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ABSTRACT Side-channel attacks (SCAs) remain a significant threat to the security of cryptographic
systems in modern embedded devices. Even mathematically secure cryptographic algorithms, when
implemented in hardware, inadvertently leak information through physical side-channel signatures,
such as power consumption, electromagnetic (EM) radiation, light emissions, and acoustic emanations.
Exploiting these side channels significantly reduces the attacker’s search space. In recent years, physical
countermeasures have significantly increased the minimum traces-to-disclosure (MTD) to 1 billion. Among
them, signature attenuation is the first method to achieve this mark. Signature attenuation often relies
on analog techniques, and digital signature attenuation reduces MTD to 20 million, requiring additional
methods for high resilience. We focus on improving the digital signature attenuation by an order
of magnitude (MTD 200M). Additionally, we explore possible attacks against signature attenuation
countermeasure. We introduce a voltage-drop linear-region biasing (VLB) attack technique that reduces
the MTD to over 2000 times less than the previous threshold. This is the first known attack against a
physical SCA countermeasure. We have implemented an attack detector with a response time of 0.8 ms
to detect such attacks, limiting the SCA leakage window to sub-ms, which is insufficient for a successful
attack.

INDEX TERMS AES-256, correlational power analysis, electromagnetic (EM) leakage, generic counter-
measure, hardware security, side-channel attacks (SCAs), synthesizable signature attenuation, test vector
leakage assessment (TVLA).

I. INTRODUCTION

CRYPTOGRAPHIC algorithms are designed to be secure
based on mathematical principles. However, they can

unintentionally reveal sensitive side-channel information.
This type of leakage typically happens due to power
correlations, electromagnetic (EM) emissions, timing, and
variations in cache accesses. Such leaks are a serious security
risk for integrated circuits (ICs). Theoretically, AES-256 can
be broken with a brute-force attack, requiring 2256 trials to
deterministically steal the AES key. However, side-channel

attack (SCA) has reduced the minimum traces-to-disclosure
(MTD) to approximately 213. This implies that storing
213 power traces could be used to extract the entire key,
thereby reducing the attack complexity to 213 [1]. Recent
observations reveal that the AES-256 key can be intercepted
even from a distance using a low-cost EM probe without
detailed knowledge of the circuit or PCB implementation [2].
An adversary monitors the information to exploit this leakage
and correlates it against a statistical model constructed using
secret key guesses. Correlation attacks utilize Hamming
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weight (HW) or Hamming distance (HD) models to estimate
the switching activities of internal nodes within a crypto-
graphic engine. Depending on the strength of the underlying
power model and the availability of power signatures, a
correct key guess yields correlation peaks, revealing portions
of the secret key. An alternative analysis for evaluating side-
channel vulnerabilities in crypto hardware is the test vector
leakage assessment (TVLA) [18]. This analysis estimates
model-independent information leakage by applying Welch’s
|t|-test to a set of fixed and random plaintext vectors. If the
resulting |t|-score exceeds a heuristic threshold of 4.5, the
device is considered to exhibit meaningful leakage.
The researchcommunityhasbeenexploringvariouscounter-

measures in response to the emergence of SCAs. Architectural
countermeasures involve heterogeneous S-boxes, arithmetic
masking, and multiplicative masking. These methods aim to
enhance security by introducing complexity and obfuscation
at the architectural level. In contrast, generic and physi-
cal countermeasures address vulnerabilities at the physical
implementation level. Examples include randomized series
low-dropout (LDO) regulators aswell as analog and digital sig-
nature attenuation circuits (DSACs). Some countermeasures
combine multiple approaches to achieve robust protection
against side-channel leakage. Our work focuses on a high-
attenuation technique based on a digitally cascoded current
source (CS), leveraging a single generic approach. Security
remains a dynamic challenge akin to a cat-and-mouse
game. Attackers have questioned the efficacy of certain
architectural countermeasures under specific circumstances.
However, attacks against physical countermeasures remain
unexplored. We successfully explored an attack on a physical
countermeasure for the first time. Contributions of this work
are threefold, as shown in Fig. 1.

1) We introduce a signature attenuation technique using
a digital cascoded CS (DCCS), namely, resilient
signature attenuation embedded crypto with low-level
metal routing (R-STELLAR). This countermeasure
could not be attacked with 200M power traces which
is 20× greater than existing single, physical, generic
countermeasure (≈10M traces) requiring at least 20
times more time to extract AES key with respect to
current solutions. Moreover, this could be integrated
with other solutions for more benefit.

