
IEEE JOURNAL OF SOLID-STATE CIRCUITS 1

A 334 µW 0.158 mm2 ASIC for Post-Quantum
Key-Encapsulation Mechanism Saber With

Low-Latency Striding Toom–Cook Multiplication
Archisman Ghosh , Graduate Student Member, IEEE, Jose Maria Bermudo Mera , Angshuman Karmakar ,

Debayan Das , Santosh Ghosh , Ingrid Verbauwhede , Fellow, IEEE, and Shreyas Sen , Senior Member, IEEE

Abstract— Lattice-based cryptography is a novel approach to
public key cryptography (PKC), of which the mathematical
investigation (so far) resists attacks from quantum computers.
By choosing a module learning with errors (MLWE) algorithm
as the next standard, the National Institute of Standards and
Technology (NIST) follows this approach. The multiplication
of polynomials is the central bottleneck in the computation
of lattice-based cryptography. Because PKC is mostly used to
establish common secret keys, the focus is on compact area,
power, and energy budget and, to a lesser extent, on throughput
or latency. While most other work focuses on optimizing number
theoretic transform (NTT)-based multiplications, in this article,
we highly optimize a Toom–Cook-based multiplier. We demon-
strate that a memory-efficient striding Toom–Cook with lazy
interpolation results in a highly compact, low-power implementa-
tion, which, on top, enables a very regular memory access scheme.
To demonstrate the efficiency, we integrate this multiplier into a
Saber post-quantum accelerator, one of the four NIST finalists.
Algorithmic innovation to reduce active memory, timely clock
gating, and shift-add multiplier has helped to achieve 38% less
power than state-of-the-art post-quantum cryptography (PQC)
core, 4× less memory, 36.8% reduction in multiplier energy,
and 118× reduction in active power with respect to state-of-
the-art Saber accelerator (not silicon verified). This accelerator
consumes 0.158-mm2 active area, which is the lowest reported
to date despite the process disadvantages of the state-of-the-art
designs.

Index Terms— Compact design, energy-efficient architecture,
first accelerator, lazy interpolation, memory-efficient, post-
quantum cryptography (PQC), striding Toom–Cook.

Manuscript received 16 September 2022; revised 23 December 2022;
accepted 15 February 2023. This article was approved by Associate Editor
Kathryn Wilcox. This work was supported in part by the National Science
Foundation (NSF) under Grant CNS 17-19235 and Grant CNS 19-35573 and
in part by Intel Corporation. (Corresponding author: Archisman Ghosh.)

Archisman Ghosh and Shreyas Sen are with the School of Electrical and
Computer Engineering, Purdue University, West Lafayette, IN 47907 USA
(e-mail: ghosh69@purdue.edu).

Jose Maria Bermudo Mera is with COSIC, Katholieke Universiteit Leuven
(KU Leuven), 3000 Leuven, Belgium, and also with PQShield Ltd., OX2 7HT
Oxford, U.K.

Angshuman Karmakar is with IIT Kanpur, Kanpur 208016, India.
Debayan Das and Santosh Ghosh are with the Intel Labs, Intel Corporation,

Hillsboro, OR 97124 USA.
Ingrid Verbauwhede is with COSIC, Katholieke Universiteit Leuven

(KU Leuven), 3000 Leuven, Belgium.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/JSSC.2023.3253425.
Digital Object Identifier 10.1109/JSSC.2023.3253425

I. INTRODUCTION

THE bulk of our current public-key infrastructure is based
on two schemes, Rivest–Shamir–Adleman (RSA) [1], and

elliptic-curve cryptography (ECC) [2], [3]. The security of
these public key cryptography (PKC) schemes arises from the
computational intractability of the underlying hard problems,
which are large integer factorization and elliptic-curve discrete
logarithm problems, respectively. However, quantum algo-
rithms, such as Shor’s [4] and Proos-Zalka’s [5] algorithms,
can solve these two problems easily, i.e., in polynomial time,
using a large quantum computer and, therefore, completely
compromising their security. Although it might take many
years to develop quantum computers large enough to pose a
threat to our current PKC schemes, it also takes decades to
develop cryptosystems from theoretically hard mathematical
problems to make them suitable for widespread public deploy-
ment. Considering that our current public-key infrastructure is
based mostly on RSA and ECC, the replacement of our current
PKC with quantum-resistant PKC is needed to maintain the
security of our digital world in the future, and action must be
taken now.

Post-quantum cryptography (PQC) studies hard problems
that remain hard to solve even in the presence of large quantum
computers. The post-quantum standardization initiative by the
National Institute of Standards and Technology (NIST) [6] in
2017 was a prudent step toward developing PQC. Initially,
59 and 23 schemes were submitted in key-encapsulation
mechanism (KEM) and digital signature categories, respec-
tively. Three lattice-based (Saber, Kyber, and NTRU) and
one code-based algorithms (Classic McEliece) were selected
after three rounds of research and analysis by NIST for final
consideration.

A historic timeline of PKC research along with the pros and
cons of different lattice constructions is summarized in Fig. 1.
NIST has recently mentioned Kyber as the new standard.
However, the NIST report on finalist candidates [7] mentioned
that all the different experiments suggest that Saber has strong
security at par with Kyber.

A. Lattice-Based Cryptography

The standard hard problem used to build lattice-based cryp-
tographic (LBC) schemes is the learning with errors (LWE)

0018-9200 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2023 at 18:35:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7842-030X
https://orcid.org/0000-0003-0457-5728
https://orcid.org/0000-0003-2594-588X
https://orcid.org/0000-0003-1843-0124
https://orcid.org/0000-0003-0069-7971
https://orcid.org/0000-0002-0879-076X
https://orcid.org/0000-0001-5566-8946

2 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 1. Timeline of PKC. Quantum computing research has motivated the
use of quantum-hard mathematical problems.

problem [8]. It states that it is hard to distinguish between n
uniformly random samples a ∈ Zn

q and n samples drawn as
(ai , bi = ⟨ai · s⟩ + ei) without having information about the
secret s or the random error terms ei . The LWE problem can be
used to build public-key cryptography considering the matrix
A and vector b (formed by the samples ai and bi , respectively)
as the public key and s as the secret key. The main drawback
of LWE schemes is the expensive matrix-vector multiplication
A · s with a large range n.

The variant ring-LWE (R-LWE) [9] was proposed to
improve the efficiency of LWE schemes. In R-LWE, there is
a single sample (a, t = a ∗ s + e) ∈ Rq × Rq , where each
of the elements is now a polynomial belonging to the ring
Rq = Zq [x]/(xn

+ 1). R-LWE can be connected to LWE by
looking at the new public matrix A as a matrix formed by
rotations of the polynomial a. However, the central operation is
now a polynomial convolution for which there exist algorithms
with better time complexity.

While R-LWE schemes are more efficient, there is less trust
in their security due to the extra algebraic structure conferred
to the mathematical problem, which might be exploitable by
an attacker. Module LWE (M-LWE) [10] was proposed as an
intermediate solution between LWE and R-LWE. In M-LWE,
the public matrix A has a much smaller dimension than in
LWE, but each of the elements is a polynomial rather than
an integer. The secret s and the error term e are also short
vectors of polynomials. It offers higher security confidence
than R-LWE while still benefiting from the better efficiency
of polynomial arithmetic.

In this work, we work with Saber KEM [11] that is based
on the hard problem known as learning with rounding (LWR).
LWR is a variant of the aforementioned LWE where the
error term is introduced implicitly by rounding unlike the
explicit addition of error terms in LWE. Therefore, for a given
matrix A ∈ Zm×n

q , random secret, and errors s, e ∈ Zn
q , the

LWE and LWR samples are given as (A, b = A · s + e)
and (A, b = ⌊A · s⌉), respectively. Here, we want to point
out that A · s is a very good entropy-diffuser. In fact, A · s
itself can be used as a pseudorandom function. However,
since A is invertible with a very high probability, given the
samples b = A · s, the secret can be recovered trivially.

Therefore, this cannot be used in cryptography. In Regev’s [8]
seminal LWE paper, it was shown that, even after adding
small error terms e, the samples b = A · s + e remain
computationally indistinguishable from uniformly generated
random samples u i.e. u

comp
≈ b. This removes the possibility of

any correlation attack on LWE. In fact, the decisional problem
of LWE i.e. distinguishing samples b from u can be shown to
be equivalent to the computational LWE problem mentioned
above [8]. In his paper, Regev also showed that, given samples
b, recovering the secret s is at least as hard as solving GAP
shortest vector problems (SVPs) in random lattices in the worst
case [12]. As no known quantum algorithms can solve the
GapSVP problem with an overwhelming advantage over their
classical counterparts, this reduction from GapSVP to LWE
engenders the quantum hardness of LWE-based schemes.

Banerjee et al. [13] first introduced the LWR problem that
removes the necessity of adding the explicit error terms and
introducing the error implicitly by chopping the lower order
bits or rounding to a smaller field Zp. They showed that the
LWR problem is at least as hard as the LWE problem. One
of their main results was to show that, if q/p is sufficiently
big, then ⌊A · s⌉

stat
≈ ⌊A · s + e⌉. Thus, combining this with

the Regev’s [8], [9] result mentioned earlier, one can show
that ⌊A · s⌉

stat
≈ ⌊A · s + e⌉

comp
≈ ⌊u⌉. Therefore, as before,

it is difficult to distinguish between LWR and uniform random
distribution. This implies that the correlation between the
LWR sample and the secret is not more than the correlation
between an LWE sample and its respective secret. Later works
by Bogdanov et al. [14], Alperin-Sheriff and Apon [15],
and Alwen et al. [16] further reduced the required value
of q/p for these reductions to be held. Quite unfortunately,
delving deeper into the security analysis of LWE or LWR
is out of the scope of this work. We kindly refer interested
readers to the original articles for more details. For a detailed
discussion on deriving the security of Saber from LWR or
specifically Module-LWR, we refer to the NIST specification
document [11] of Saber submission.

B. Saber

Saber [11] is a lattice-based post-quantum KEM. It is
one of the four finalist schemes of the NIST standardization
procedure in the KEM category. Therefore, it has gone through
extensive and rigorous scrutiny by the cryptographic commu-
nity. This is a testimony of Saber for efficiency, theoretical
security, and resilience to physical attacks.

