be designed to provide more frequent 

496 deliveries of feedstuffs than conventional, manual methods (Belle and Andr, 2012). These changes 

497 in feed delivery frequency and quantity can have benefits for farm profitability. In a survey carried 

498 out on 18 farms in Switzerland, Germany, Denmark, and the Netherlands in 2008, farms with AFS 

499 dispensed fresh feed 7.2 times a day, on average, and fed up to 10 different dietary components 

500 (Grothmann et al., 2010). Increasing the feeding frequency for dairy cattle is known to increase 

501 DMI, milk production, and milk components (Campbell and Merilan, 1961). Farm managers have 

502 reported that animals fed using AFS exhibit lower stress levels, attributed to the increased 

503 frequency of feedings. Additionally, submissive cows have been observed to consume a greater 

504 quantity of feed (Grothmann et al., 2010). Based on the survey results and other assessments of 

505 AFS, it is evident that when implemented correctly, AFS has the potential to provide 

506 individualized feeding for animals on commercial farms. This technology have the potential to 

507 enables more precise ration formulation, improving health and production, and reduces labor 

508 associated with feeding (Tangorra and Calcante, 2018).

509 To make individualized precision feeding economically appealing for farmers, the value of 

510 an increase in cow productivity needs to exceed the costs of investment in technology(Pierpaoli et 

511 al., 2013). Maximum cow productivity from a nutritional management standpoint requires 

512 accurate, predicted requirements that are specific to each animal and its responses (Wang et al., 

513 2000; Pierpaoli et al., 2013; White and Capper, 2014). Achieving this outcome will likely 

514 necessitate the utilization of automated sensing mechanisms to capture pertinent parameters 

515 associated with performance, with such algorithms seamlessly integrated into the analytics layer 

516 of precision animal farming systems. 
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517 The actual feed intake of individual cows in commercial operations is frequently unknown, 

518 as sensors to record or estimate feed intake and individualized AFS capable of recording this 

519 information, are rarely implemented on commercial farms (Kamphuis et al., 2017). Van der Waaij 

520 et al. (2016) predicted individual cow intake utilizing a test data set driven by machine learning. 

521 Derivation data was used to train an artificial neural network that was based on biological neural 

522 networks efficient for use with high dimensional and nonlinear relationships (Van der Waaij et al., 

523 2016). These networks are used as universal function approximators, but they require large datasets 

524 to train these parameters since no pre-assumptions are being made. The developed model was able 

525 to predict individual cow intake with a precision of 7.7% using concentrate feed allotted, milk 

526 yield, parity, weight, rumination, lactation day, fat percent, protein percent, outdoor temperature, 

527 and outdoor humidity (Van der Waaij et al., 2016).  

528 Precision feeding of dairy cattle through automated systems shows promise to increase 

529 feed efficiency and milk yield for individual animals while decreasing on-farm labor and feed 

530 expenses. However, the models needed to drive these systems have not yet been created and 

531 refined. Data on individual animal responses to dietary intervention are needed to develop and test 

532 appropriate models that best predict the nutrient requirements of individual animals and 

533 recommend the best diet composition and quantity for specific cows.  

534

535 Environmental Monitoring and Sensing

536 The integration of sensor technology, sensor networks, remote sensing, and robotics can 

537 be implemented aiming to improve the welfare of dairy cows in the housing systems. The negative 
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538 impacts of heat stress on dairy cows' health and performance are well known. Heat stress can be 

539 assessed using a sensor that will measure physiological parameters like respiration rate (Atkins et 

540 al., 2018), heart rate (Munro et al., 2017), body temperature, and surface (Adams et al., 2013; Kou 

541 et al., 2017) and also, by environmental data such as temperature and humidity. Through the use 

542 of temperature and humidity sensors in the barns or by accessing this data from a meteorological 

543 station close to the farm, it is possible to calculate a temperature and humidity index (THI) and 

544 based on the limit of 68 (approximately 22 C to 50% relative humidity), which indicates a 

545 reduction in milk production (Bouraoui et al., 2002), remotely activating barn’s strategies to reduce 

546 heat stress (sprinklers, fans or both) (Chen and Chen, 2019). The association of environmental data 

547 with individual cows' information such as concentrate intake, milk production, and composition 

548 can also be used to develop supervised machine learning to increase or maintain the desired level 

549 of milk quality while reducing heat stress (Fuentes et al., 2020). Environmental data can also be 

550 used for breeding for improved heat tolerance (Freitas et al., 2021).

551 Gaseous ammonia is an important atmospheric component mainly produced in the cattle 

552 production system as a result of urea breakdown. The ammonia emission results in a loss of manure 

553 fertilizing value, and besides its effects on the environment (it readily reacts with acidic substances 

554 or Sulphur dioxide to form ammonium salts and also can be converted into nitric oxide a 

555 greenhouse gas) is a potential respiratory hazard for workers and animal. The prolonged exposure 

556 to elevated concentrations of gaseous ammonia in dairy barns can result in eye and respiratory 

557 tract inflammation, however, because it is lighter than air it can be easily removed and well-

558 ventilated barns. Sensors that can measure ammonia concentration in the air as described by 

559 (Banhazi, 2009), can help in the air management in dairy barns, especially during the winter when 

560 the barns are closed and with lower use of fans and for dairy calves that are more susceptible to 
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561 respiratory issues caused by the ammonia (Osorio et al., 2009). Several management strategies can 

562 also be implemented to reduce the ammonia concentration and emission as ammonia concentration 

563 in the barn can vary due to air temperature, air humidity, air velocity, and air change rates (Herbut 

564 and Angrecka, 2014) and its emission due to air temperature and wind speed and direction (Saha 

565 et al., 2014; Schmithausen et al., 2018). 

566  

567 Water Quality Monitoring

568 Water is an important nutrient for all animals, and it is especially critical for dairy cows 

569 since 87 % of the milk is constituted of water. The water requirement for a dairy cow to produce 

570 one liter of milk is 0.9 kg water (Murphy et al., 1983; Council, 2001) being the total water 

571 requirement for an adult dairy cow is around 2.6 L of water per kg of milk produced. 

572             Water quality issues can manifest as health issues in dairy cows or, more often, as reduced 

573 water intake. Individual water intake can be accurately measured with water meters installed on 

574 lines to drinking devices when cows are individualized, taking measurements every couple of 

575 minutes (Cantor et al., 2018). Electronic systems that can monitor individual water intake by 

576 integrating RFID readers to load cells (Oliveira Jr et al., 2018) or level sensors (Tang et al., 2021) 

577 are also available allowing precisely individual data collection.