2) Additionally, we explore an attack, namely, voltage-
drop linear-region biasing attack (VLB) on physical
countermeasures, significantly reducing MTD from
200 million traces to 105K traces.

3) Finally, we propose an attack detection mechanism
crucial for the practical adoption of physical counter-
measures in industry.

The subsequent sections of this article are structured as
follows. In Section II, we delve into related research on
countermeasures against power and EM SCA, along with
potential vulnerabilities. Section III provides an in-depth
analysis of the circuit architecture. In Section IV, we outline

(a)

(b) (c)

(d) (e)

FIGURE 1. (a) Prior state-of-the-art using signature attenuation techniques.
(b) Unprotected AES can be attacked using power SCA. (c) This work protects against
power SCA using digitally cascoded CS. (d) Voltage drop-based linear-region biasing
attack is explored using a signature attenuation countermeasure. (e) Implemented
attack detectors can detect this attack for the resilience of signature attenuation
countermeasure. Key contributions are tabulated below.

the proposed attack strategy and its corresponding mitigation
technique. Section V presents the measurement setup, results,
and IC specifications. Finally, we conclude this article in
Section VI.

II. RELATED WORKS
This study enhances the existing state-of-the-art in single
digital-friendly countermeasures by a factor of 20, achieved
through utilizing a cascoded CS. Additionally, we investigate
the VLB attack and its corresponding detection mechanism
within the same countermeasures. Before delving into the
details, we will provide a brief overview of the existing
literature.

A. POWER/EM SCA COUNTERMEASURE
Power and EM SCA countermeasures can be classified into
three categories: 1) architectural; 2) logic-level; and 3) phys-
ical or circuit-level. Architectural countermeasures include
algorithmic shuffling [3], arithmetic countermeasure [4], and
multiplicative masking [1]. Algorithmic shuffling rearranges
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FIGURE 2. State-of-the-art circuit-level countermeasures. This work brings the benefit of cascoded CSs in the digital domain for high security, even being scalable.

cryptographic operations to disrupt the correlation between
power consumption and sensitive data; however, it has
limited capability against SCA as limited operations are
shuffled. Time-domain signal-to-noise ratio (SNR) is still
high enough to be correlated. Logic-level countermeasures
mostly compensate power to gain resilience against power
side-channel. WDDL [5], SABL [6], Dual Rail Precharge
Logic [7], and Boolean masking [8] are examples of the
logic-level countermeasures. These solutions are mostly
synthesizable; however, they suffer from high power and area
overhead (>2×); hence, they may not be preferred within
the scope of area and energy-constrained secure IoT devices.
Recently explored circuit-level countermeasures [9], [10],
[11], [12], [13], [14] promise lower overhead while being
generic. We discuss these genres of countermeasures in detail
in the next section.

B. CIRCUIT-LEVEL COUNTERMEASURES
Circuit-level countermeasures [9], [10], [11], [12], [13], [14]
solve the problem of practicality as overhead is significantly
less than architectural or logic-level countermeasures. This
leads to a recent thrust of circuit-level/physical counter-
measures against SCA. The progression of the physical
countermeasures is shown in Fig. 2. One popular state-of-
the-art countermeasure is switch capacitor current equalizer
(SCCE) [15], [16]. SCCE reaches > 10M MTD by supplying
the AES with three parallel capacitors and bypassing the
information-sensitive leakage to a dc bias. However, this
solution suffers from 2× performance overhead due to
large droop caused in the capacitors. Voltage regulator-
based solutions include integrated buck regulator (IBR
[17], [18])-based solution and series LDO with loop ran-
domization (R-DLDO [19]). They provide medium security
(<10M MTD) due to obfuscation created by different
randomization techniques. However, IBR has large passives
(note that MiM cap often radiates meaningful information
in terms of EM emanation). Digital LDO inherently leaks
critical information as voltage compensation follows the

instantaneous current drawn by the crypto-engine. Digital
LDO with noise injection and voltage/frequency modulation
reaches 6.8M MTD against SCA, although LDO is a high-
overhead solution for SCA. Cascade of NL-LDO with
arithmetic countermeasures achieves (> 1B MTD) high
security against correlation power analysis (CPA). However,
it suffers from high overhead due to LDO and is not generic
due to arithmetic countermeasures [4], [20].