Saber’s security relies on the hardness of solving the module
LWR (M-LWR) problem. Key generation, as described in
Algorithm 1, starts by generating a truly random 256-bit
seed. This seed is expanded with a function based on the
extendable output function SHAKE-128 to generate the public
matrix A. A similar approach is followed to generate the
secret s, but the coefficients of s follow a discrete binomial
distribution βµ with parameter µ, rather than being uniformly
distributed. The sample b is computed as the product AT

· s
followed by the addition of a constant value h and a rounding
operation. The public key is composed of the seed to generate
A and the sample b. The secret key is s.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2023 at 18:35:28 UTC from IEEE Xplore. Restrictions apply.

GHOSH et al.: 334 µW 0.158 mm2 ASIC FOR POST-QUANTUM KEM SABER 3

The encryption, as described in Algorithm 2, starts by
regenerating the public matrix A. Then, it proceeds in the same
way as the key generation to generate a new secret s ′ and a
new sample b′. In addition, a sample v′ is computed as the
product of the other part of the public key with the new secret
bT
· s ′. The message m is encoded in this vector cm , which,

together with b′, constitutes the ciphertext. The decryption,
as described in Algorithm 3, computes a new sample v in
an analogous way to encryption by multiplying b′T · s. The
message is recovered by decoding the difference between v

and a scaled version of the other part of the ciphertext cm .

Algorithm 1 Saber.PKE.KeyGen() [11]
1: seedAAA ← U({0, 1}256)

2: AAA = gen(seedAAA) ∈ Rl×l
q

3: r = U({0, 1}256)

4: sss = βµ(Rl×1
q ; r)

5: bbb = ((AAAT sss + hhh) mod q)≫ (ϵq − ϵp) ∈ Rl×1
p

6: return (pk := (seedAAA,bbb), sss)

Algorithm 2 Saber.PKE.Enc(pk = (bbb, seedAAA), m ∈

R2; r) [11]
1: AAA = gen(seedAAA) ∈ Rl×l

q
2: if r is not specified then
3: r = U({0, 1}256)

4: s ′s ′s ′ = βµ(Rl×1
q ; r)

5: bbb′ = ((AAAsss ′ + hhh) mod q)≫ (ϵq − ϵp) ∈ Rl×1
p

6: v′ = bbbT (sss ′ mod p) ∈ Rp

7: cm = (v′ + h1 − 2ϵp−1m mod p)≫ (ϵp − ϵT) ∈ RT

8: return c := (cm,b′b′b′)

Algorithm 3 Saber.PKE.Dec[sss, c = (cm,b′b′b′)] [11]
1: v = bbb′T (sss mod p) ∈ Rp

2: m ′ = ((v − 2ϵp−ϵT cm + h2) mod p)≫ (ϵp − 1) ∈ R2
3: return m ′

Algorithm 4 Saber.KEM.KeyGen()

(seedAAA,bbb, sss) = Saber.PKE.KeyGen()

pk = (seedAAA,bbb)

pkh = F(pk)

z = U({0, 1}256)
return (pk := (seedAAA,bbb), sk := (z, pkh, pk, sss))

The chosen ciphertext attack (CCA)-secure version of Saber
is achieved by applying the Fujisaki–Okamoto transform to the
encryption scheme. Such construction requires two additional
hash functions G and H, which are SHA3-512 and SHA3-256,
respectively. In its KEM setting, the key-generation algorithm
utilizes the public-key key-generation algorithm, as shown in
Algorithm 1. In addition, it adds the hash of public key, the
public key, and 256-bit random number (z) for CCA security.
The message is randomly generated during encapsulation as
shown in Algorithm 5. The hash functions are used to generate

Algorithm 5 Saber.KEM.Encaps[pk := (seedAAA,bbb)]

1: m ← U({0, 1}256)

2: (r, K̂) = G(H(pk), m)

3: c = Saber.PKE.Enc(pk, m, r)

4: K = H(H(c), K̂)

5: return (c, K)

Algorithm 6 Saber.KEM.Decaps[c, sk := (z, pkh, pk, sss)]
1: m ′ = Saber.PKE.Dec(sss, c)
2: (r ′, K̂ ′) = G(H(pk), m ′)
3: c′ = Saber.PKE.Enc(pk, m ′; r ′)
4: if c = c′ then
5: return K = H(H(c), K̂ ′)
6: else
7: return K = H(H(c), z)

Fig. 2. Sample KEM mechanism between two communicating parties. Note
that our IC can act as both parties. Keygen(), Encaps(), and Decaps() are
presented in Algorithms 4–6, respectively.

randomness for the encryption and generate the established
session key. During decapsulation, the encryption is recalcu-
lated to check for potentially maliciously crafted ciphertexts.
If the ciphertext match, the session key is computed in the
same way using the hash functions, as shown in Algorithm 6.

A sample KEM is shown in Fig. 2 between two parties,
namely, Alice and Bob. Alice creates the public key and
secret key using Algorithm 4. She sends the public key to
Bob. Upon receiving that, bob calculates the encapsulation
and sends the ciphertext of a message m using Algorithm 5.
Alice decapsulates using her secret key and received ciphertext
c using Algorithm 6. It should be noted that our IC can work
as both Alice and Bob here.

C. Features of Saber

Three salient features of Saber as the PQC-KEM scheme
are given as follows.

1) Power-of-2 Moduli: Polynomial multiplication is one
of the most computationally expensive components of
LBC. The de facto standard modulus for LBC is a
prime that facilitates usage of fast quasi-linear num-
ber theoretic transform (NTT)-based polynomial mul-
tiplication [17]. However, Saber uses an unorthodox
choice of power-of-two modulus. It has been shown that
Saber performance is at par with similar schemes that
use NTT-based polynomial multiplication on different
platforms [18], [19], [20] by combining sub-quadratic
polynomial multiplication algorithms Toom–Cook [21],
[22] and Karatsuba [23].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2023 at 18:35:28 UTC from IEEE Xplore. Restrictions apply.

4 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 3. Classical PKC is broken by quantum computers. This work introduces the first silicon-verified M-LWR-based post-quantum crypto-accelerator.
Fabricated IC uses a striding Toom–Cook-based polynomial multiplier with lazy interpolation to reduce latency and memory. Clock-gating of individual
blocks and shift-based unit multiplier achieve the lowest power design.

2) Flexibility: Due to the use of module lattices, the secu-
rity of Saber can be easily upgraded or downgraded
by appropriately increasing or decreasing the number of
polynomials in the public matrix. This requires little to
no change in other parameters of the scheme. Therefore,
ASICs and software libraries designed for one level of
security can be easily adapted to other security levels
with small changes, which results in great flexibility.

3) Resistance to Side-Channel Attacks: Saber
uses constant-time algorithms to prevent side-channel
attacks, such as timing or simple-power analysis
attacks. Generating noise inherently by rounding and
using centered binomial distributions instead of more
complex discrete Gaussian distributions [24], [25]
reduces the side-channel attack surface of Saber
greatly. Also, it has been recently shown that masking,
which is a provably secure countermeasure against
powerful side-channel attacks, can be integrated much
more efficiently on Saber than other lattice-based
KEMs, such as Kyber [26], [27]. This efficiency
comes from the usage of power-of-2-moduli rather
than prime moduli. In this work, we have followed
constant-time implementations and avoided conditional
branching on secret values similar to previous works
on Saber [11]. Therefore, our implementation is
resistant to simple power analysis (SPA) or simple
electromagnetic analysis (SEMA) attacks. Recently,
physical countermeasures have been very popular in this
context as they are architecture-agnostic [28], [29], [30],
[31]. Integrating these countermeasures (masking or
physical countermeasures) with this Saber architecture
will help in more sophisticated DPA/CPA security.
These countermeasures can be integrated into future
versions of the ASIC for SCA-resilient implementation
of Saber.

Though NIST has recommended Kyber for standardization for
a few reasons, some of which are not strictly technical per se.
Their final report [7, Sec. 4.3.4] mentions that the security,
performance, bandwidth usage, and so on of Saber are at
par with Kyber. Therefore, Saber is perfectly suitable to be
used as a PQC-KEM in the future. Please note that another
NIST finalist NTRU [32] is already present in many popular
products, such as OpenSSH (version 9.0 onward), GPL, and
WolfSSL.

Furthermore, as Saber and Kyber are both based on mod-
ule lattices and share a large number of individual blocks,
we firmly believe that many of the techniques developed
here for Saber can also be used for Kyber. For example, the
polynomial sizes of Saber and Kyber are the same, and hence,
our strategies can be even used to realize a low-power and
area instantiation of Kyber on ASIC. We should note that
Kyber in its current form cannot be executed directly on our
ASIC. To realize this, we need to make suitable changes, such
as the incorporation of a suitable modular reduction strategy,
updating datapaths to suit the parameters of Kyber, deciding
how matrix A is generated, and so on. These can be chosen
according to the final goal of the ASIC design. However, this
is an intriguing research question that needs more attention
and due deliberation. Therefore, we leave this as future work.

D. PQC Hardware Implementations: State-of-the-Art

In this section, we summarize the state of the art of hardware
implementations of post-quantum lattice-based KEMs. A more
detailed analysis of performance, area, and power figures is
deferred to Section IV. The most frequent hardware imple-
mentations that can be found in the literature are FPGA-based
implementations. The reason is that lattice-based cryptog-
raphy has undergone a quick and recent development, and
the shortest design cycle of FPGA implementations is more

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2023 at 18:35:28 UTC from IEEE Xplore. Restrictions apply.

GHOSH et al.: 334 µW 0.158 mm2 ASIC FOR POST-QUANTUM KEM SABER 5

adequate to develop a proof of concepts or to demonstrate
algorithmic optimizations for existing schemes. Particularly,
all most relevant lattice-based KEMs have FPGA implemen-
tations as can be seen for Frodo [33], Kyber [34], NTRU [35],
NTRUPrime [36], and Saber [37] [38].