578           Water temperature can also affect your water intake. Cows prefer warm water when given 

579 the choice even during the hottest months (Wilks et al., 1990). In addition, heating drinking water 

580 will increase water intake for cows regardless of the ambient temperature (Osborne et al., 2002). 

581 Therefore, systems that can control the water temperature in tanks or water troughs would be 
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582 beneficial as a strategy for target groups, despite the economic aspect of that strategy (Osborne, 

583 2006).

584 Several physical-chemical parameters like water pH, mineral concentration, and bacterial 

585 contamination can influence the water intake and productivity of dairy cows (Schroeder, 2008). 

586 The total dissolved solids or salinity measure the amount of sodium chloride, bicarbonate, sulfate, 

587 calcium, magnesium, silica, iron, nitrate, strontium, potassium, carbonate, phosphorus, boron, and 

588 fluoride in water (NRC, 2001; NASEM, 2021). High mineral concentrations may limit animal 

589 performance (Solomon et al., 1995) and the cost associated with the water treatment most of the 

590 time makes its use unfeasible. Total dissolved solids above >7,000 ppm are considered 

591 unacceptable for cows. The National Research Council (2001) recommends that the water fed to 

592 cattle should contain <5,000 ppm of total dissolved solids. 

593 Contamination of the water due to fertilizers, animal waste, fecal material, crop residue, or 

594 industrial waste can occur and result in acute poisoning. Nitrate is an important contaminant of 

595 water sources that is potentially harmful to ruminants due to increased sensitivity to nitrate 

596 toxicities when compared to monogastric. Nitrate in the rumen is reduced to nitrite that is absorbed 

597 into the bloodstream resulting in a reduction of the oxygen-carrying capacity of blood (Radostits 

598 et al., 2007). An Electrochemical based nitrate sensor for the quantitative determination of nitrate 

599 concentrations in water (Gartia et al., 2012; Akhter et al., 2021) is available and can be used to 

600 monitor the water quality in dairy farms with a higher risk of water contamination.

601 Despite advances in technology and the development of sensors to measure the quality 

602 parameters in water complex systems that allow monitoring water quality parameters, making 
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603 decisions based on the collected data, and adapting more quickly to changing conditions at the 

604 dairy farm do not yet exist.

605 Overall, the main problem plaguing the use of most sensors in dairy production is the 

606 need for high sampling rates. Battery life is a challenge for many sensor technologies. Moreover, 

607 farms usually cover large areas, animals spread out and there are many interferences to signal 

608 detection. This creates challenges for data transmission (Sharma and Koundal, 2018). 

609 Furthermore, modern technology like deep learning, machine vision, and machine 

610 learning is promising but the tools have not yet been developed robustly enough to 

611 permit practical utility in dairy production systems. 

612

613 COMMUNICATION AND NETWORKING IN PRECISION DAIRY FARMING

614 Communication Technology for Precision Animal Agriculture 

615 Sensors present in and around the farm environment communicate data between 

616 themselves. This creates a farm network consisting of sensors on or inside the dairy animal’s body 

617 to other points in the farm. (Bandara et al., 2020). The data sharing between these sensors promotes 

618 deep data analytics which interprets the massive amount of information generated by the various 

619 sensors in the farm.  In this section, we analyze the different communication technologies and the 

620 key parameters used in the designing of in-farm networks. In designing communication systems 

621 for sensor networks in a farm environment, the important parameters to be considered are 

622 transmission power, range of communication, bandwidth, energy efficiency, and data security. The 

623 constraints on these parameters are set based on the application and placement of sensor nodes 
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624 present in the farm. For example, a size-constrained implantable device requires low power as well 

625 as high energy efficiency to increase the battery life which reduces the need for repeated invasive 

626 procedures on farm animals. On the other hand, the communication from a local hub to a cloud 

627 server may require more power-intensive methods and higher bandwidth to increase the data rate. 

628 Communication systems around a farm environment have traditionally used radio frequency (RF) 

629 based wireless communication methodologies. These communication paradigms operate at high 

630 frequency (100s of MHz to a few GHz) bands with energy efficiency ranging from hundreds of 

631 pJ/bits to well over tens of nJ/bits. High pJ/bit numbers result in increased energy consumption for 

632 communication. A high energy consumption for communication further leads to smaller battery 

633 lifetime. Therefore, implantable devices require high energy efficient communication methods (

634  10 pJ/bits) which can lead to a longer device life. Thus, it is essential to ensure that ≤

635 communication power, which typically is orders of magnitude higher than computing power, 

636 should be optimized to ensure a higher device lifetime. Some popular RF-based communication 

637 protocols have been discussed here in terms of vital parameters for communication around the 

638 farm environment. 

639 Bluetooth (Tosi et al., 2017) based devices have been used extensively around farm 

640 environments for wireless health monitoring and tracking of animals. Bluetooth works at a 

641 frequency band of 2.4 GHz and devices operating on Bluetooth can work for a range of about 50 

642 meters. Bluetooth works effectively for mid-range (  meters) communication but is power ≤ 50

643 hungry ( 10 nJ/bit) thus affecting the battery life of the device. Bluetooth is especially useful for ~

644 wearable sensors communicating to a common hub for data or to other wearable sensors and has 

645 been demonstrated in literature as a method for localization of dairy animals as well as 

646 communicating data from environment sensors to a cloud for further analytics (Rajagopal et al., 
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647 2014; Makario and Maina, 2021). ZigBee (Hidayat et al., 2020) is another short-range low-power 

648 communication protocol working for a range of up to 100 meters depending on the transmission 

649 power. ZigBee protocol also has been demonstrated with applications in monitoring environmental 

650 parameters in a farm setting.

651 MedRadio spectrum has been used for communication to and from implantable nodes for 

652 the human body. Similar applications for in-farm systems can be in low-power data transmission 

653 between implantable nodes inside the rumen and a collar node on the body (Datta et al., 2023). 

654 MedRadio band has been defined by the Federal Communications Commission (FCC), the 

655 regulatory body for monitoring and establishing protocols for electronic communication around 

656 the USA around the 400 MHz range for devices worn around the body as well as implantable 

657 devices. The typical energy efficiency for MedRadio is an order of magnitude lower than Bluetooth 

658 can potentially increase device lifetime significantly.