C. SIGNATURE ATTENUATION COUNTERMEASURES
STELLAR [10] achieves high MTD by using an analog
cascoded CS as a power delivery circuit, which provides
high attenuation due to its high output impedance. This
solution achieves > 1B MTD for the first time but is not
synthesis-friendly. Syn-STELLAR [11] proposes a scalable
signature attenuation-based solution that provides similar
MTD (>1.25B MTD) by cascading two solutions, namely,
DSAC and time-varying transfer function (TVTF). DSAC
does not provide high attenuation compared to CDSA as the
synthesizable realization of CS replicates source degenerated
structure instead of cascaded structure, contributing to lower
attenuation. Additional ring oscillator (RO) randomization
along with TVTF helped to achieve similar security (w.r.t
CDSA) at the cost of high overhead. Our solution (namely,
R-STELLAR) brings the benefit of analog cascoded sig-
nature attenuation in the digital domain to achieve high
attenuation, hence high MTD (> 200M MTD) against SCA.
These solutions use lower metal layer routing to reduce EM
leakage.

D. ATTACK AGAINST COUNTERMEASURE
Security is always a strategic contest between attackers and
cryptographers. Advancements in one countermeasure may
open another avenue for attack. Historically, countermea-
sures for square-and-multiply algorithms of RSA scheme
against simple power analysis (SPA) have been attacked
using differential power analysis three decades ago [21].
Another instance is when exponent randomization-based
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(a) (b)

(c)

FIGURE 3. (a) Full system architecture of R-STELLAR. (b) Parallel AES-256 architecture. (c) Load characterization of AES.

countermeasures of RSA [22] have been attacked [23].
Masking is a provably secure technique. However, different
masking techniques of AES have been exploited using
higher order attacks or fault injection attacks (FIAs) [24].
These attack–defense–attack-based explorations of different
countermeasure strategies are often explored in the standard
crypto community. The recent gamut of physical coun-
termeasures should be tested well against different types
of attack strategies. As these countermeasures frequently
come from circuit knowledge, attackers with knowledge of
the circuit can increase the probability of attack. Hence,
it is impossible to popularize generic and circuit-level
countermeasures without detailed stress testing. Until now,
no approach exists to evaluate the physical countermeasures
implemented on custom ICs against new attacks to the best
of our knowledge. For the first time, we have explored an
attack possibility on physical/circuit-level countermeasures
and suggest an attack detector circuit that can detect such an
attack through experimental evaluation. This type of attack
detector is necessary to sustain the generic countermeasures.
We believe this approach will help us increase trust and appli-
cability in physical countermeasures. Notably, this attack is
a demonstration of a signature attenuation-based circuit but
can be extended to different physical countermeasures as
well, which can be explored as part of future works.

III. R-STELLAR COUNTERMEASURE DESIGN
Fig. 3(a) presents the full system architecture. The full
system architecture consists of a DCCS, multiple scan-
controlled parallel RO as the bleed path similar to [11]. The
bleed path bypasses the delta changes in the supply current,
thereby stabilizing the VAES node voltage by providing local

(a) (b) (c)

FIGURE 5. Created biasing voltage by NAND structure when the number of on NAND

gate at the top r is (a) 1, (b) 8, and (c) 15, respectively. We create variable voltage by
biasing the top pMOS of the CS slices using this structure.

negative feedback (LNFB) and hiding small key-dependent
current changes. Simultaneously, the RO-bleed is the input of
the global feedback (switch mode controller), which is a slow
loop that compensates for process, voltage, and temperature
(PVT) variation or sudden changes in the crypto current
due to frequency variation of the encryption engine. We
will discuss DCCS and the Global feedback loop in detail
in the following subsections. Parallel AES-256 is used
as an example crypto engine as shown in Fig. 3(b). Load
characteristics is shown in Fig. 3(c). We will discuss AES
architecture and load characteristics briefly in Section V for
continuity.

A. DIGITAL CASCODED CURRENT SOURCE
The DCCS is crucial in mitigating power and EM SCA. In
previous work, Das et al. [10] employed an analog cascoded
CS, achieving high attenuation (and enhanced security against
SCA)as shown inFig. 4(a).However, this analogsolution faces
scalability challenges when transitioning to newer technology
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FIGURE 4. Progression of signature attenuation circuit from analog-to-digital domain: (a) analog cascoded CS, (b) digital source degenerated CS which is scalable but
provides low attenuation, (c) DCCS providing very high attenuation in digital domain, and (d) attenuation by using architecture (a)–(c).