Despite the variety of schemes, the differences between
distinct hardware implementations lie in the optimizations
performed on the multiplier to suit better the parameters
of the corresponding scheme. Focusing on Saber hardware
implementations, we can distinguish three different approaches
toward multiplication. First, the Toom–Cook algorithm is used
to accelerate the multiplication on hardware, together with an
HW-SW co-design strategy to achieve a compact implemen-
tation on a heterogeneous ARM + FPGA System-on-Chip
(SoC) [37]. Second, high performance can be achieved with a
fully parallel multiplier where the full polynomials are loaded
and shifted after every multiplication [38]. Third, a combina-
tion of the Karatsuba algorithm and parallel multipliers has
been proposed to achieve the high-performance operation of
Saber while reducing the area requirements with respect to
the fully parallel approach [39]. Both the second and third
approaches have been used to implement Saber on full custom
hardware [40] [41]. Though Imran et al. [41] propose another
hardware for Saber, as mentioned in the paper [41], due to a
logic bug, the address offsets of three of the four distributed
memories are incorrectly decoded, and data are overwritten.
This logical error results in a few flipped bits on the output
of the chip compared with the expected results. Due to this
issue, we refrain from comparing performance directly with
this work [41] in the comparison table as the table includes
only solid-state circuit literature with functional ICs.

E. Motivation

KEM schemes are used to establish a common secret key
between two or more communicating parties. A very well-
known usage of KEM is inside the transport layer security
(TLS) protocol, which is a newer version of the secure socket
layer (SSL) protocol [42]. In TLS, the handshake protocol uses
KEM to establish the common secret session key. A very well-
known application that uses TLS or by extension KEM scheme
is HTTPS or hypertext transfer protocol (HTTP) over SSL.
In HTTPS, the client (browser) first authenticates the server
(web server) using the help of certificate authority and digital
signature algorithms. The client also obtains the SSL/TLS
certificate in this process. This certificate among other things
contains the KEM scheme name and the public key of the
server. The client uses this KEM public key to initiate the
handshake protocol, which finishes with a common secret key
on both sides of the client and server. This secret key is now
used by a previously agreed symmetric-key algorithm, such
as the advanced encryption standard (AES), to encrypt all the
data communication between the client and the server.

This secret key derived using the handshake protocol is also
called master secret. Whenever a client opens a connection
with the server, there might not be a full handshake involving
the KEM protocol. Instead, the client and server can reuse
the master secret key established during some previous con-
nection. In this case, the secret key for the symmetric-key

algorithm is derived using the master secret and a random
value that the client and the server sent each other during
their initial messages. This is called abbreviated handshake.
Multiple connections that share the same master secret con-
stitute a session. Depending on the security settings of the
client and server, this master secret is kept alive for a long
duration, therefore removing the necessity of invoking the
KEM algorithm for a long time. Hence, the KEM schemes are
short-lived and invoked only a few times during the lifetime
of the application.

However, the accelerator is there for the lifetime of the
system. Due to the short-lived nature of KEMs in typical
applications, the latency of KEM operations becomes less
relevant compared to other metrics, such as the small area of
the processor, low power, and low energy. High performance is
arguably more important for symmetric key primitives that are
constantly used once the communication has been established.
A smart design of a KEM accelerator seeks to reduce the
cost in the main system by achieving low area and reduce
operational costs by achieving low power and low energy.

In this article, we also aim at filling this gap in the State-
of-the-Art by bringing the first approach to silicon. Moreover,
fundamental constraints, such as low area and low energy,
when implementing key exchange operations make the first
approach, i.e., Toom–Cook, more attractive for a dedicated
IC. In Section IV, we show different metrics to compare our
design to other Saber ASIC designs and ASIC designs [43] that
accelerate other lattice-based schemes, such as NewHope [43]
and Kyber [44].

F. Contributions

Fig. 3 shows the key contributions of this work that we
categorically describe in the following.

1) First Silicon-Verified Implementation of Saber: We have
presented the first Saber core and, un until now, one
of the few fully functional PQC ASICs. Therefore, this
work is a cornerstone in the development of PQC and
in the transition from classical PKC to PQC.

2) Multiplier Optimization With Striding Toom–Cook and
Lazy Interpolation to Reduce Energy and Power of the
Accelerator: Multiplication of Saber cannot be directly
mapped with NTT structure, unlike Kyber. Different
approaches have been taken to circumvent this problem.
One approach is to use an alternative multiplication
strategy. The second approach is to tweak the Saber
algorithm so that it can be mapped to NTT struc-
ture [20]. The first approach is taken here. Several works
are exploring classical Toom–Cook-based architecture.
In this work, we have further optimized Toom–Cook
multiplication with striding and lazy interpolation to
make it memory efficient. It should be noted that this
architecture helps us to reduce the total SRAM used in
the IC. A significant amount of power/energy consump-
tion comes from the memory block, which is leakage
dominated. Reducing total memory size significantly
helps to reduce final energy consumption.
It should be noted that previously lazy interpola-
tion is explored only in software [18] in Toom–Cook

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2023 at 18:35:28 UTC from IEEE Xplore. Restrictions apply.

6 IEEE JOURNAL OF SOLID-STATE CIRCUITS

multiplication context. Mera et al. [18] focus on a soft-
ware Cortex-M4-based latency versus memory optimiza-
tion problem for Toom–Cook multiplication. In addition,
our work merges a striding memory-access approach
with lazy interpolation to provide a unified low-power,
low-energy, and reduced memory ASIC for Saber with
comparable latency for the multipliers.

3) Re-Configurable Instruction-Based Multi-Purpose
Architecture: This architecture is re-configurable and
can be controlled by micro-instruction provided from
outside. Hence, the same architecture can be used
to calculate encapsulation, decapsulation, and key
generation removing the requirement for duplicate
hardware.

4) Lowest Area and Power Implementation Among the
PQC Cores and Accelerators: This work provides 36%
power improvement from silicon-verified PQC core and
118× improvement with respect to state-of-the-art Saber
accelerator (not silicon verified) [40]. Saber core takes
0.158 mm2 of the area and 10.1875-kB memory, which
is the lowest among PQC cores to date.

G. System Overview and Article Organization

This IC has dedicated blocks for each micro-operations,
namely, polynomial multiplication, binomial sampler,
addpack, addround, cmov, verify, and so on. Polynomial mul-
tiplication is the most computationally complex and, hence,
the most area and power-hungry block. This is chosen for
algorithmic and architectural optimization in order to achieve
low area and low energy. Algorithmic level optimizations of
the multiplier are discussed in Section II. Section III discusses
hardware optimizations along with a brief discussion about
all the circuit components. Silicon results are presented in
Section IV before we conclude the work in Section V.

II. MULTIPLIER OPTIMIZATIONS

The core operation of Saber as an M-LWR scheme is the
matrix-vector multiplication between the public matrix A and
the secret vector s. Since the dimension of the module lattice is
l = 3, the public matrix A is composed of 3 × 3 polynomials
with 256 coefficients each. Therefore, the operation that needs
to be optimized is actually the polynomial multiplication,
which is defined in the algebraic ring Rq = Zq [x]/(xn

+ 1).
Mathematically, a multiplication in Rq is a standard poly-
nomial multiplication followed by the modular reduction by
(xn
+1). The rule of thumb to compute the modular reduction

is to equalize the modulus to zero (xn
+ 1) and, therefore,

to apply the change of variable xn
= −1 to the product of

two polynomials. In other words, the multiplication in Rq is
equivalent to a negatively wrapped polynomial multiplication.
Later, in this section, we explain how to implement the
multiplier to exploit this structure. Next, we discuss the
algorithmic choices for polynomial multiplication.

There are two approaches to implement polynomial multi-
plication on hardware. First, one can use the straightforward
algorithm with quadratic complexity referred to as school-
book [38]. While this approach leads to poor performance
figures on software, on hardware, we can take advantage of

its simpler structure to parallelize the arithmetic operations.
The degree of parallelization can be increased to trade off area
for higher performance, and research shows that the highest
performance for polynomial multiplication can be achieved
with the fully parallel multiplier [35].

Second, one can optimize the polynomial multiplication
algorithm to reduce the computational complexity. Then, the
implementation of the chosen algorithm can still be optimized
at the platform level to take advantage of the available
resources. This approach is the most popular for software
implementations [20], [37], but it can also be followed with
successful results on hardware [37].

The polynomial multiplication module is implemented fol-
lowing the second approach. Moreover, we use Toom–Cook
four-way to reduce the complexity of the polynomial multipli-
cation and parallelize it as in [37]. Thus, for Saber parameters,
a single 256 × 256 polynomial multiplication is broken down
into seven 64 × 64 polynomial multiplications, which are
parallelized at the hardware level. We propose additional
optimizations to the multiplication, a strided algorithm and
lazy interpolation, both of which are explained next in this
section. There are three benefits of this approach.

1) Using Toom–Cook multiplication reduces total num-
ber of multiplication from 256 × 256 into seven
64 × 64 polynomial multiplications, hence saving
56.25% of total multiplication operation.

2) Striding Toom–Cook reduces the memory requirement
and, hence, helps in reducing energy consumption and
total area.

3) Lazy interpolation helps in reducing the number of
iterations and helps in latency improvement.

A. Classical Toom–Cook Versus Striding Toom–Cook

Toom–Cook k-way uses a divide-and-conquer approach to
break down a single multiplication of polynomials with n
coefficients each into 2k − 1 multiplications, where the new
operands have n/k coefficients each instead. The procedure
to generate the intermediate operands is called evaluation.
The final result can be retrieved by applying the inverse
transformation to evaluation, namely, interpolation. Mathe-
matically, the inputs to the multiplication are lifted from
R[x] to the isomorphic ring R[x][y]/(xk

− y). Then, the
operands can be expressed as a(x) = (a0 + a1x + · · · +
ak−1xk−1)+· · ·+(an−k+· · ·+an−1xk−1)yr−1, where r = n/k.
Particularizing n = 256 and k = 4, we can derive Algorithm 7
with violet text to perform Toom–Cook evaluation on points
x = {0, 1,−1, 1/2,−1/2, 2,∞}. This algorithm incorporates
the vertical scanning method proposed in [19] to reduce the
overhead introduced by memory operations. On hardware, this
method allows the parallelization of the evaluation to build all
seven intermediate polynomials simultaneously.

However, there are two factors that penalize the performance
and memory of Toom–Cook when implemented this way. First,
the memory access pattern does not follow any spatial locality.
The sequence of the coefficients indexes accessed in classical
Toom–Cook has offsets of 64. When following an HW/SW
co-design approach, this can be solved by transferring the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2023 at 18:35:28 UTC from IEEE Xplore. Restrictions apply.