659 LoRa (Long Range) (Sornin et al., 2015; Chiani and Elzanaty, 2019; Sokullu, 2022) 

660 protocol as the name suggests is a long-range communication technology. Communication 

661 between multiple on-body nodes or from one node to a data hub may require a larger 

662 communication range needing comparatively higher transmission power. This can be handled 

663 LoRa (Long Range) where the range of communication is of the order of a few kilometers. The 

664 data transfer between environmental parameter sensors or between wearable sensors to a common 

665 gateway at the center of the farm can be achieved effectively using LoRa as demonstrated 

666 previously in literature(Bandyopadhyay et al., 2020; Saban et al., 2022; Sokullu, 2022; Tooprakai 

667 et al., 2022). Communication from the gateways to a cloud server requires higher bandwidth and 

668 data rate. This is because the gateways may need to handle large amounts of data coming in from 
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669 multiple on-body sensor nodes which are too close to it. The use of protocols like wi-fi will enable 

670 the gateway to pass a higher amount of data at a time to the cloud server with very low latency.

671 For data transfer between implantable nodes (devices inside rumen) and an on-body node 

672 like a collar device, an alternative to the traditional RF-based methods is using the conductive 

673 properties of body tissues to transmit the signals at low frequencies of around 20-30 MHz or lesser 

674 (Fahier, 2017; Datta, 2021a; Datta, 2021b). Intra-body communication in the EQS domain 

675 enhances the energy efficiency of the system. This results in orders of magnitude improvement on 

676 the energy efficiency and power consumed when compared to popular RF based methods such as 

677 Bluetooth and LoRa. This ensures a higher device lifetime which is essential in designing size 

678 constrained implantable devices such that frequent complicated procedures to replace the devices 

679 which are uncomfortable for the animals are avoided. Further, Intrabody communication also 

680 enhances data security. Implantable and wearable nodes deal with information that are sensitive 

681 and need to be protected from attackers. This data when in the wrong hands can lead to potentially 

682 serious consequences. The data from these implantable and wearable sensors thus needs to be 

683 secured. Physical layer security (Das et al., 2019) is a phenomenon where the signal is physically 

684 confined within a space such that it is unavailable to unintended receivers. This is observed in the 

685 for intrabody communication where the transmitted signal is confined within the body and signal 

686 leakage is only up to 5-10 cm away from the body. In comparison, RF methodologies like 

687 Bluetooth leak signals about 10 m away from the body. This means that the data that is being 

688 communicated using RF based methods, is available to attackers with the required know how 

689 within a room scale area thus making the communication less secure. In case of Intrabody 

690 communication, this is mitigated as the signal is confined within the body.  

691 Thus, an efficient communication system for a farm environment will involve the use of 
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692 multiple protocols dependent on the application. One such communication system architecture can 

693 be the use of broadband intrabody communication setup in EQS domain for on-body 

694 communication in conjunction with short-range narrowband communication methodologies like 

695 Bluetooth and ZigBee for information exchange around the herd. This along with long-range 

696 communication technologies like LoRa for communication with a central hub and has proved to 

697 be the most promising framework for wireless data transfer in a sensor network. 

698

699 The Edge, the Fog, and the Cloud – Building Intelligence in the Network

700 Recent long range and low-power communication, as discussed previously, have enabled 

701 the integration of sensor networks into PLF for remote monitoring of animals. The integration of 

702 sensors with networking technology has led to the evolution of sensor nodes (Alli and Alam, 2020). 

703 In these networks, a node is an entity that generates data (edge), transforms or processes data (fog), 

704 or stores data (cloud). For example, on a dairy farm, the temperature sensor in the rumen of a cow 

705 serves as a source of data and also the farthest node, i.e. the edge, of the network from the central 

706 hub. The data from the sensor then reaches the collar of the cow, which is an intermediate node of 

707 the network. When such intermediate nodes have computation and analytics capabilities, such as 

708 identifying motion patterns, they become a fog node of the network. Finally, the data reaches the 

709 network gateway, which uploads it to a cloud storage. Accessing the data remotely and taking 

710 subsequent actions becomes possible due to the availability of remotely accessible cloud storage. 

711 This hierarchical arrangement of nodes facilitates enhanced functionalities, including faster data 

712 analysis at the sensor level, reduced network traffic by transmitting only relevant information to 

713 the cloud, and quicker response times during emergency conditions.
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714 The presence of low-power computers embedded in edge and fog nodes enables these 

715 nodes to make autonomous decisions. Large-scale networks supporting PLF can greatly benefit 

716 from distributed intelligence in the form of edge and fog computing (Jukan et al., 2019; Friha et 

717 al., 2021). For instance, in farms utilizing large-scale wireless sensor networks, substantial 

718 amounts of data are generated and transported. Fog and edge computing allow low-level devices 

719 to process and act on the data as it is generated, instead of waiting for the main datacenter to 

720 process and release commands. This decentralization of data processing and decision-making 

721 results in low-latency and efficient networks that require lower bandwidth (Tsipis et al., 2020). In 

722 situations where internet connectivity is intermittent, such as in farms, cloud-based data processing 

723 and decision-making are susceptible to interruptions and delays, leading to further delayed 

724 responses. Fog and edge computing make the network more self-reliant and robust to 

725 communication and connectivity issues.

726 In recent years, numerous systems incorporating fog and edge computing infrastructure 

727 have been developed for animal health monitoring and management, both in academia and 

728 industry. Smart collars were used to predict heat stress in dairy cattle using an edge mining 

729 approach (Bhargava and Ivanov, 2016). The smart collars estimated the probability of the onset of 

730 heat stress and alerted the farmer accordingly. The system was further enhanced by using 

731 interactive edge mining, where the collar detects the activity and uploads the information to the 

732 cloud only at the milking station (Bhargava et al., 2017). Herd health monitoring utilizing edge 

733 computing was achieved by connecting individual pedometers to a fog node located on the farm 

734 (Taneja et al., 2018). The fog node aggregated the data and performed pre-processing and 

735 classification to identify behavioral indicators of illness. The farmer was alerted in case signs of 

736 lameness were observed. While these systems used specialized edge devices, general-purpose 
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737 computation boards such as Raspberry Pis and mobile phones are also being utilized as edge nodes 

738 for smart farming applications. Raspberry Pis are strong computing machines that can operate with 

739 low power and possess sufficient on-chip storage for edge-based processing and computing. They 

740 support open-source software which allows low-cost operation. Smartphones, equipped with 

741 precision sensors such as inertial measurement units (IMU), accelerometers, and global positioning 

742 systems (GPS), are used not only for data collection and processing but also for interaction with 

743 users (Magaia et al., 2021). A study investigated the effectiveness of smartphones as an edge 

744 device for cattle monitoring found that smartphones (iPhone 4) reduced data redundancies by 

745 43.5% (Magaia et al., 2021). 