nodes. Adaptation to each technology node requires significant
engineering effort. To address this, a synthesis-friendly CS
was proposed by Ghosh et al. [11], as depicted in Fig. 4(b).
This digital-friendly approach brings the benefits of signature
attenuation in the digital domain, maintaining scalability.
The work by Ghosh et al. [11] employs a pMOS-based
power-gate approach for CS utilization. Specifically, a stacked
pMOS structure is biased using a self-connected NOT gate,
internally generating a voltage of (VDD/2). It is important
to note that biasing NOT gate will have short-circuit current.
However, minimum-sized NOT gate consumes only ∼6-uA
current at VDD = 1.2 V, making this negligible overhead
with respect to the entire R-STELLAR-AES. This solution
effectively addresses the scalability challenge associated with
signature attenuation-based countermeasures. However, this
architecture uses source-degenerated CS structures. Source
degenerated CS exhibits lower output impedance than the
cascoded structure, reducing attenuation. To overcome this
limitation, we propose a DCCS. The DCCS configuration
consists of two pMOS transistors, each independently biased,
as illustrated in Fig. 4(c). The NOT gate’s output is connected
to its input, stabilizing it at (VDD/2) to bias the lower pMOS.
The upper pMOS, on the other hand, is biased using a stack
of NAND gates. Specifically, three stages of 16 self-connected
NAND gates serve as a resistive divider. By connecting one
input of the NAND gate to its output, we incorporate a self-
biased structure. Importantly, the NAND gate provides control
over the NOT gate. When the other input is “1,” it functions
as a self-biased inverter, effectively acting as a resistor in
the implemented architecture. Conversely, if the other input
is “0” (resulting in a NAND output “1”), the nMOS series
path is closed, exhibiting high resistance (nMOS in the cut-off
region). This controllability via the second input port enables
a tunable resistive-divider structure, facilitating the biasing
of the upper pMOS. We use these two techniques to bias
the pMOS transistors, resulting in a synthesizable cascoded
CS. Biasing voltage of the top pMOS (Vbias) is given by the
following equation:

Vbias = VDD × Zbottom + Zmid

Zbottom + Zmid + Ztop

= VDD ×
(
ron
p ‖ roff

16−p
)

+
(
ron
q ‖ roff

16−q
)

(
ron
p ‖ roff

16−p
)

+
(
ron
q ‖ roff

16−q
)

+
(
ron
r ‖ roff

16−r
)

(1)

where Ztop, Zmid, and Zbottom are the impedances of different
NAND stages, ron and roff are self-connected and off resistance
of a single NAND gate, and p, q, r are the number of self-
connected NAND at bottom,middle, and top stage, respectively.
We can control the resistance by controlling p, q, r. Note that,
assuming roff >> ron, this structure, ideally, can generate
voltages between 0 and VDD. However, the contribution of
roff restricts the full swing. For example, with 16 stages
of minimum-sized NAND gates, we can generate voltage
ranging from 110 mV to 1.15 V when VDD = 1.2 V as
shown in Fig. 5(a)–(c) by using p, q, r as tuning knob. We
vary the number of self-connected NAND at every stage of
the NAND structure and plot created biasing voltage with
different numbers of top self-connected NAND gates (r). For
this work, we use Vbias = 0.72 V. This approach maintains
scalability while providing substantial attenuation by creating
cascoded structure, positioning it as a key component in
signature attenuation-based countermeasures. Power gates
are often placed using a standard power gate library with an
automatic place-and-route script. Similarly, the NOT/NAND-
based biasing circuit is generated using a script, and the
netlist is directly used for place-and-route. Thus, the entire
process is automated and digital-friendly, requiring no manual
intervention to generate the finalGDS.However, it is important
to note that not all digital libraries support power gates.
Standard cell libraries that include power gates will support
the place-and-route of this structure. This digital structure has
≤ 0.5% variation based on different process corners. We
conducted simulations across all process corners to examine
the variations. This structure depends on the impedance
ratio of the self-connected NAND/inverters. NAND/NOT gates
at every stage behave similarly in a particular process
corner, hence the impedance ratio of them remains similar,
keeping variation ≤0.5%. Monte-Carlo simulation shows
≈11% variation (Fig. 6) in biased voltage when considering
15% mismatch variations. However, precise voltage is not
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FIGURE 6. Monte-Carlo simulations. A mean voltage of 637 mV and a standard
deviation of 68.9 mV are observed at the mentioned configuration.