GHOSH et al.: 334 µW 0.158 mm2 ASIC FOR POST-QUANTUM KEM SABER 7

Algorithm 7 Evaluation of Classical and Striding Toom–Cook
Four-Way With Vertical Scanning
Input: Two arrays A and B with the n = 256 coefficients of

the polynomials
Output: Seven arrays w1 to w7 with 127 / 64 coefficients of

the intermediate products each
1: for j = 0 to 63 do
2: r0 = A0[j];
3: r1 = A64[j]; r1 = A1[j];
4: r2 = A128[j]; r2 = A2[j];
5: r3 = A192[j]; r3 = A3[j];
6: r4 = r0 + r2; r5 = r1 + r3;
7: r6 = r4 + r5; r7 = r4 − r5;
8: aws3[j] = r6; aws4[j] = r7;
9: r4 = 2 ∗ (r0 ∗ 4+ r2);

10: r5 = r1 ∗ 4+ r3;
11: r6 = r4 + r5; r7 = r4 − r5;
12: aws5[j] = r6; aws6[j] = r7;
13: r4 = 8 ∗ r3 + 4 ∗ r2 + 2 ∗ r1 + r0;
14: aws2[j] = r4;
15: aws7[j] = r0; aws1[j] = r3;
16: Repeat the above steps to generate the weighted polyno-

mials bws1 to bws7
17: for i = 1 to 7 do
18: wi = awsi ∗ bwsi ;
19: return w1 to w7

polynomials with the appropriate layout [37], but this is not
efficient when the whole scheme is accelerated in hardware.
Second, this Toom–Cook algorithm requires size doubling in
the intermediate polynomials.

We address the two inefficiencies of Toom–Cook by using a
less known variant of Toom–Cook [45] referred to as striding
Toom–Cook. In this variant, a different ring isomorphism is
used. The inputs are lifted from R[x] to R[y][x]/(xk

− y)

instead of R[x][y]/(xk
− y). Since the ring of the original

multiplication is R[x]/(xn
− y) and y = xk , the base ring

for the intermediate multiplications becomes R[y]/(xr
+ 1),

which is also a negacyclic polynomial ring. Therefore, the
modular reduction corresponding to the ring multiplication
can be deferred to the point multiplication of Toom–Cook.
Mathematically, the operands of this Toom–Cook variant can
be written as a(x) = (a0 + ak y + · · · + a(r−1)k yr−1) + · · · +

(ak−1 + a2k−1 y + · · · + a(r−1)k+k−1 yr−1)xk−1, where y = xk

and n = k · r . Again, we take into account the parameters
of our multiplication, n = 256, k = 4, and we evaluate
the polynomials in the same points as for classical Toom–
Cook, x = {0, 1,−1, 1/2,−1/2, 2,∞}. Thus, Algorithm 7
with blue text can be derived as an evaluation of striding
Toom–Cook. If we compare both versions, i.e., Algorithm 7
with violet or blue text, the only difference between classical
Toom–Cook and striding Toom–Cook evaluation lies in the
load operations that happen at the beginning of every iteration.
We can observe that the striding version reads coefficients with
consecutive indexes, which allows a more efficient hardware
implementation.

Algorithm 8 Interpolation of Classical and Striding
Toom–Cook Four-Way
Input: Seven arrays w1 to w7 with 127 / 64 coefficients of

the intermediate products each
Output: An array with the coefficients of C = A(x) ∗ B(x)

1: C ← 0
2: for i = 0 to 126 / 63 do
3: r7 = r0; r8 = r1; r9 = r2;
4: r1 = w2[i]; r4 = w5[i]; r5 = w6[i]; r0 = w1[i];
5: r2 = w3[i]; r3 = w4[i]; r6 = w7[i];
6: r1 = r1 + r4; r5 = r5 − r4; r3 = (r3 − r2)/2;
7: r4 = r4 − r0; r8 = 64 · r6; r4 = 2 · r4 + r5;
8: r4 = r4 − r8; r2 = r2 + r3; r1 = r1 − 65 · r2;
9: r2 = r2 − r6; r2 = r2 − r0; r1 = r1 + 45 · r2;

10: r4 = (r4 − 8 · r2)/24; r5 = r5 + r1;
11: r1 = (r1 + 16 · r3)/18; r3 = −(r3 + r1);
12: r5 = (30 · r1 − r5)/60; r2 = r2 − r4;
13: r1 = r1 − r5;
14: C[i]+ = r6; C[i + 64]+ = r5;
15: C[i + 128]+ = r4; C[i + 192]+ = r3;
16: C[i + 256]+ = r2; C[i + 320]+ = r1;
17: C[i + 384]+ = r0;
18: C[4i + 3] = r3;
19: if i == 0 then
20: C[4i] = r6; C[4i + 1] = r5; C[4i + 2] = r4;
21: else
22: C[4i] = (r6 + r9); C[4i + 1] = (r5 + r8);
23: C[4i + 2] = (r4 + r7);
24: C[0]− = r2; C[1]− = r1; C[2]− = r0;
25: C ← C(x) mod (xn

+ 1)

26: return C

The interpolation stage within the Toom–Cook multiplica-
tion is the inverse operation of the evaluation. Toom–Cook
k-way works by evaluating the two operands in 2k−1 different
points to reduce the complexity of the polynomial multiplica-
tion. Once the result is obtained in the point-value domain,
we need to interpolate these points to recover the coefficients
of the polynomial. The evaluation can be defined as a matrix-
vector multiplication where each row of the matrix is formed
by the powers of the chosen point ((x0)

0, (x0)
1, . . . , (x0)

2k−2),
and the vector is formed by the coefficients of the polyno-
mial. Therefore, the interpolation matrix is the inverse of the
evaluation matrix. Moreover, it has been shown [46] that the
sequence of operations determined by the Gaussian elimina-
tion method to invert the matrix yields the optimal sequence
of operations performed on the intermediate polynomials to
interpolate the result. Thus, Algorithm 8 with violet text is
derived as the classical Toom–Cook interpolation.

Since the evaluation points are the same for classical and
striding Toom–Cook, the evaluation and interpolation matrices
are also the same. Consequently, the sequence of operations
to compute the interpolation, i.e., lines 4–29 in Algorithm 8,
is also the same for both versions. However, the access pattern
to the coefficients is different. As explained when discussing
evaluation, the striding version performs the ring reduction

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2023 at 18:35:28 UTC from IEEE Xplore. Restrictions apply.

8 IEEE JOURNAL OF SOLID-STATE CIRCUITS

implicitly, prevents size doubling during multiplication, and
allows sequential access to the coefficients. Algorithm 8 with
blue text shows the striding interpolation. If we compare
classical and striding versions of interpolation, we can observe
four differences. First, in classical Toom–Cook, the array
where the result is stored is initialized to 0 (see line 1 of
Algorithm 8). This is because the ring reduction must be
performed explicitly due to the size-doubling property of
classical Toom–Cook. Second, thanks to the lack of size
doubling, the interpolation of striding Toom–Cook iterates
over 64 coefficients instead of 127 (see line 2 of Algorithm 8).
This has an impact on memory compactness and perfor-
mance, which is particularly relevant in hardware, where the
latency of interpolation is comparable to the intermediate
multiplications [37]. Third, the coefficients of the result are
accumulated with 64 coefficient offsets in the classical version,
while they are consecutive coefficients in the striding version
(see lines 30–33 in Algorithm 8 in contrast to lines 34–39).
Accessing consecutive coefficients is more beneficial since it
enables a higher throughput in memory operations. Finally,
in the classical version, the ring reduction must be performed
explicitly after the multiplication due to the size doubling.
In the striding version, the output polynomial already belongs
to the polynomial ring since the ring reduction happens inher-
ently to the algorithm. Fig. 4 compares the full multiplication
using classical Toom–Cook [see Fig. 4(a)] and striding Took-
Cook [see Fig. 4(b)]. Both methods are described visually, and
the main differences are highlighted in the figure.

B. Toom–Cook and Lazy Interpolation

Lazy interpolation and its application to software imple-
mentations of module lattice-based cryptography have been
formalized in [18]. Lazy interpolation takes advantage of
the fact that Toom–Cook evaluation and interpolation are
linear transformations. Therefore, operations performed in the
Toom–Cook domain are equivalent to operations performed
after interpolation. In the setting of Saber, we exploit the
matrix-vector structure to compute the entire row–column
product in the Toom–Cook domain, thus deferring the inter-
polation to the end. This way, we trade off all but the
last interpolation operations in each row–column product at
the expense of extra storage in the Toom–Cook domain.
A visual representation of this technique is shown in Fig. 4(c).
On the one hand, saving up interpolation operations becomes
particularly relevant in hardware implementations where the
latency of interpolation can be comparable to the latency of the
intermediate multiplication of Toom–Cook. On the other hand,
since the intermediate multiplications within Toom–Cook are
parallelized anyway, we do not incur any memory penaliza-
tion for utilizing lazy interpolation in our design. In addi-
tion, we use lazy interpolation in combination with striding
Toom–Cook to achieve an efficient hardware implementation
of polynomial multiplication based on Toom–Cook.

A simplified schematic view of our proposed polynomial
multiplication combining striding Toom–Cook with lazy inter-
polation is shown in Fig. 4(d). For simplicity, the impact of
each optimization is shown on a row–column multiplication

of dimension only 2. We highlight the changes from classical
Toom–Cook multiplication to striding Toom–Cook multipli-
cation with violet in Algorithms 7 and 8. We also highlight
the changes required to use lazy interpolation in teal in those
algorithms.

A simplified scheduling algorithm is presented in Fig. 5.
Once the polynomial multiplier is enabled, it accesses sys-
tem memory to access the polynomials and evaluate them.
The evaluated polynomial is stored in Cache memory. After
that, point multiplication is activated to access the evaluated
coefficients, and multiplication outputs are again stored in the
Cache. Finally, at the interpolation stage, cache memory is
accessed, and interpolated values are stored back in system
memory. It should be noted that, due to run-time lazy inter-
polation, this stage happens once after three evaluations and
point multiplications as Saber needs 3 × 3 A matrix [18].