746 Smart edge devices with machine learning capabilities are also being investigated for 

747 animal farming, especially dairy farming. The SmartHerd management system developed a 

748 microservices-based for-computing IoT platform for dairy farms that allows machine learning 

749 services to execute at the edge (Taneja et al., 2019). The platform reduced the total amount of data 

750 transmission by 83%. Similarly, a machine-learning-based system was proposed that identified 

751 behavioral patterns at the fog nodes for detecting lameness (Taneja et al., 2020). The system was 

752 able to detect lameness with an accuracy of 87% 3 days before visual signs appeared while 

753 reducing data transmission by 84%. 

754 Despite the clear advantages, the adaptation of edge and fog computing in animal farms 

755 has been limited, primarily due to cost and complexity considerations. The specialized edge 

756 devices provided by commercial sellers are expensive to implement for large farms, and they 

757 require regular updates or replacements within a few years; adding to the farmer’s expenses. Open-

758 source systems, such as Raspberry Pi and Arduino, can help in reducing costs, but but their 
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759 deployment often requires expertise that farmers may lack. However, as the benefits of such 

760 devices become more apparent in the long run and more farmers demand these services, the overall 

761 cost is expected to decrease. Moreover, the recent major investments in this sector will also 

762 contribute to increasing the penetration of such technologies, ensuring animal welfare in livestock 

763 farming. 

764

765 ANALYTICS AND AI FOR PRECISION DAIRY FARMING

766 Nutrition Models for Animal Health Prediction

767 Animal scientists leverage mathematical models of feed nutrient digestion and metabolism, as well 

768 as animal characteristics, to predict the nutrient requirements of livestock during various stages of 

769 production. These tools are then incorporated into a form of decision support system (ration 

770 formulation software) to help nutrition professionals precisely match the needs of the cow with the 

771 nutrient profiles provided by the diet. Mathematical models of ruminant nutrition have been widely 

772 reviewed (Tedeschi et al., 2005; Mulligan et al., 2006; Cannas et al., 2019; Tedeschi, 2019; 

773 Tedeschi, 2022). In brief, traditional animal nutrition models (Fox et al., 2004) focus on 

774 mechanistic understanding of biology in an attempt to better replicate animal responses to 

775 combinations of nutrients. Concurrent to the expansion of these models, artificial intelligence and 

776 machine learning have developed as powerful tools to support the extraction of understanding from 

777 data. Although some researchers highlight tremendous opportunity to leverage machine learning 

778 to support the advancement of animal nutrition (Neethirajan, 2020), others point out that the data-

779 heavy nature of these approaches and the movement away from mechanistic and systems-thinking 
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780 may exacerbate limitations of modeling tools available to support ruminant nutrition(Tedeschi, 

781 2019)

782 Agnostic of modeling approach, advancement of nutrition models can be advocated toward 

783 a variety of purposes. At the descriptive and predictive levels, some elements of animal physiology 

784 are data-poor, often due to animal ethical considerations and cost limitations associated with data 

785 generation. In these situations, there is value in exploring a variety of alterative data analytics 

786 (systems dynamics modeling (Tedeschi et al., 2011; Walters et al., 2016) or networking (Sujani et 

787 al., 2023), among others) in conjunction with more traditional statistical or mechanistic modeling 

788 approaches to make more thorough use of the available data. Alternatively, in these settings, digital 

789 twins (Raba et al., 2022) and data modeling (Neethirajan and Kemp, 2021; Menendez et al., 2022) 

790 may be viable alternatives to address the low data availability; however, such tools are limited if 

791 not informed by a sufficiently representative dataset. 

792 Animal nutrition data also present challenges for more desirable prescriptive analytics. 

793 Although some promise has been shown in developing prescriptive tools to support animal feeding 

794 choices (Siberski-Cooper et al., 2023), and in efforts to influence feed intake of individuals (Souza 

795 et al., 2022). Advancement of efforts to develop more prescriptive analytics to support animal 

796 feeding may require further data collection leveraging IoT systems. Traditional animal nutrition 

797 data is collected on groups, whereas desirable feeding choices would be made on an individual 

798 basis. Further traditionally, data has been collected after long adaptation times rather than in 

799 response to short-term diet shifts. At a minimum, these mismatches of available data should be 

800 evaluated to define their importance in supporting or limiting progress toward the goal of defining 

801 predictive analytics to support profitable, automated feeding. 
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802

803 Predictive analytics for Animal Health 

804 As described above, mechanistic models are developed based on the understanding of the 

805 biological mechanism of the animal. The whole animal system is divided into many subsystems, 

806 and the reactions of individual subsystems and relationships between these subsystems are 

807 described by prior biological knowledge. In particular, Molly is a dynamic model that predicts the 

808 cow’s outputs (e.g., dry matter intake, daily milk production, etc.) over a period based on the user’s 

809 input of initial conditions of the cow (e.g., body weight, body fat percent, etc.) and nutrition 

810 information of the diets (Baldwin, 1995). It has been used extensively and has undergone multiple 

811 updates (Hanigan et al., 2006; Gregorini et al., 2015; Li et al., 2019b; Rius et al., 2019; Li and 

812 Hanigan, 2020). For example, the 1995 Molly model is developed based on a nutrient-based input 

813 scheme, i.e., each nutrient is treated as a homogeneous substrate regardless of the source of that 

814 nutrient (Hanigan et al., 2006). The work (Hanigan et al., 2006)  modified the 1995 Molly model 

815 by including ingredient-based inputs as well as accommodating input changes within a run. The 

816 work (Rius et al., 2019) adjusted the original model and altered the prediction in milk production 

817 in response to changes in milking frequency. Compared to the old Molly model, the newest model 

818 has more accurate predictions in various aspects by incorporating new understandings of biological 

819 responses. Parameter estimation is conducted by using real data. These mechanistic models are 

820 usually robust in their predictions. However, they are usually unable to capture the variations of 

821 individual cows due to factors like genetic potential. Furthermore, a comprehensive comparison 

822 of different models is usually hard to make due to the requirements of unique inputs of different 

Page 39 of 79

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Journal of Animal Science



For Peer Review

40

823 models (Tedeschi et al., 2014). There is no clear criterion of the “best” model that the user can 

824 always choose.  