A very strict requirement in this scenario. The CS should
be biased in the saturation region, providing high output
impedance. A feedback loop stabilizes that region in case
PVT variations change the current per CS slices. The
short-circuit current of this structure is very low as both
the pMOS and nMOS have very low overdrive voltage
(VGS-VT ). This circuit is inspired by the self-biased resistive-
feedback low-noise amplifier architecture, which is widely
used in RF analog ICs [25]. This architecture is prevalent
due to the widespread use of self-biased circuits in different
contexts. Moreover, we have a set of biasing NOT/NAND gates
that can be activated rotationally to mitigate the effects of
aging. Notably, through parametric extracted simulations, we
achieve an impressive 343× attenuation, surpassing the results
reported in Ghosh et al.’s previous work (which achieved 30×
attenuation [11]) as shown in Fig. 4(d). This architecture is an
LDO architecture [Fig. 7(a)] which is proven effective against
SCA. Note that the control loop at shunt LDO also uses a
shunt path for stable internal voltage, hence providing higher
security. Digital cascoded architecture helps us achieve similar
high output impedance of analog structure [Fig. 7(b)]. We will
explore MTD improvement through silicon experimentation,
which is described in Section V.

B. SWITCHED MODE CONTROLLER AS GLOBAL
FEEDBACK LOOP AND RING OSCILLATOR AS LOCAL
NEGATIVE FEEDBACK
Our design uses a digital switched-mode controller (SMC)
loop as global negative feedback. The adoption of SMC
is prevalent in signature attenuation-based solutions, as
discussed in [11]. However, an in-depth understanding of
this component is crucial for assessing the attack surface
against such countermeasures.
The RO converts VAES voltage into frequency. RO output

undergoes frequency division before being counted by
an asynchronous counter. This frequency division ensures
low-power operation without sacrificing precision in the
asynchronous counter. A decision circuit is also employed
to selectively activate or deactivate the CS slices. This
dynamic adjustment responds to variations in average current
drawn by the cryptographic engine due to PVT fluctuations
or changes in operating frequency. While the RO is an
LNFB path, it is not utilized for random noise injection, as

(a) (b)

FIGURE 7. (a) LDO architecture for security. (b) Higher output impedance (ro ) helps
achieving higher signature attenuation. This work achieves analog-like ro by using the
digital circuit.

demonstrated in Ghosh et al.’s work [11]. Our evaluation
focuses purely on the signature attenuation technique for
a fair comparison of the key technique. The RO also
plays a role in detecting malicious voltage drop-based
attacks.

IV. VOLTAGE-DROP LINEAR-REGION BIASING ATTACK
A. POSSIBILITY OF ATTACK BY MANIPULATING GNFB
The attack modality is explained in Fig. 8, involving
manipulating the SMC loop. Consider an encryption engine
that draws a current of 15I, which is supplied by 15 CS
slices operating in the saturation region. Now, through trial
and error, an attacker can deliberately reduce the supply
voltage (VDD) slightly. Due to this abrupt voltage drop,
the encryption engine may initially fail to operate. Still,
the GNFB will engage, aiding the circuit into a steady
state. To compensate for the reduced average current, the
SMC loop activates additional CS slices. For instance, if
each CS slice can provide (3/4) × I current, then 20 CS
slices would collectively deliver the required 15I current
for the encryption engine as shown in Fig. 8. Notably,
all these slices operate in the linear region, resulting in
significantly lower output impedance. Unfortunately, this
reduced attenuation leads to heightened information leakage.
The simulated impact of a voltage drop-based attack on the
global negative feedback loop is depicted in Fig. 9. In the
absence of any voltage drop, when the CS slices operate
in the saturation region, there is no vulnerability to attack.
The system remains stable, as shown in the red region.
As the voltage (VDD node) experiences a slight drop, the
SMC loop becomes destabilized. Notably, a significant droop
occurs at the VAES node (indicated by the blue region in
Fig. 9). However, an attack is not feasible in this scenario
because the CS cannot supply the required current to the
AES. Consequently, the AES remains nonoperational while
the SMC becomes active. Eventually, the loop settles back
into stability (green region). The CS slices operate in the
linear region at this point, creating a lack of high attenuation.
Unfortunately, this lack of high attenuation introduces the
possibility of an attack. It is important to note that an attack
on this countermeasure is not always possible. We need to
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FIGURE 8. Attack modality on attenuation-based countermeasure. Manipulating the
CS and operating them in the linear region while supplying enough average current
for the crypto engine leads to information leakage.

meet the following circuit criterion to achieve the attack
point:

Icrypto = Isat × m = Ilin × n

⇒ K

2
(VGS − VT )2 × m = K(VGS − VT − VDS/2)VDS × n

⇒ (VGS − VT )2

2(VGS − VT − VDS/2) × VDS
× ICrypo

Isat
= n

⇒ n = Icrypto
2K

× 1(
VGS − VT − VDS/2)/VDS

= 1

2K
· ICrypto(
VGS − VT − VDS

2

)
× VDS

≤ nmax (2)

where m and n are pMOS turned on to supply the crypto
engine in saturation and linear region respectively; K MOS
device constant, Icrypto is average crypto current. VGS,VDS,
and VT are absolute gate-to-source, drain-to-source, and
threshold voltage, respectively. Isat and Ilin are saturation and
linear region current of single pMOS gates. nmax is maximum
CS slices. Note that if all the CSs combined cannot drive
the crypto core, the attack will not be successful.
Moreover, lowering the VDD may stabilize AES at lower

VAES reducing the efficiency. This reduction can lead to
setup time violations, thereby increasing the possibility to
FIA. Although this specific attack is beyond the scope of
this article, it is crucial to note that our attack detection
technique is capable of identifying any voltage drops, thereby
mitigating such risks at the source.

B. VLB ATTACK DETECTOR
We introduce an attack detection circuit to mitigate malicious
VLB attacks on signature attenuation countermeasures. The

FIGURE 9. Different region for voltage drop-based attack. At stable VDD, there is no
voltage drop leading to no attack. Initial voltage drop cannot support this attack as CS
cannot supply the AES. However, GNFB stabilizes CS slices in linear regions; it will
start leaking information.

(a)

(b)

FIGURE 10. (a) Attack detector circuit for malicious VLB attack. (b) Sample
waveform of attack detector.

circuit, depicted in Fig. 10(a), aims to identify the voltage
discrepancy between VDD and VAES, enabling successful
detection of malicious attacks.
Within our system, the LNFB employs an RO to stabilize

the VAES node, serving as an input to the GNFB. We
utilize the same RO as a critical component to ensure the
sustainability of our signature attenuation-based counter-
measure. The RO output undergoes frequency division and
feeds into an asynchronous counter, yielding an estimation
of the AES voltage. Additionally, we employ another RO
to estimate the global VDD. By dividing the voltage using
stacked inverters, we achieve approximately (2/3) of the
global VDD. This voltage division strategy ensures that both
the counted numbers remain closely aligned. The divided
voltage is digitized through a replica frequency divider
and an asynchronous counter. Subsequently, both counted
values are input to a digital comparator, which functions
as the voltage drop detector. Ideally, the difference between
these two numbers should be minimal, given the similarity
between the voltage-divided VDD and VAES. This comparison
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is configurable, allowing us to adjust the estimated difference
using a scan chain within the voltage drop detector circuit.
In the event of a voltage drop-based attack, where VDD
is intentionally reduced, the difference between the counter
outputs surpasses a predefined threshold. This occurrence
signals the possibility of VLB SCA on our signature
attenuation-based countermeasures, ultimately activating pro-
tective measures, including halting the encryption engine.
Note that the determination of the threshold is analogous
to the methodology employed in built-in self-test (BIST)
circuits, such as those found in digital LDOs. This similarity
stems from the shared fundamental principles underlying
both systems. The RO consumes approximately 3 μA of
current, allowing the voltage divider circuit to supply the
required low voltage. Additionally, the top-stage NAND

structure offers tunability, enabling the injection of additional
current in the event of a voltage drop. It is important to note
that this article conceptually addresses the efficacy of the
proposed voltage detector. The BIST circuit for tunability is
beyond the scope of this work and will be explored in future
research.
Fig. 10(b) illustrates the working principle of the attack

detector. Frequency divided RO outputs (RO_Out1 deduced
from VDD and RO_Out2 deduced from VAES) are counted
using an asynchronous counter when the counter enable
signal is high. “Time to count” determines the time required
(# clock cycles) to accumulate RO outputs before calculating
the difference between them. In this example, asynchronous
counter1 and asynchronous counter2 accumulate the RO
output for five clock cycles, which are 20 and 8, respectively.
The difference of 12 is greater than the expected threshold

of 10, which indicates the ongoing malicious voltage drop
attack. “Time to count” serves as a crucial control parameter
in this context. The differences between the two counters
are only measured up to the “Time to count” interval
periodically. This approach prevents the accumulation of
differences, thereby eliminating false positives.