III. SYSTEM ARCHITECTURE AND OPTIMIZATIONS

Fig. 6(a) shows the fully implemented architecture for
Saber. The high-speed serial interface is used as the chip
interface from the outside. The serial-to-parallel converter
changes the serial input to 64-bit parallel data as memory is
implemented with the 64-bit data bus. Different blocks are
controlled by the command controller, which takes the input
from outside and breaks it down to the command format.
Based on the command, different blocks activate themselves
independently. The most area and power-hungry block is the
polynomial multiplier block, highlighted with green bound-
aries in Fig. 6(a). Multiplier optimization is discussed in
Section III-A. The full multiplier architecture with striding
Toom–Cook and lazy interpolation is presented in Fig. 6(b).
SHA3/SHAKE is implemented using the standard Keccak core
provided by the Keccak team [48]. The binomial sampler is
another important block toward any PQC core security. This
is implemented in simple combinatorial XOR gates to reduce
power overhead, as shown in Fig. 6(c). The total memory
requirement at the system level is 8 kB. The system memory
block is implemented using a TSMC 65-nm low-power low-
leakage SRAM cell. It has 1k addresses with 64-bit words,
which is implemented continuously. Standard clock gating,
as shown in Fig. 6(d), has been introduced to reduce leakage
power further in each block, including system memory and
polynomial multiplication caches.

A 24-bit micro-instruction format is used as a command to
control different blocks. The 4-bit opcode is used for enabling
different blocks. Address offset1 and address offset2 are used
as the input and output of a block, respectively. However,
polynomial multiplication needs two operands as inputs. Both
input offset addresses are taken from both the offsets, and the
output offset starts from offset2 in this case.

A. Multiplier

The polynomial multiplier is the most power and area-
hungry block even after multiple optimizations, as shown in
the literature [38], [44]. We have observed the same tendency
from baseline implementations, which has motivated us to
optimize the polynomial multiplication at algorithmic, archi-
tecture, and circuit levels. Multiple works earlier [40], [43]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2023 at 18:35:28 UTC from IEEE Xplore. Restrictions apply.

GHOSH et al.: 334 µW 0.158 mm2 ASIC FOR POST-QUANTUM KEM SABER 9

Fig. 4. (a) Classical Toom–Cook architecture. (b) Striding Toom–Cook architecture that reduces memory footprint using a strided memory access. (c) Lazy
interpolation in classical Toom–Cook that reduces latency in interpolation with on-the-fly accumulation. (d) Striding Toom–Cook with lazy interpolation, final
implemented architecture to minimize both memory footprint and latency.

Fig. 5. Scheduling of the polynomial multiplication.

have shown low latency implementations. However, the key
exchange mechanism is used only at the beginning of the
secret communication. Hence, when co-processor cores run
at hundreds of MHz, i.e., latency in the order of milliseconds,
higher latency is less important as much as achieving low area
or lower energy consumption.

Multiplier architecture is depicted in Fig. 6(b). Two
decoders are there for public matrix A and secret s. Decoders

are required as data come in packed format from the data
memory. The decoder selects 13 or 4 bits of data as one
coefficient of the public or secret polynomial, respectively.
The data are fed to the evaluation datapath for prepro-
cessing. Processed data are used by 64 × 64 multiply and
accumulation (MAC) units to perform the intermediate prod-
ucts of the Toom–Cook algorithm. The coefficients of such
intermediate products are cached until interpolation happens.
Different datapaths are discussed in Sections III-A1–III-A3.
Evaluation, MAC, and interpolation are implemented accord-
ing to the striding Toom–Cook multiplication architecture.
A small memory cache is used for internal data storage
during polynomial multiplication operations. A control FSM
controls all the sub-operations within multiplication in a timely
fashion.

1) Evaluation Datapath: Evaluation is the first step of
striding Toom–Cook multiplication. Public matrix and secret

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2023 at 18:35:28 UTC from IEEE Xplore. Restrictions apply.

10 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 6. (a) Full system architecture of the Saber core, including the opcode structure. (b) Striding Toom–Cook multiplier architecture. (c) Hamming
weight-based binomial sampler. (d) Clock-gating circuit used in each block to minimize power consumption.

Fig. 7. (a) Evaluation datapath of the striding Toom–Cook multiplier. (b) Unit multiplication of the striding Toom–Cook multiplier. Latency is optimized to
be comparable with [47]. (c) Interpolation datapath of striding Toom–Cook. (d) Finite state machine to control full vector multiplication. (e) Cache structure
of the striding Toom–Cook multiplier.

key are fed to evaluation datapath, which is implemented using
Algorithm 7, as shown in Fig. 7(a). Since the four coefficients
used in every iteration of evaluation are consecutive, we can
take advantage of 64-bit reads to fetch all four in a single clock
cycle. The arithmetic operations performed during evaluation
are additions of depth 2 in the worst case and multiplications
by powers of 2 that can be implemented as simple bit shifts.
Therefore, no additional pipelining is required to achieve
perfect throughput and reduce power and area. The latency
of a single polynomial evaluation is only 64 clock cycles for
generating the seven intermediate polynomials in parallel.

2) Multiply and Accumulation Units: Saber performs
256 × 256 polynomial multiplications. Striding Toom–Cook
splits each 256 × 256 multiplication into seven 64 × 64

polynomial multiplications. Each of these seven multiplica-
tions is performed in parallel by an MAC unit, as presented
in Fig. 7(b). Next, we explain how to choose the number of
parallel multipliers in every MAC unit.

Our design is optimized to equate latency with respect to
state-of-the-art NTT implementations [44] despite being lower
energy and area implementation. If we assume n number of
parallel multipliers in the MAC architecture, hence, all the
operations will be carried out (64/n) times. Now, data are
fetched from dual port memory. Hence, coefficients from b,
as shown in Fig. 7(b), are fetched in (n/2) clock cycles. n
clock cycles are required to fill up the full datapath. After
filling up the datapath, 64 cycles are required to perform the
calculation as all 64 coefficients are multiplied. n − 1 clock

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2023 at 18:35:28 UTC from IEEE Xplore. Restrictions apply.

GHOSH et al.: 334 µW 0.158 mm2 ASIC FOR POST-QUANTUM KEM SABER 11

Fig. 8. IC micrograph and specification.

cycles are required to flush out the datapath. Total latency
of the point multiplication is (64/n) × ((n/2) + n + 64 +
(n− 1)). As n = 4, 1168 clock cycles will be required which
is comparable with respect to PQC core published in [44]
despite not being an NTT-based architecture.

3) Interpolation Datapath: The interpolation datapath can
be derived in an equivalent manner as the evaluation datapath
by directly mapping the operations in Algorithm 8 to hardware.
However, this would lead to a long critical path that would
result in higher area and power consumption due to additional
pipelining. Instead, we reorder the operations in lines 11–29 of
Algorithm 8 to reduce the depth of the circuit. In Section II,
it is explained that this sequence of operations is obtained from
applying Gauss elimination to invert the evaluation matrix.
We find a different sequence of operations that produces the
same result where the depth is optimized instead of the number
of operations. This new sequence of operations is equivalent
to the previous one and is matched directly to the hardware
shown in Fig. 7(c). This datapath is pipelined in three stages
to match the frequency requirements of the rest of the circuit.

4) Finite State Machine for Multiplication: Fig. 7(d)
sketches the finite state machine that controls multiplication.
Active low reset is used to enable the FSM. After resetting,
the FSM waits in the start/wait state. As soon as a multiply
instruction comes, it goes to the next state. Next, states are
used to load the coefficients of the public polynomial and
the secret. Then, evaluation followed by unit multiplication
is performed. MAC units get enabled when the FSM enters
the multiplication state. This step continues in the loop for n
times. This n is a cryptographic parameter, e.g., n = 3 for
Saber. The final state is an interpolation, which is performed
only once for each row-vector multiplication according to the
lazy interpolation optimization. After that, the FSM waits for
the next row–column multiply instruction.

5) Memory Components for Multiplication: Memory com-
ponents are implemented using separate memory as a cache.
Key idea is to avoid stall cycles in the general operation. The
cache is implemented using low-power low-leakage SRAM
cells. The coefficients of the evaluated polynomial and secret
are stored in a 96 × 112 cache, as shown in the red border of
Fig. 7(e). Intermediate results are stored in a 64 × 112 cache
implemented with the same type of SRAM cells. This multipli-
cation memory is clock gated when data memory is enabled
and multiplication FSM is at a wait state. This helps us to
reduce energy when multiplication is not operational. Clock
gating circuit is shown in Fig. 6(d).

B. Sampler

Secret polynomials in Saber follow a discrete binomial
distribution. The sampler module creates this distribution from
uniformly distributed data. First, data are sampled from the
PRNG. These data are taken nibble (4-bit) wise, and the Ham-
ming weight is calculated from that. The difference between
the Hamming weights is used as sampler output. This sampling
is combinatorial. The Hamming distance is calculated using a
half adder and a full adder, as shown in Fig. 6(c).

C. Memory Components

Memory components are designed by low-power low-
leakage TSMC SRAM cells. A total of 8 kB of memory is
required for the full system as data memory. The 2.1875-kB
distributed memory is required for the multiplication opera-
tion. All the blocks have clock gating circuits to gate them-
selves when they are not individually active. For example,
when the multiplication block is not active, it is clock-
gated. This technique helps us to reduce leakage power by a
significant amount and helps us to improve energy efficiency.

D. Other Components

Throughout this section, special attention was given to the
design of the multiplier, sampler, and system memory. The
implementation of SHA3/SHAKE and the micro-instructions
used to control the processor were also discussed. In this
section, the remaining necessary blocks to perform all Saber
operations shown in Fig. 6(a) are briefly described.

The modules AddPack, Unpack, and AddRound perform
very similar coefficient-wise operations on the polynomials.
Particularly, AddRound performs the addition of a constant
followed by the rounding operation, which is used during key
generation and encryption (see line 5 in Algorithms 1 and 2).
AddPack performs a very similar operation during encryption
except that it also adds the message encoded (see line 7 of
Algorithm 2). Unpack performs a subtraction also followed
by the addition of a constant followed by rounding, but the
constants used are different (see line 2 of Algorithm 3). These
three operations are straightforward to implement with a single
adder and a buffer for the rounding operation. Since these
operations are performed coefficient-wise, we parallelize them
for four coefficients at a time according to the data width used
in the rest of the processor.

The block Verify compares two arrays, i.e., two regions of
memory. It is implemented to run in constant time for a given
data length. The data are compared using an XOR operation,
and the result of the comparison is accumulated. The block
CMOV implements a secure conditional move, which is used
during the decapsulation (see lines 4–7 of Algorithm 6). The
data move takes place according to a given flag, but the block
runs in any case to avoid leakage on decryption failures.

The multiplier accepts polynomials that are packed and
stored in memory as arrays of 4 bits if it is a secret polynomial,
as arrays of 13 bits if it is a polynomial in Saber ring, or as
arrays of 16 bits for the rest of polynomials. Internally, in the
multiplier, all coefficients are fetched as 16-bit coefficients

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2023 at 18:35:28 UTC from IEEE Xplore. Restrictions apply.