825 Due to their ability to capture the dynamics of cattle digestive systems, mechanistic models 

826 such as Molly provide a significant opportunity for rigorous control-theoretic approaches to 

827 precision animal agriculture.  For example, the paper (Gregorini et al., 2013) describes a 

828 mechanistic and dynamic model of the diurnal grazing pattern of a dairy cow, which is developed 

829 based on a cluster of three existing models, including Molly.  The paper (Romera et al., 2012) 

830 presents a framework that makes use of a whole farm model and a mechanistic soil model. The 

831 author argued that this scheme makes the most of the information generated by the whole farm 

832 model, and hence can concurrently capture the variability among New Zealand dairy farm systems, 

833 and predict nitrogen leaching by using a detailed soil model. 

834 A specific opportunity for the use of predictive models coupled with control theoretic and 

835 machine learning techniques is in choosing optimal diet formulations for cattle, as feed represents 

836 approximately 70% of total operating costs (Li and Hanigan, 2020). The least cost problem using 

837 static models (e.g., the NRC model (Council, 2001) ) has been studied by (St-Pierre and Thraen, 

838 1999). The optimization of a dynamical system is in general considered harder than the static case. 

839 The work (Boston and Hanigan, 2005) discusses the optimization problem of dairy cow ration 

840 formulation using the Molly model. The code is configured in such a way that one can deal with 

841 user-defined objectives, e.g., maximize the production return and minimize the costs subject to 

842 some constraints. 

843 There are many examples of deploying machine learning techniques in agriculture. For 

844 example, the work (Li et al., 2019a) uses artificial neural networks to predict a variety of outputs 
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845 in the rumen. The work (Jiang et al., 2019) presents a method based on a double normal distribution 

846 statistical model to detect the lameness of dairy cows. The work (Ebrahimi et al., 2019) compares 

847 the performances of different machine learning models for the detection of sub-clinical bovine 

848 mastitis. The work (Hempel et al., 2020) does a comprehensive study of different supervised 

849 machine learning models for predicting methane emissions from a naturally ventilated 

850 cattle building in Northern Germany.  A key challenge of training highly nonlinear machine 

851 learning models is that the data has to be very clean, and this could be resolved by using better 

852 sensors. However, it is worth noting that the  data obtained from sensors still needs to be 

853 standardized, especially across data collection platforms, and validated. Developing 

854 comprehensive metadata files is paramount for enabling the integration and full usage of the 

855 datasets generated.  In addition, it may be of importance to develop individualized models for cows 

856 to capture their individual variations. This may be challenging using a fully empirical approach 

857 considering the lifespan of a cow and the amount of data we need to train an individualized model. 

858 It is hence interesting to develop an individualized animal model by combining both empirical and 

859 mechanistic approaches more closely (grey box model).  Tedeschi (2022) provides important 

860 insights in this area of data analytics to support sustainable developments in animal science.

861 Over the past decades various models and approaches for predicting animal health have 

862 been proposed. The efficiency of the models depends on the quality and comprehensiveness of the 

863 variables used in the predictions and can incorporate indicators of animal behavior, physiological 

864 status, activity level, genomic information of individual animals, variability in performance 

865 indicators, and many others.   The area of epidemiology modelling has advanced substantially, and 

866 sophisticated models have been proposed. For instance, Gutiérrez-Jara et al. (2019) proposed a 

867 mathematical model to evaluate the dynamics of infectious diseases with two susceptibility 
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868 conditions, in which the model assumes individuals infected by one disease are more susceptible 

869 to another disease and when they recover from a disease, they acquire partial immunity. Many 

870 models proposed for humans can also be adapted to livestock species. For instance, Appuhamy et 

871 al. (2013) proposed mathematical models for predicting diabetes prevalence based on incidence 

872 rates estimated considering birth, death, migration, aging, diabetes incidence dynamics, and body 

873 mass_index.

874

875 Use of PLF Data for Precision Breeding Through Genomic Selection

876 As previously discussed, a large amount of information has been generated by electro-

877 optical, acoustical, mechanical, and (bio)sensor technologies and is being used for more accurate 

878 decisions based on quantitative and qualitative analytic results (Nayeri et al., 2019). In this context, 

879 the US is home to the largest precision dairy farms in the world and large dairy breeding 

880 companies, which are equipped with high-throughput phenotyping technologies and whole-

881 genome genotyping of thousands to millions of animals, which can be used for deriving novel 

882 traits for selection purposes (Chen et al., 2023; Pedrosa et al., 2023). The PLF used include 

883 automated milking systems (milking robots); animal-based sensors [e.g., ear tags, collars, or bands 

884 containing devices that sense activity (pedometers and accelerometers) and/or location (GPS or 

885 radio-based proximity)]; environment-based sensors that can include RFID (radio frequency 

886 identity) detectors, microphones (to capture vocalization, for instance), and various camera 

887 technologies including monochromatic, color, three dimensional (3D), infra-red and thermal; 

888 automated calf feeders; and automatic body weight recording (Brito et al., 2020a); (Fang et al., 

889 2017; Morota et al., 2018; Halachmi et al., 2019a). A vast amount of data is generated by these 

890 technologies, but it is currently underutilized (Koltes et al., 2019; Wurtz et al., 2019), especially 
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891 for breeding purposes. The use of a large amount of PLF data can contribute to a more accurate 

892 prediction of the genetic merit of young animals for a wide range of relevant traits, and thus, enable 

893 the optimal selection of breeding candidates, which will be the parents of the next generation as 

894 reviewed by (Brito et al., 2020a). 

895 Precision technologies provide an opportunity to assess physiological, behavioral, health, 

896 and production variables, which can be combined to indicate the overall welfare status of 

897 individual animals (Brito et al., 2020; Buller et al., 2020; Niloofar et al., 2021; Silva et al., 2021). 