V. MEASUREMENT RESULTS
A. IC SPECIFICATION
The IC micrograph is depicted in Fig. 11(a). This 1 mm2

IC features an AES-256 crypto-engine as a use case. In
particular, the left side of the IC houses the countermeasure
implemented, R-STELLAR. IC layout clearly showing the
important blocks is presented in Fig. 11(b). A 1-� resistor
is used in VDD series path to sense the current for power
SCA. The IC specifications are summarized in Fig. 11(c).
Fabricated using the TSMC 65-nm CMOS LP process, the
IC employs chip-on-board packaging with glob-top encapsu-
lation. Load characterization is performed on the unprotected
core, as illustrated in Fig. 3(c). The parallel 128-bit datapath
AES serves as the crypto engine [Fig. 3(b)], operating at
20 MHz and 0.8 V VDD. At this configuration, AES-256
consumes 275.2 uW of power. A 30-pF decoupling capacitor
(moscap) is placed, occupying an area of 0.003 mm2. The
total active area of the encryption engine is 0.14 mm2. A

(a)

(b)

(c)

FIGURE 11. (a) IC micrograph. (b) IC layout, blue box shows the countermeasure
area. (c) IC specification.

FIGURE 12. Shmoo plot: VAES versus maximum frequency of AES.

Shmoo plot for VAES versus maximum frequency is plotted
in Fig. 12. The countermeasure occupies an active area of
0.048 mm2. To further stabilize the VAES node and provide
resilience against large droops, an additional load capacitor
of 150 pF is incorporated. This capacitor, occupying an area
of 0.015 mm2, contributes to area overhead significantly.
R-STELLAR operates with a 1.2-V VDD input. Protection
needs 179 bits of scan chain for configuration, although some
of these scan bits are also utilized for unrelated experiments
within the same die. The proposed countermeasure is generic
and can be adopted to any crypto core and operating at any
frequency if CS designs are taken care of for maximum
current support. For example, AES operating at higher
frequency needs more average current. This requires a greater
number of slices or transistors with higher W/L width.

B. MEASUREMENT SETUP
The attack setup is depicted in Fig. 13. A power trace is
acquired using a 5-GSps oscilloscope, while an H-probe
with a 10-mm diameter is employed for EM trace collection.
The EM trace is subsequently amplified using a wideband
amplifier before being acquired through the oscilloscope.
The end of encryption is indicated by a trigger signal, aiding
in the alignment of the collected traces. These traces are then
transmitted to a computer via the VISA protocol for further
processing. The computer utilizes an NI-data acquisition (NI-
DAQ) card to configure the IC. Additionally, an arbitrary
waveform generator (AWG) supplies the IC with enable,
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TABLE 1. Comparison with respect to other state of the art.

FIGURE 13. Measurement setup for power/EM side channel.

reset, and clock signals. Typically, a stable power supply
powers up the IC. But here, we control the supply from the
computer to introduce a VLB attack. All the experiments
are done in room temperature (∼25 ◦C).

(a) (b)

(d)(c)

FIGURE 14. Time-domain trace for different configurations: (a) unprotected power,
(b) unprotected EM, (c) protected power, and (d) protected EM.

C. CORRELATIONAL POWER/EM ATTACK AND
LEAKAGE ANALYSIS
The time-domain measurement results are depicted in
Fig. 14. In Fig. 14(a), the ac-coupled power trace is dis-
played, showing 14 cycles of AES operation. Fig. 14(b)
presents the amplified ac-coupled EM trace. Additionally,
Fig. 14(c) shows the attenuated power trace. Finally,
Fig. 14(d) displays the attenuated EM traces. Attenuation is
clearly visible when CS is operating in the saturation region.
We have chosen the HD between the last two rounds as our
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(a) (b) (c)

(d) (e) (f)

FIGURE 15. CPA on (a) unprotected AES-256, (b) protected AES-256, and (c) frequency-domain CPA on protected AES-256. CEMA on (d) unprotected AES-256, (e) protected
AES-256, and (f) frequency-domain CEMA on protected AES-256.