12 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 9. (a) Area requirement of different blocks. (b) Area comparison with state of the art. Our design achieves the lowest area despite process disadvantages.
(c) Memory footprint improvement with respect to the state-of-the-art.

Fig. 10. Power comparison with respect to (a) state-of-the-art for any PQC
core and (b) state-of-the-art Saber accelerator.

Fig. 11. Energy comparison with respect to the state of the art for
(a) multiplier energy and (b) energy per operation.

using the decoders shown in Fig. 6(b) and explained in
Section III-A. However, Saber also contemplates polynomials
modulo p. The block BS2PolVecP is necessary to transform
the packing of polynomials. This operation is not complicated
and is implemented using a buffer. Note that all the individual
blocks are clock gated when idle to reduce leakage power.

E. Scalability of Saber ASIC Components

Saber defines three sets of parameters called LightSaber,
Saber, and FireSaber, which match NIST security levels 1, 3,
and 5, respectively. All three levels use polynomial degree
N = 256, and moduli q = 213 and p = 210. The three
variants mostly differ in the module dimension, the binomial
distribution parameter, and the message space. It should be
noted that our Toom–Cook four-way multiplier supports the
multiplication with maximum width; this polynomial multipli-
cation architecture can be reused in any of the Saber variants.
However, the implemented ASIC is dedicated to Saber. Hence,
the binomial sampler is 4 bits. Binomial sampler architecture
slightly changes based on the Saber variant. Due to the lack

of reconfigurability of the binomial sampler, this ASIC is
dedicated to Saber. However, except this, the architecture is
fully scalable, and support for LightSaber and FireSaber can
be added in future versions of the IC with minimal change.

IV. SILICON RESULTS

The integrated circuit shown in Fig. 8 is fabricated with
the 65-nm TSMC LP process. The wirebond type is chip-on-
board, and a glob-top encapsulation layer is put on top of the
die. However, this area includes test circuits, free space, and
memory. It should be noted that we should only care about the
accelerator area as data memory can be used as general system
memory when the secured connection is already established.
Saber core is varied with VDD from 0.7 to 1.1 V, and maximum
frequency and energy are noted.

A. Area Efficiency and Memory Footprint Comparison

The total accelerator area is 0.158 mm2. It should be noted
that the accelerator area does not include an area for Keccak as
there is no innovation in that, and the standard Keccak module
provided by the Keccak team [48] has been used. Keccak is
used as the pseudorandom number generator (PRNG), which
can be generated using other crypto-engine as well [44]. It
should be noted that Keccak core takes 0.09-mm2 active area.
However, optimized Keccak or other PRNG might take less
area to provide a compact and complete solution. Optimizing
the Keccak module is beyond the scope of this work. It should
be noted that latency and power numbers include the Keccak
module.

Area requirements for the different blocks have been shown
in Fig. 9(a). The multiplier is still consuming around 83.79%
of the area even after multiplier optimization. Other blocks,
namely, binomial sampler, unpack, and so on, take around 2%.
The next biggest block is the addround block, which consumes
4.17% of the area. The total accelerator area is compared with
respect to state-of-the-art PQC cores. A detailed percentage
of area is mentioned in Fig. 9(a). Comparison with different
Saber cores (not silicon-verified) and silicon-verified PQC
cores is plotted in Fig. 9(b). This work consumes the lowest
area to date with respect to PQC cores and accelerators.
It should be noted that the lowest area PQC core has been
demonstrated by Banerjee et al. [47] though that is done
in 40 nm; hence, our accelerator has process disadvantages.
The lowest area for the Saber accelerator is reported by

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2023 at 18:35:28 UTC from IEEE Xplore. Restrictions apply.

GHOSH et al.: 334 µW 0.158 mm2 ASIC FOR POST-QUANTUM KEM SABER 13

Fig. 12. (a) Load characteristics of Saber core. (b) Maximum frequency at different VDD’s. (c) Energy at the different operating frequencies. The maximum
energy efficiency point is 0.7 V, 40 MHz.

Zhu et al. [40] as 0.38 mm2, which is much higher than we
have implemented in our IC, as shown in Fig. 9(b). This work
uses the lowest memory footprint to date. The accelerator
needs 10.1875 kB to operate, which is 4× lower than the
existing state-of-the-art, as shown in Fig. 9(c). state-of-the-art
implementation needs 40 kB of memory.

B. Power and Energy Efficiency

Fig. 10 shows the power difference between this work and
state-of-the-art implementations. The total power consumed by
the design is 333.9 µW, which is 38% less that the state-of-
the-art PQC core [see Fig. 10(a)]. Moreover, this accelerator is
compared with respect to LWRPro [40], which is not silicon
verified [see Fig. 10(b)]. LWRPro consumes 39 mW, which
is 118× higher than this accelerator. Average power in [41]
varies from 0.855 to 153.6 mW, which is higher than our
implementation. Also, we refrain from mentioning it as it has
incorrect functionality. Another recent solution [49] provides
a reconfigurable architecture for PQC cores. The solution is
mostly focused on Kyber and, however, can be reconfigured to
operate for Saber. This solution mostly focuses on optimizing
the latency and consumes 39–368 mW (at 0.9-V VDD), which
is 118×–1000× higher than our solution. As our implementa-
tion is a low-power implementation (333.9 µW at 0.7-V VDD
and 40 MHz), this leads to 40.21-nJ energy consumption per
multiplication, which is 36.8% less than state of the art [47],
as shown in Fig. 11(a). We define a single operation by a
combination of key generation, encapsulation, and decapsula-
tion and compare this with respect to state-of-the-art core [49]
in FIg. 11(b). It is observed that the implemented core
consumes 1748-nJ energy per operation, which is 2× lower
than [49]. Maximum frequency is observed in different VDD’s
in Fig. 12(a). The IC is operational at a 40-MHz frequency at
0.7-V VDD. The accelerator works at the maximum frequency
of 160 MHz at 1.1-V VDD. Fig. 12(c) shows the energy of
key generation, encapsulation, and decapsulation by the co-
processor. Key generation, encapsulation, and decapsulation
take ≤2-µJ energy at 1.1 V at all frequencies. Energy is
reduced as frequency is increased. The increasing frequency
will reduce latency; hence, the effect of leakage power will be
reduced in the final energy calculation. This concept leads to
the lowest energy at 0.7-V VDD and 40-MHz frequency. Key
generation, encapsulation, and decapsulation consume 444.1-,
579.4-, and 724.5-nJ energy for all the operations combined
in the abovementioned operating point.

Fig. 13. Clock cycle comparison with respect to state-of-the-art speed-opti-
mized software implementation.

To have an apple-to-apple comparison, we compare the
energy of point multiplication with Banerjee et al. [47].
It should be noted that the state-of-the-art PQC core uses NTT
structure for point multiplication; however, we use optimized
striding Toom–Cook-based polynomial multiplication with
lazy interpolation, which is performance-wise very similar to
NTT structure. As discussed in Section III-A, the total latency
of the point multiplication is (64/n) × ((n/2) + n + 64 +
(n−1)). As n = 4, 1168 clock cycles will be required, which is
comparable with respect to PQC core published in [44] despite
not being an NTT-based architecture. Additional 60 clock
cycles are required at the evaluation and 70 clock cycles at
interpolation. However, it should be noted that interpolation
happens once in three multiplications. However, to consider
the worst case scenario, we need a total of 1298 clock cycles,
which is similar to NTT architecture presented in [47].

C. Latency Comparison

Though latency is not our utmost priority as stated earlier,
we wanted to match latency with respect to state-of-the post-
quantum cores and improve with respect to speed-optimized
software implementation. All KEM operations (keygen, encap-
sulation, and decapsulation) are observed to be finished
within 89, 117, and 146 µs, respectively, at 160-MHz fre-
quency (80× improvement over fastest software implementa-
tion, as shown in Fig. 13). Precisely, the design takes 14 642,
18 984, and 23 388 clock cycles to finish Saber Keygen,
Encapsulation, and Decapsulation, respectively. Note that this
design is not optimized based on latency as KEM will be used
once in a while to establish secure communication links, unlike
symmetric keys. However, we still ensure that the design is as
fast as possible within the scope of a fully compact area and
power-optimized design, as shown in Fig. 13.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2023 at 18:35:28 UTC from IEEE Xplore. Restrictions apply.

14 IEEE JOURNAL OF SOLID-STATE CIRCUITS

TABLE I
COMPARISON WITH STATE OF THE ART. THIS ACCELERATOR USES THE LOWEST MEMORY FOOTPRINT AND LOWEST AREA TO DATE. IT ALSO

CONSUMES 333.9-uW POWER, WHICH IS THE LOWEST UP UNTIL NOW

V. CONCLUSION

This work presents the first silicon-verified IC for the Saber
accelerator. Moreover, a combined striding Toom–Cook and
lazy interpolation Toom–Cook four-way approach is taken
to reduce computation complexity, which helps in reducing
area and energy overhead, which was one of the selection
criteria for the NIST PQC standardization procedure. More-
over, 1) clock gating for the blocks at rest, 2) shift-based
multiplier at evaluation, 3) reduced loop operation by lazy
interpolation, and 4) optimized memory operation by striding
approach reduces total energy consumption, memory footprint
and area of our PQC core. This IC consumes 0.158-mm2 area,
which is the lowest among all the PQC cores and accelerators.
It also consumes 333.9 µW of average power at the optimum
point, which is the lowest reported to date amongst the PQC
cores. Polynomial multiplication takes 40.21-nJ energy with
comparable latency with state-of-the-art hardware, as shown
in Table I.

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[2] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., vol. 48,
no. 177, pp. 203–209, 1987.

[3] S. V. Miller, “Use of elliptic curves in cryptography,” in Advances in
Cryptology—CRYPTO, C. H. Williams, Ed. Berlin, Germany: Springer,
1986, pp. 417–426.

[4] W. P. Shor, “Polynomial time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Sci. Statist.
Comput., vol. 26, p. 1484, Jan. 1997.

[5] J. Proos and C. Zalka, “Shor’s discrete logarithm quantum algorithm for
elliptic curves,” 2003, arXiv:quant-ph/0301141.