898 As reviewed by Brito et al. (2020a), this is crucial because the ideal welfare assessment indicators 

899 should be as objective as possible, robust (can be applied under a wide range of on- and off-farm 

900 situations), relevant and valid (reveal aspects of the animal’s affective or physiological state that 

901 is important to their welfare), reliable (can be repeated with confidence in the results), cost-

902 effective, and well accepted by all industry’s stakeholders (Fleming et al., 2016). The majority of 

903 welfare and behavior indicators have been shown to be heritable and, therefore, can be improved 

904 through genetic selection (Morota et al., 2018; Santos et al., 2018; Fernandes et al., 2019; Brito et 

905 al., 2020; Chang et al., 2020). Genomics combined with PLF data holds significant promise for 

906 improving animal welfare, as it permits increasing the accuracy of breeding values for selection 

907 candidates or close relatives, even if they are not exposed to additional stressors. This creates an 

908 opportunity to measure a large number of traits (deep phenotyping) in the same group of animals 

909 and use this information to genetically select non-phenotyped animals in commercial farms. 

910 Currently, a limited number of livestock breeding programs have included welfare indicator traits 

911 in their selection schemes (Miglior et al., 2017; Turner et al., 2018; Chang et al., 2020). However, 

912 this is expected to change as more farms start to implement precision technologies and integrate 

913 all the data generated. Considering the multidimensional nature of the datasets collected and 
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914 multitude of variables, machine learning will likely be the best approach to process and integrate 

915 all these variables when multiple sources of information are available.. 

916

917 ECONOMIC EVALUATION OF DIGITAL TECHNOLOGIES

918 The growing demand for precision agricultural tools has not been matched by rapid 

919 adoption and broad use by farms. The lack of adoption of precision practices and technologies by 

920 farmers may be related to the uncertainties regarding the investment payoff (Russell and Bewley, 

921 2013); (Borchers and Bewley, 2015)However, it is necessary to carry out a complete assessment 

922 that proves, in the field, the value of precision agriculture technologies and, ultimately, proves 

923 reliable from the farmer's point of view. 

924 The development of a complete precision farm system consists of (1) technologies; (2) data 

925 analysis, (3) integration of information, and (4) decision making. The collection of data without 

926 the interpretation and the generation of an alert to the farm manager provides little or no value and 

927 technologies that lack this integration are destined to fail in the marketplace. Likewise, 

928 technologies that have not been proven in a commercial setting are of concern and may not deliver 

929 the intended outcomes.  Technologies that integrate all elements of the system with appropriate 

930 management action or standard operating procedures to enable an economic return on the 

931 investment.  Benefits in this regard can be related to a reduction in disease incidence and severity, 

932 improving productive efficiency, reduced labor, enhanced animal and operator wellbeing, reduced 

933 environmental impacts of production, or several combinations of these attributes (Banhazi et al., 

934 2012; Makinde et al., 2022).  For example, in evaluating the implementation of inline milk 

935 progesterone sensors in place visual estrus detection observed a break-even price range between 4 
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936 to 106 US$ per cow-year depending on differences in implementation type and herd reproduction 

937 management (Østergaard et al., 2005).  The economic return is related in this situation to the 

938 reduction in the labor cost and also an increase in estrus detection and therefore is likely to be farm 

939 and location-specific. For example, southwest regions of Ireland invest more in technologies for 

940 calf management and milking, whereas the northwest region invested in reproduction management 

941 (Palma-Molina et al., 2023).  However, communicating the benefits of such technology to farmers 

942 is key. A great example of this automated milking systems (AMS) adoption in Canada. Massive 

943 infrastructure and technology costs were incurred in implementing AMS on commercial farms, yet 

944 the promise of scalability and the confidence in the technology helped get the initial buy-in from 

945 farmers to invest between $1.2 million to $3.2 million in the technology (Makinde et al., 2022). 

946 In a recent survey, 80% of the farmers believed that PLF technology can improve animal 

947 health and welfare, and 53.3% believed that it can reduce labor costs (Makinde et al., 2022). 

948 Overall, the sentiment towards including technology in daily operation is more positive, as most 

949 farmers have experienced positive return on investment even from primitive tools. For dairy cattle, 

950 especially in feedlots, the improvement in weight scales in terms of ease of use and accuracy has 

951 been especially useful. Notably, the major barrier to adopting PLF systems in dairy farms is not 

952 just the cost of the technology itself, but the cost of maintenance and the cost of skilled labor 

953 needed to operate it. However, specialists believe that as technology becomes easier to use, such 

954 barriers will reduce and the full potential of PLF will be realized on farms.

955
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956 Limitations in the adoption of sensors and precision technologies on dairy farms 

957 Many factors limiting dissemination and adaptation of sensor and digital technologies for 

958 dairy production have been highlighted previously (Bewley and Russell, 2010; Empel et al., 2016) 

959 including, the level of management needed to implement the technology, risk associated with the 

960 technology, facility constraints, overall producer goals and motivations, and level of interest in a 

961 specific technology.  These factors are influenced by the producer's age, level of formal education, 

962 learning style, producer goals, farm size, business complexity, perceptions of risk, type of 

963 production system, level of innovativeness, and use of the technology by peers and other family 

964 members (Bewley and Russell, 2010). The potential value of the sensor and digital technologies 

965 in PLF is also tempered in some cases by the insufficient robustness of sensors (Wathes et al., 

966 2008), incompatibility of data received from different sensors, connectedness among data sensor 

967 platforms, and ease of transformation of sensor data into actionable information (Van Hertem et 

968 al., 2016). The lack of ‘ground truthing’ and appearance in the market without rigorous testing 

969 also results in negative experiences which, in some cases, has stalled the uptake and further 

970 development of precision agriculture technologies (Eastwood and Renwick, 2020). The 

971 development of new technologies has occurred at a faster rate than adoption by farms, which 

972 generates even more uncertainties in the producer and the desire to wait for further improvements 

973 before adoption (Borchers and Bewley, 2015). The information generated by unbiased research 

974 needs to be transmitted to farmers reliably and transparently for difficulties in implementing the 

975 technology will be overcome.  

976
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977 SUMMARY AND CONCLUSIONS

978 Digital technologies, including sensors, communication networks, and decision support 

979 systems, have the potential to revolutionize dairy production for sustainable intensification and 

980 meet the growing demand for animal proteins. By collecting data on individual cows' health, 

981 production, and activity, these technologies enable better management decisions, allowing fewer 

982 skilled individuals to care for more cows while maintaining animal welfare. Integration of sensors 

983 and systems for individual feed intake monitoring is crucial for effective and autonomous cow 

984 management at scale. While technologies today have shown potential, more customized and 

985 collectively integrated solutions are needed for broader adoption in the community. Efforts should 

986 focus on developing cost-effective and interoperable sensors across different farm sizes.