attack model. The correct key is revealed within 2.3K traces
in the standard correlational power attack, as depicted in
Fig. 15(a) for the unprotected implementation. However, in
the presence of R-STELLAR, the correct key is not revealed
even after analyzing 200M traces [Fig. 15(b)]. To further
validate our findings, we conducted a frequency-domain CPA
over a frequency range of 1 MHz to 2 GHz [Fig. 15(c)].
No peak correlation is detected across the entire spectrum.
It is worth noting that attackers often attempt to mitigate the
effects of noise by averaging traces, thereby increasing the
SNR. Our attack setup follows a similar approach, employing
an averaging factor of 1000 during the attack. In contrast,
standard correlation EM analysis (CEMA) with the HD
between the last two rounds successfully reveals the correct
key using just 4.4K traces [Fig. 15(d)]. No correct key byte
is exposed even after analyzing 200M traces using CEMA
[Fig. 15(e)]. We performed frequency-domain CEMA on
a protected AES implementation to ensure security in the
frequency domain. No key byte is revealed when measured
with 200M traces across the entire frequency spectrum of
1 MHz to 2 GHz [Fig. 15(f)].
TVLA-based leakage analysis was conducted on both

unprotected and protected implementations. The |t| − value
was calculated using fixed and random plaintexts. A |t| −
value exceeding 4.5 indicates the presence of a leaky
component. The unprotected implementation starts to leak
within 100 traces for both the power and EM side channels.
The countermeasure, R-STELLAR, shows the presence of
leakage after 2.5M and 5M traces for EM and power
SCA, respectively, as shown in Fig. 16. This is 250 000×
and 500 000× improvement with respect to unprotected
implementation.

FIGURE 16. TVLA-based leakage analysis for all configurations.

D. MALICIOUS VOLTAGE DROP-BASED ATTACK AND
MITIGATION
For the first time, we explore a dedicated SCA on a physical
countermeasure. Our approach leverages a malicious voltage
drop-based attack, which reduces the attenuation that the
implemented power delivery circuit provides. Specifically,
the pMOS begins to operate in the linear region due to
a slight voltage drop at VDD node. Fig. 17 presents the
measured time-domain trace. Notably, the amplitude of the
power trace significantly increases compared to steady-
state operation [Fig. 17(b) versus Fig. 17(a)]. Following the
malicious voltage drop, we incorporate a CPA. The correct
key byte is retrieved with just 105K traces [Fig. 18(a)].
We perform a frequency-domain CPA using 150K traces to
validate our findings further. The results confirm the presence
of leaky components at 400 MHz. Additionally, we conduct
a TVLA-based leakage analysis, revealing that meaningful
information leakage begins from just 3K traces [Fig. 18(b)].
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(a) (b)

FIGURE 17. AC-coupled power trace is observed for (a) protected AES-256 and
(b) protected AES-256 under malicious voltage drop-based attack.

(a) (b)

FIGURE 18. (a) MTD is reduced to 105K by malicious vVLB attack. (b) TVLA MTD
(traces required to reach max |t| − value of 4.5) reduces to 3.5K.

The proposed mitigation technique effectively detects the
described attack within a time frame of 0.8 ms, achieving
100% accuracy, as illustrated in Fig. 19. Notably, the short
detection time ensures the countermeasure’s robustness.
Assuming reduced MTD of 105K, AES operating at 20
MHz, and 14 cycles of operations, an SCA attack can
be successful within 73.5 ms assuming 0 oscilloscope
capture time. Notably, 0 oscilloscope capture time is
unrealistic. Nevertheless, our approach detects an attack-on-
countermeasure within 0.8 ms. Only 1.1% of the encryptions
are possible in this time frame, eliminating the possibility of
attack. The latency for attack detection is also influenced by
the clock period of the attack detector. While we typically
operate at a low frequency (10 kHz) due to the slow nature
of the SMC loop, a faster clock could further enhance
the detection speed if needed in future scenarios. Table 1
provides a comparative analysis between our proposed work
and existing state-of-the-art techniques. It is important
to note that the scan chain is typically used to configure
the circuit once at the beginning of the testing. Even in
the absence of a countermeasure, the IC would still need
to be configured. Therefore, the performance overhead is
considered negligible.

VI. CONCLUSION
Our approach offers a scalable physical countermeasure
while maintaining high security as a standalone technique.
Importantly, no attacks have been explored on these counter-
measures to date. In this work, we investigate an attack on
the countermeasure circuit for the first time and introduce
a detector circuit to identify such attacks. In summary,
our work achieves over 200M MTD with synthesizable

FIGURE 19. Attack detector can detect such attack within 0.8 ms.

signature attenuation as a single countermeasure technique.
Additionally, we explore an attack modality in the pres-
ence of physical countermeasures, specifically focusing on
synthesizable signature attenuation. Our proposed method
effectively detects supply voltage drop-based linear-region
biasing attacks within less than 1 ms. Practical CPA
within this time range is infeasible. Furthermore, this
generic countermeasure can be cascaded with other algo-
rithmic or architectural countermeasures to enhance overall
security.
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