[6] NIST. (2017). Post-Quantum Cryptography Standardization. Accessed:
Jun. 30, 2022. [Online]. Available: https://csrc.nist.gov/Projects/Post-
Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

[7] G. Alagic. (2022). Angela Robinson, and Daniel Smith-Tone, Status
Report on the Third Round of the NIST Post-Quantum Cryptography
Standardization Process. Accessed: Aug. 10, 2022. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf

[8] O. Regev, “New lattice-based cryptographic constructions,” J. ACM,
vol. 51, no. 6, pp. 899–942, 2004.

[9] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in Advances in Cryptology (Lecture
Notes in Computer Science), vol. 6110, H. Gilbert, Ed. Berlin, Germany:
Springer-Verlag, 2010, pp. 1–23.

[10] A. Langlois and D. Stehlé, “Worst-case to average-case reductions for
module lattices,” Des., Codes Cryptogr., vol. 75, no. 3, pp. 565–599,
2015.

[11] J.-P. D’Anvers. (2020). SABER, Technical Report, National
Institute of Standards and Technology. [Online]. Available:
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-
submissions

[12] C. Peikert, “Public-key cryptosystems from the worst-case shortest
vector problem,” in Proc. 41st Annu. ACM Symp. Theory Comput.,
May 2009, pp. 333–342.

[13] A. Banerjee, C. Peikert, and A. Rosen, “Pseudorandom functions and
lattices,” in Proc. Annu. Int. Conf. Theory Appl. Cryptograph. Techn.
(Lecture Notes in Computer Science), vol. 7237. Cambridge, U.K.:
Springer 2012, pp. 719–737.

[14] A. Bogdanov, S. Guo, D. Masny, S. Richelson, and A. Rosen, “On the
hardness of learning with rounding over small modulus,” in Theory of
Cryptography (Lecture Notes in Computer Science), vol. 9562. Tel Aviv,
Israel: Springer, 2016, pp. 209–224.

[15] J. Alperin-Sheriff and D. Apon, “Dimension-preserving reduc-
tions from LWE to LWR,” IACR Cryptol. ePrint Arch., p. 589,
Jun. 2016.

[16] J. Alwen, S. Krenn, K. Pietrzak, and D. Wichs, “Learning with rounding,
revisited—New reduction, properties and applications,” in Proc. 33rd
Annu. Cryptol. Conf. (Lecture Notes in Computer Science), vol. 8042,
R. Canetti, and J. A. Garay, Eds. Santa Barbara, CA, USA: Springer,
2013, pp. 57–74.

[17] J. M. Pollard, “The fast Fourier transform in a finite field,” Math.
Comput., vol. 25, no. 114, pp. 365–374, Apr. 1971.

[18] J. M. B. Mera, A. Karmakar, and I. Verbauwhede, “Time-memory
trade-off in Toom-Cook multiplication: An application to module-lattice
based cryptography,” IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2, pp. 222–244, Mar. 2020.

[19] A. Karmakar, J. M. Mera, S. S. Roy, and I. Verbauwhede, “Saber on
ARM CCA-secure module lattice-based key encapsulation on ARM,”
IACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 2018, no. 3,
pp. 243–266, 2018.

[20] C.-M.-M. Chung, V. Hwang, M. J. Kannwischer, G. Seiler, C.-J. Shih,
and B.-Y. Yang, “NTT multiplication for NTT-unfriendly rings: New
speed records for saber and NTRU on cortex-M4 and AVX2,” IACR
Trans. Cryptograph. Hardw. Embedded Syst., vol. 2, pp. 159–188,
Feb. 2021.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2023 at 18:35:28 UTC from IEEE Xplore. Restrictions apply.

GHOSH et al.: 334 µW 0.158 mm2 ASIC FOR POST-QUANTUM KEM SABER 15

[21] A. L. Toom, “The complexity of a scheme of functional elements
realizing the multiplication of integers,” Soviet Math.-Doklady, vol. 7,
pp. 714–716, Jul. 1963. [Online]. Available: http://toomandre.com/my-
articles/engmat/MULT-E.PDF

[22] S. A. Cook, “On the minimum computation time of functions,” Ph.D.
thesis, Harvard Univ., Cambridge, MA, USA, 1966, ch. 3, pp. 51–77.

[23] A. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers by
automatic computers,” Doklady Akademii Nauk SSSR, vol. 145, no. 2,
pp. 293–294, 1962.

[24] A. Karmakar, S. S. Roy, F. Vercauteren, and I. Verbauwhede, “Pushing
the speed limit of constant-time discrete Gaussian sampling—A case
study on the Falcon signature scheme,” in Proc. 56th ACM/IEEE Design
Automat. Conf. (DAC), Las Vegas, NV, USA, 2019, pp. 1–6.

[25] A. Karmakar, S. S. Roy, O. Reparaz, F. Vercauteren, and I. Verbauwhede,
“Constant-time discrete Gaussian sampling,” IEEE Trans. Comput.,
vol. 67, no. 11, pp. 1561–1571, Nov. 2018.

[26] M. V. Beirendonck, J.-P. D’anvers, A. Karmakar, J. Balasch, and
I. Verbauwhede, “A side-channel-resistant implementation of SABER,”
ACM J. Emerg. Technol. Comput. Syst., vol. 17, no. 2, pp. 1–26,
Apr. 2021.

[27] S. Kundu, J. D’Anvers, M. V. Beirendonck, A. Karmakar, and
I. Verbauwhede, “Higher-order masked saber,” in Security and Cryptog-
raphy for Networks (Lecture Notes in Computer Science), vol. 13409,
C. Galdi and S. Jarecki, Eds. Amalfi, Italy: Springer, 2022, pp. 93–116.

[28] A. Singh, M. Kar, S. Mathew, A. Rajan, V. De, and S. Mukhopadhyay,
“A 128b AES engine with higher resistance to power and electromag-
netic side-channel attacks enabled by a security-aware integrated all-
digital low-dropout regulator,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 404–406.

[29] A. Ghosh, D. Das, J. Danial, V. De, S. Ghosh, and S. Sen, “An EM/power
SCA-resilient AES-256 with synthesizable signature attenuation using
digital-friendly current source and RO-bleed-based integrated local
feedback and global switched-mode control,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2021, pp. 499–501.

[30] A. Ghosh, D. Das, J. Danial, V. De, S. Ghosh, and S. Sen, “Syn-
STELLAR: An EM/power SCA-resilient AES-256 with synthesis-
friendly signature attenuation,” IEEE J. Solid-State Circuits, vol. 57,
no. 1, pp. 167–181, Jan. 2022.

[31] A. Ghosh, D.-H. Seo, D. Das, S. Ghosh, and S. Sen, “A digital cascoded
signature attenuation countermeasure with intelligent malicious voltage
drop attack detector for EM/power SCA resilient parallel AES-256,” in
Proc. IEEE Custom Integr. Circuits Conf. (CICC), Apr. 2022, pp. 1–2.

[32] C. Chen et al., “NTRU algorithm specifications and supporting doc-
umentation,” in Proc. 2nd PQC Standardization Conf., vol. 2019.
Santa Barbara, CA, USA: Univ. California, 2019, pp. 1–41.

[33] J. Howe, M. Martinoli, E. Oswald, and F. Regazzoni, “Exploring
parallelism to improve the performance of FrodoKEM in hardware,”
J. Cryptograph. Eng., vol. 11, no. 4, pp. 317–327, Nov. 2021.

[34] F. Yaman, A. C. Mert, E. Ozturk, and E. Savas, “A hardware accelerator
for polynomial multiplication operation of CRYSTALS-KYBER PQC
scheme,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Grenoble, France, Feb. 2021, pp. 1020–1025.

[35] V. B. Dang, K. Mohajerani, and K. Gaj, “High-speed hardware archi-
tectures and FPGA benchmarking of CRYSTALS-Kyber, NTRU, and
Saber,” IEEE Trans. Comput., vol. 72, no. 2, pp. 306–320, Feb. 2023,
doi: 10.1109/TC.2022.3222954.

[36] B.-Y. Peng, A. Marotzke, M.-H. Tsai, B.-Y. Yang, and H.-L. Chen,
“Streamlined NTRU prime on FPGA,” J. Cryptograph. Eng., p. 1444,
Nov. 2022, doi: 10.1007/s13389-022-00303-z.

[37] J. M. B. Mera, F. Turan, A. Karmakar, S. S. Roy, and I. Verbauwhede,
“Compact domain-specific co-processor for accelerating module lattice-
based KEM,” in Proc. 57th ACM/IEEE Design Autom. Conf. (DAC), San
Francisco, CA, USA, Jul. 2020, pp. 1–6.

[38] S. S. Roy and A. Basso, “High-speed instruction-set coprocessor
for lattice-based key encapsulation mechanism: Saber in hardware,”
IACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 2020, no. 4,
pp. 443–466, 2020.

[39] Y. Zhu et al., “LWRpro: An energy-efficient configurable crypto-
processor for module-LWR,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 68, no. 3, pp. 1146–1159, Mar. 2021, doi:
10.1109/TCSI.2020.3048395.

[40] Y. Zhu et al., “LWRpro: An energy-efficient configurable crypto-
processor for module-LWR,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 68, no. 3, pp. 1146–1159, Mar. 2021.

[41] M. Imran, F. Almeida, A. Basso, S. S. Roy, and S. Pagliarini, “High-
speed SABER key encapsulation mechanism in 65 nm CMOS,” IACR
Cryptology ePrint Archive, p. 530, May 2022.

[42] H. Krawczyk, K. G. Paterson, and H. Wee, “On the security of the TLS
protocol: A systematic analysis,” in Proc. Annu. Cryptol. Conf. Cham,
Switzerland: Springer, 2013, pp. 429–448.

[43] S. Song, W. Tang, T. Chen, and Z. Zhang, “LEIA: A 2.05 mm2 140 mW
lattice encryption instruction accelerator in 40 nm CMOS,” in Proc.
IEEE Custom Integr. Circuits Conf. (CICC), San Diego, CA, USA,
Apr. 2018, pp. 1–4.

[44] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire: A config-
urable crypto-processor for post-quantum lattice-based protocols,” IACR
Trans. Cryptograph. Hardw. Embedded Syst., vol. 2019, pp. 17–61,
Aug. 2019.

[45] J. D. Bernstein. (2001). Multidigit Multiplication for Mathematicians.
[Online]. Available: http://cr.yp.to/papers/m3.pdf

[46] M. Bodrato and A. Zanoni, “Integer and polynomial multiplication:
Towards optimal Toom-Cook matrices,” in Proc. Int. Symp. Symbolic
Algebr. Comput., Waterloo, ONT, Canada, Jul. 2007, pp. 17–24.