987 Robust communication networks are vital for sensor systems in commercial farms to 

988 aggregate data effectively. Smart animal agriculture utilizes sensors attached to animals to improve 

989 welfare and productivity. Energy-efficient and low-power communication, such as EQS Body 

990 Channel Communication, can enhance data transmission from sensors inside animals, enabling 

991 smart animal agriculture.

992 Combining mechanistic models and machine learning techniques can enhance decision-

993 making in animal agriculture. Advanced models can provide accurate predictions for better 

994 management strategies, including optimal diet formulation and early disease detection.

995 The successful integration of relevant sensors, robust communication networks, and 

996 accurate prediction models can transform animal agriculture, ensuring sustainability and 

997 productivity while prioritizing animal well-being.
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1650 FIGURE 1

1651 Figure 1 The overview of the system architecture for Precision Dairy Farming.
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1663 TABLE 1: THE COMPARISON OF SENSOR TECHNOLOGIES ENABLING IOT IN 

1664 PRECISION DAIRY FARMING

TOPIC Sensor 
Objective

Sensor 
Technology

Sensor 
Placement

Sensor 
Functionality References

Live Care 
Bolus Body core

Temperature 
measurement 

using 
biosensor 

(Lora)

(Kim et al., 
2019)

Cow Temp 
Bolus Body core

Radio based 
signaling with 

low power and 
lower 

frequency 
receiver

(Prendiville et 
al., 2002)

Thermocouple
s

subcutaneous 
space or 
between 

tissue layers 
and outer skin

Contact sensor 
- Based on 

thermoelectric 
effect

(Sellier et al., 
2014)

Thermistors

subcutaneous 
space or 
between 

tissue layers 
and outer skin

Contact sensor 
- Ideal for 

standalone 
operations

(Sellier et al., 
2014)

Health 
Sensing

To sense body 
temperature 
and deviation 
from standard 
temperature

Infra-red 
thermometer Outside cow

Non-contact - 
Remote 

measuring

(Sellier et al., 
2014)
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Infra-red 
camera

subcutaneous 
space or 
between 

tissue layers 
and outer skin

Infra-red 
radiation 

thermometers 
generated 

thermograms

(Sellier et al., 
2014)

Radio-
frequency 

temperature 
sensitive 

transponders

subcutaneous 
space or 
between 

tissue layers 
and outer skin

Radio-
frequency 

temperature-
sensitive

(Abecia et al., 
2015)

ECow bolus Cow rumen

PH sensor with 
reference cell 

inside a 
capsule that is 
swallowable

Mottram 
(Mottram et 

al., 2008)

Telemetric 
intraruminal 

bolus
Cow rumen

continuous pH 
value 

monitoring 
and transmits 

to the 
receiving 
station

(Phillips et al., 
2009)

To sense 
rumen pH

Rumenocentes
is Cow rumen

Indwelling pH 
meter - pH 
electrode

(Duffield et al., 
2004)
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pH electrode 
covered inside 

a watertight 
capsule

LRCpH Cow rumen

constructed of 
polyvinyl 
chloride 
material

(Penner et al., 
2006)

Impedimetric 
histamine 
biosensor

Cow rumen - (Bai et al., 
2020)

To sense 
concentration 
of histamine in 

rumen fluid

Molecularly 
imprinted 
polymer 
sensor, 

electrochemic
al histamine 
sensor and 

Impedimetric 
histamine 

sensor

Cow rumen pH bio sensor (Wang et al., 
2013)

Lameness

Foot pressure 
sensors, 

cameras, and 
gait 

monitoring 
using image-

based analysis

Foot, 
Monitoring 
cow from 

distant

Tracking, 
Spine 

curvature, 
Head bobbing, 

Speed, 
Abduction and 
adduction and 
Final gait score

(Jones, 2017)
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Detect leg 
swings of the 

cow

Outside cow - 
side view

Using 
computer 

vision 
techniques for 

scoring the 
locomotion of 
cows to detect 

lameness

(Zhao et al., 
2018)

Detect 
lameness 

using pressure 
sensitive 
walkway

Cow farm

By measuring 
spatiotempora

l kinematic 
and force 

variables in 
pressure 
sensitive 
walkway

(Maertens et 
al., 2011)

Ground 
reaction forces 

systems
Cow barn

Upgraded 
from original 
force plate 
system to 
measure 
ground 

reaction forces 
across 3 

directions

(Dunthorn et 
al., 2015)
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Accelerometer Cow leg

Daily lying 
duration, 
standing 
duration, 
walking 

duration, total 
number of 
steps, step 
frequency, 

motion index 
for lying, 

standing and 
walking 

measured

(Thorup et al., 
2015)

Weighing

Automated 
walk-over 
weighing 
system

Under the cow 
- on the floor

Commercially 
available walk 
over weighing 

scale

(Dickinson et 
al., 2013)
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DeLaval 
Special 
Camera

In the barns
3D images are 
captured using 

the camera

(Bercovich et 
al., 2013)

The Body 
Condition 

Score (BCS)

Back view 
images of cow 

by camera

Outside of the 
cow

Captures 
images

(Lynn et al., 
2017)
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Kinect Camera Outside of the 
cow

Triggered by 
an infrared 

motion 
detector

(Spoliansky et 
al., 2016)

Ultrasound 
BFT 

acquisition

Outside the 
cow

Video 
acquisition as 
input for the 
framework

(Sun et al., 
2019)
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Camera Outside of the 
cow

Rear view 
image 

collection of 
the cow

(Wildman et 
al., 1982)

Camera Cow's outside Image dataset   
acquisition

(Rodriguez 
Alvarez et al., 

2019)
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Thermal 
camera

Scanning cow 
from outside

Uses Infra 
CAM SD 
thermal 
camera

(Bercovich et 
al., 2013)

In-line near-
infrared (NIR) 

equipment

NIR spectra 
used to 

predict fat, 
protein, 

lactose, solids 
(not fat), and 

milk urea 
nitrogen

Assessed in 
the milk 

extracted

Non-
homogenized 

milk during 
milking over a 

wavelength 
range of 700 
to 1,050 nm

(Aernouts et 
al., 2011)