[47] U. Banerjee, A. Pathak, and A. P. Chandrakasan, “An energy-efficient
configurable lattice cryptography processor for the quantum-secure
Internet of Things,” in IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, Feb. 2019, pp. 46–48.

[48] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, and
R. Van Keer. Keccak in Vhdl. Accessed: Mar. 14, 2022. [Online].
Available: https://keccak.team/hardware.html

[49] Y. Zhu et al., “A 28 nm 48 KOPS 3.4 µJ/Op agile crypto-processor for
post-quantum cryptography on multi-mathematical problems,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2022,
pp. 514–516.

Archisman Ghosh (Graduate Student Mem-
ber, IEEE) received the Bachelor of Electronics
and Telecommunication Engineering degree from
Jadavpur University, Kolkata, India, in 2017. He is
currently pursuing the Ph.D. degree in electri-
cal and computer engineering with Purdue Uni-
versity, West Lafayette, IN, USA, working with
Prof. Shreyas Sen.

Prior to starting his Ph.D. degree, he worked as a
Digital Design & Verification Engineer at Samsung
Semiconductor India Research and Development

(R&D), Bengaluru, India. He interned with the Power Delivery Circuits &
Systems Group, Intel Labs, Hillsboro, OR, USA, over the summer of 2020.
His research interests include mixed-signal IC design and hardware security.

Mr. Ghosh was a recipient of the prestigious SSCS Predoctoral Achievement
Award for the year 2022. He was a recipient of the prestigious ECE Fellowship
and the Bilsland Dissertation Fellowship from Purdue University. He has
been serving as a Primary Reviewer for multiple reputed journals and con-
ferences, including IEEE International Conference on VLSI Design (VLSID),
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS
(TCAS-II), and Wireless Personal Communications (WPC) (Springer).

Jose Maria Bermudo Mera received the bachelor’s
and M.Sc. degrees in telecommunication engineering
from the Technical University of Madrid, Madrid,
Spain, in 2014 and 2016, respectively, and the Ph.D.
degree in electrical engineering from Katholieke
Universiteit Leuven, Leuven, Belgium, in 2022,
working with Prof.Dr.Ir. Ingrid Verbauwhede and
Dr. Angshuman Karmakar. The topic of his the-
sis was the implementation aspects of lattice-based
cryptography.

He worked as a Research Assistant at the Technical
University of Munich, Munich, Germany. He joined COSIC, Katholieke
Universiteit Leuven (KU Leuven), Leuven, Belgium, in 2017. Since November
2022, he has been a Cryptography Hardware Design Engineer with PQShield
Ltd., Oxford, U.K.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2023 at 18:35:28 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TC.2022.3222954
http://dx.doi.org/10.1007/s13389-022-00303-z
http://dx.doi.org/10.1109/TCSI.2020.3048395

16 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Angshuman Karmakar received the B.E. degree
in computer science and engineering from Jadavpur
University, Kolkata, India, in 2010, the M.Tech.
degree in computer science and engineering from
IIT Kharagpur, Kharagpur, India, in 2012, and the
Ph.D. degree from the Katholieke Universiteit Leu-
ven (KU Leuven), Leuven, Belgium, in 2020, for
his dissertation titled “Design and implementation
aspects of post-quantum cryptography.”

He is one of the primary designers of the post-
quantum Saber KEM scheme that is one of the

finalists in the NIST’s post-quantum standardization procedure. He received
the FWO Post-Doctoral Fellowship from the COSIC Research Group,
KU Leuven. He is currently an Assistant Professor with the Department of
Computer Science and Engineering, IIT Kanpur, Kanpur, India. His research
interests span different aspects of lattice-based post-quantum cryptography
and computation on encrypted data.

Debayan Das received the Bachelor of Electronics
and Telecommunication Engineering degree from
Jadavpur University, Kolkata, India, in 2015, and the
M.S. and Ph.D. degrees in electrical and computer
engineering from Purdue University, West Lafayette,
IN, USA, in 2021.

Prior to starting his Ph.D. degree, he worked as an
analog design engineer at a startup based in India.
He has interned with the Security Research Lab,
Intel Labs, Intel Corporation, Hillsboro, OR, USA,
over the summers of 2018 and 2020. He is currently

a Research Scientist with Intel Corporation. He has authored/coauthored more
than 50 peer-reviewed conferences and journals, including two book chapters
and two U.S. patents. His research interests include mixed-signal IC design
and hardware security.

Dr. Das was a recipient of the IEEE HOST Best Student Paper Awards
in 2017 and 2019, the Third Best Poster Award in IEEE HOST 2018, and
the 2nd Best Demo Award in HOST 2020. In 2019, one of his papers was
recognized as a Top Pick in Hardware and Embedded Security published over
the span of the last six years. He was recognized as the Winner (Third Place)
of the ACM ICCAD 2020 Student Research Competition (SRC). During his
Ph.D. degree, he has been awarded the ECE Fellowship from 2016 to 2018,
the Bilsland Dissertation Fellowship from 2020 to 2021, the SSCS Pre-
doctoral Achievement Award in 2021, and the Outstanding Graduate Student
Research Award by the College of Engineering, Purdue University, in 2021,
for his outstanding overall achievements. He has been serving as a Primary
Reviewer for multiple reputed journals and conferences, including JSSC,
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS
(TCAS-I), TVLSI, TCAD, IEEE Design & Test, TODAES, JETCAS, TBME,
IEEE ACCESS, IoTJ, DAC, VLSI Design, and HOST.

Santosh Ghosh received the Ph.D. degree from IIT
Kharagpur, Kharagpur, India, in 2011.

He completed his post-doctoral studies at COSIC,
Katholieke Universiteit Leuven (KU Leuven), Leu-
ven, Belgium, in the area of cryptographic hardware
and side-channel attacks. He is currently a Research
Scientist with the Intel Labs, Hillsboro, OR, USA.
He has coauthored about 65 research publications
in refereed international conferences and journals
with a citation H-index of 21 and 20 issued with
other 51 patents filed (pending). The primary focus

of his research includes: 1) design and implement cryptographic hardware
microarchitecture and RTL with aggressive area, latency, and throughput
constraints; multiple of them are already being deployed in high-volume Intel
products; 2) investigate and develop timing, power, and EM side-channel
countermeasures; and 3) collaborate with academic partners and provide
cryptography and security guidance to Intel business units.

Ingrid Verbauwhede (Fellow, IEEE) is currently a
Professor with the Research Group COSIC, Depart-
ment of Electrical Engineering, Katholieke Uni-
versiteit Leuven (KU Leuven), Leuven, Belgium.
At COSIC, she leads the Secure Embedded Sys-
tems and Hardware Group. She is a pioneer in
the field of efficient and secure implementations
of cryptographic algorithms on many different plat-
forms: ASIC, FPGA, embedded, and cloud. With her
research, she bridges the gaps between electronics,
the mathematics of cryptography, and the security

of trusted computing. Her group owns and operates an advanced electronic
security evaluation laboratory.

Dr. Verbauwhede is a fellow of IACR. She was elected as a member of the
Royal Flemish Academy of Belgium for Science and the Arts in 2011. She
received the IEEE 2017 Computer Society Technical Achievement Award.
She was a recipient of two ERC Advanced Grants: one in 2016 and a second
one in 2021. She received the 2023 IEEE Donald O. Pederson Award.

Shreyas Sen (Senior Member, IEEE) received the
Ph.D. degree from the School of Electrical and
Computer Engineering (ECE), Georgia Institute of
Technology (Georgia Tech), Atlanta, GA, USA, in
2011.

He has over five years of industry research experi-
ence at Intel Labs, Hillsboro, OR, USA, Qualcomm,
San Diego, CA, USA, and Rambus, Sunnyvale, CA,
USA. He is currently an Elmore Associate Professor
of ECE and biomedical engineering (BME) with
Purdue University, West Lafayette, IN, USA, where

he is also the Director of the Center for Internet of Bodies (C-IoB). He is
the inventor of the Electro-Quasistatic Human Body Communication (EQS-
HBC), or Body as a Wire Technology, for which he was a recipient of
the MIT Technology Review Top-10 Indian Inventor Worldwide under 35
(MIT TR35 India) Award in 2018 and the Georgia Tech 40 Under 40 Award
in 2022. To commercialize this invention, he founded Ixana, and serves as
the Chairperson and the CTO. His work has been covered by more than
250 news releases worldwide and invited appearance on TEDx Indianapolis,
the Indian National Television CNBC TV18 Young Turks Program, the NPR
subsidiary Lakeshore Public Radio, and the CyberWire Podcast. He has
authored/coauthored three book chapters, and over 175 journal articles and
conference papers. He has over 20 patents granted/pending. His current
research interests span mixed-signal circuits/systems and electromagnetics for
the Internet of Things (IoT), biomedical, and security.

Dr. Sen serves/has served as an Executive Committee Member of the IEEE
Central Indiana Section and a Technical Program Committee Member of
DAC, Computer and Communications Security (CCS), Custom Integrated
Circuits Conference (CICC), International Microwave Symposium (IMS),
Design, Automation, and Test in Europe (DATE), International Symposium
on Low Power Electronics and Design (ISLPED), International Conference on
Computer-Aided Design (ICCAD), International Test Conference (ITC), and
VLSI Design, among others. He was a recipient of the NSF CAREER Award
in 2020, the AFOSR Young Investigator Award in 2016, the NSF CISE CRII
Award in 2017, the Intel Outstanding Researcher Award in 2020, the Google
Faculty Research Award in 2017, the Purdue CoE Early Career Research
Award in 2021, the Intel Labs Quality Award in 2012 for industry-wide impact
on USB-C type, the Intel Ph.D. Fellowship in 2010, the IEEE Microwave
Fellowship in 2008, the GSRC Margarida Jacome Best Research Award in
2007, and nine best paper awards, including IEEE CICC 2019 and 2021 and
in IEEE HOST from 2017 to 2020. His work was chosen as one of the top-ten
papers in the Hardware Security Field (TopPicks 2019). He serves/has served
as an Associate Editor for IEEE SOLID-STATE CIRCUITS LETTERS (SSC-L),
Scientific Reports (Nature), Frontiers in Electronics, and IEEE Design & Test.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2023 at 18:35:28 UTC from IEEE Xplore. Restrictions apply.