Milk Quality 
Sensing

Sensing 
mastitis 
disease

Electrical 
conductivity 
(EC) of milk

Extracted milk

The change in 
concentration 
of Na+ and Cl− 

in the milk 
changes EC of 

the milk

(Norberg et 
al., 2004)
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Sensing 
mastitis 
disease

Milk electrical 
conductivity, 

RGB color 
values of the 

milk and 
quarter milk 

yield

Extracted milk From raw 
sensor

(Kamphuis et 
al., 2010)

Infrared 
thermography 

(IRT)

Generate 
images based 

on the 
absorbed 
infrared 
radiation

Milk sample 
and skin 
surface 

temperature

The IRT is 
sensitive to 

detect 
changes in 

body 
temperature

(Colak et al., 
2008)

To detect 
estrus Pedometers Cow's leg

Vibrations 
produced by 

the cow while 
walking

(López-Gatius 
et al., 2005)

To detect 
estrus by head 

and neck 
movements

Activity 
monitor 

Heatime - 
Infrared 

telemetry 
accelerometer

Cow's neck 
and leg

Cow's 
displacement 
with respect 
to the time

(Aungier et al., 
2012)

Activity 
Monitoring

To detect 
estrus and AI

Accelerometer 
with Herd 

management 
software

Neck collar 
and an ID

Accelerometer 
system 

continuously 
monitoring 

individual cow 
activity

(Valenza et al., 
2012)
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Detecting 
estres using 

IceTag sensor

Measures 
number of 
steps and 

standing and 
lying times on 
a per-minute 

basis

Leg and neck

contains a tri-
axial 

accelerometer 
operating at a 
sampling rate 

of 16 Hz

(Silper et al., 
2015)

Detection of 
ovulation

Ultrasound 
scanning Rectum

Equipped with 
a 7.5 MHz 

sector 
transducer

(Roelofs et al., 
2005)

Detecting 
oestrus

KaMar, 
Pedometers, 
Heatime neck 

collar and heat 
mount 

detector

Leg and neck
Combination 
of all sensors 
and methods

(Holman et al., 
2011)

Cow's location 
inside and 

outside the 
barn

GPS for 
outside and 
triangulation 

of radio 
signals for 

inside the barn

GPS module 
installed with 

the cow

Gathering 
location 
through 

satellite eight 
channel 
receiver

(Turner et al., 
2000)
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Cow's location IoT based 
system On the cow

Combination 
of GPS with 

low-cost 
Bluetooth 

collars 
connected to a 

sigmox 
network

(Maroto-
Molina et al., 

2019)

Cow's location Radiotelemetr
y

Fixed on the 
terrain

Radiotelemetr
y using Global 

Positioning 
System 

Technology

(D'Eon et al., 
2002)

Cow's location 
and behavior 
monitoring

GEA Cow View 
system

Entire cow 
barn

Generated a 
virtual map of 
the barn and 

outlines all the 
area where 

cow has 
access

(Tullo et al., 
2016)

Virtual Fencing

Neckband 
integrated 

with audio cue 
and aversive 

electrical 
stimuli

Cows neck

Monitors the 
location of the 

animal and 
guides it with 
appropriate 

tools

(Langworthy 
et al., 2021)
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Virtual 
boundary 

setting via GPS
Cow’s neck

Gets location 
via GPS and 
set virtual 
boundary

(Verdon, 
2021)

Feed 
presence/iden
tification and 

scales

Difference in 
weighing scale

Feeding 
locations

Monitor 
frequency and 

duration of 
feeding

(Chizzotti et 
al., 2015)

Feed 
monitoring 

and Precision 
Feeding 
Systems

Acoustics and 
machine vision

Using sound 
recordings and 

video 
feedback

Feeding 
location and 

near the 
mouth

To analyze jaw 
movement as 
an indicator of 

feeding 
behavior and 
also to detect 

coughing

(Vandermeule
n et al., 2016)
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Feed presence

Individualized 
precision 

automated 
feeding 

system (AFS)

Feeding 
locations

Combination 
of detection 

with algorithm 
with 

mechanical 
actuations can 

form a 
complete 
automatic 

feeding 
system

(Trevarthen 
and Michael, 

2008)

Continuous 
respiration 

rate

Force sensitive 
resistor

Cow's 
abdomen

Detects the 
pressure when 

cow inhales 
and exhales

(Atkins et al., 
2018)

Overnight 
heart rate

Electrode 
based 

heartbeat 
monitoring 

sensor

Cow's chest

Polar 
electrode 

detects each 
beat of cow's 

heart and sent 
via wireless

(Munro et al., 
2017)

Environmenta
l Monitoring 
and Sensing

Heat stress 
and dry 

matter intake

Barn and 
surrounding 
temperature 
and humidity

In the barns
Weighing scale 

and 
thermostat

(Bouraoui et 
al., 2002)
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Temperature, 
humidity, wind 

speed and 
illuminance 
detection

Automation of 
cattle farm 

management 
using several 

sensors

Inside and 
outside of 

Barn

Every sensor is 
embedded 
within the 

architecture 
and actuations 

are done 
accordingly

(Chen and 
Chen, 2019)

Gaseous 
Ammonia 

Sensor

Senses 
ammonia 

concentration 
in the air

Inside the 
barns

Gas sensor 
that senses 

concentration 
of ammonia in 

the air

(Banhazi, 
2009)

Water Quality
Water intake 
monitoring 

system

Motion 
detectors, 
Cameras, 

Water level 
sensors, Flow 

meters

Outside barn

Detects the 
water 

consumption, 
water 

temperature, 
drinking 
duration

(Tang et al., 
2021)
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Amount of 
water 

consumption

By integrating 
RFID readers 

to load cells or 
level sensors, 

individual 
cow's water 

consumption 
level can be 
measured

Water feeding 
place and the 

cow

Difference in 
the level of 
water after 

consumption

(Oliveira Jr et 
al., 2018)

Water 
Temperature

Water 
temperature 
management 

system

Water storage Temperature 
sensor

(Osborne, 
2006)

Low-power 
interdigital 
sensor to 

detect nitrate 
and phosphate 
concentrations

On the basis of 
electrochemic
al impedance 
spectroscopy

Water storage

electrochemic
al impedance 
spectroscopy 

to detect 
nitrate and 
phosphate 

concentrations

(Akhter et al., 
2021)

Nitrate sensor
Electrochemic

al based 
sensor

Water storage

Concentration 
of nitrate in 
water using 

electrochemic
al method

(Gartia et al., 
2012)
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