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A 54µW Design-Agnostic Clock, Voltage, and EM-Pulse Fault-Injection 
Attack Detection using Time-to-Voltage Conversion 
Yudhajit Ray, Archisman Ghosh, Sarthak Antal, Shreyas Sen 
Purdue University, IN, USA 
Fault Injection Attacks (FIAs) exploit faults to reveal sensitive information or extract 
keys from secured crypto algorithms (e.g. AES, Kyber, ASCON)[1-5]. Clock, 
voltage, and EM pulse (EMP) based FIAs are widespread due to the availability of 
cheap attack hardware [4]. Such glitches exploit digital designs by creating timing 
failures in the data path, leading to bit-flips, stuck-at-faults, etc. [3,4] (Fig. 1), which 
are exploited using algorithms such as Differential Faults Attacks [6]. In recent 
years, a few FIA detector ASICs have emerged, including design-specific attack 
detectors [7] and design-agnostic detectors[8,9]. [7] implements an error-checking-
based FIA detector for AES with a 40% area overhead. Oversampling the clock to 
detect glitches[8] restricts timing sensitivity and consumes high power and area 
(0.8mW, 4800µm2 in 5nm). [9] utilizes a delay-locked-loop (DLL) to determine the 
duty cycle deviation in the presence of clock glitches, consuming 300µW at 50MHz. 
Though [8,9] did not include a crypto core, the power consumption of the clock-glitch 
detector is >50-200% of a typical crypto core (e.g. AES 256 65nm 50MHz is 
590µW[10]), calling for an order-of-magnitude improvement in the power of FIA 
detectors. Moreover, there have been no dedicated voltage or EM Pulse glitch 
detector ASICs. Relying on a clock-glitch detector for voltage glitch detection, as in 
[9], may miss a voltage/EM Pulse glitch that creates a fault in the data path but not 
a clock glitch, causing true negatives. 
Noting the fundamental nature of an effective clock glitch, which has fixed amplitude 
(Vpp) but varies in time (Δt) (Fig. 1), an integration-based solution promises to be 
highly sensitive and power efficient. Conversely, voltage/EMP glitch, i.e. small in 
amplitude (Δv) and time (Δt) calls for a differentiator for optimum detection. Utilizing 
these fundamentals, we introduce 1) an integrating clock glitch detector, to convert 
time information to voltage information that supports more efficient detection of all 
types of clock glitches (T1-T12), enabling a 4x benefit in glitch detection window and 
33x power reduction over [9], 2) a differentiating voltage glitch/EMP detector 
consuming only 1.27µW power (<0.5%) with 3) an example newly standardized 
lightweight crypto-core ASCON, to investigate the effect of FIA, as highlighted in the 
overall system architecture in Fig. 2.  
The system comprises two clock glitch detector units (26.5 µW each) operating at 
opposite levels to provide full coverage of all clock glitch types (odd and even), 
utilizing the inversion property among different types of clock glitches (Fig. 1). The 
voltage glitch detector also helps in EMP detection as it creates voltage glitches 
without tampering with the IC. Internal and external clock glitch generation 
modalities are designed in for extensive testability. As clock and voltage glitch 
detectors consume minimal area and power, multiple monitors can be placed in the 
IC to detect localized attacks.  
The clock glitch detector is composed of one integrating amplifier and two differential 
double-tail samplers with slightly different threshold voltages (TH1/2) to define the 
acceptable window for normal clock operation (Fig. 2). The differential variant of 
double-tail sampler provides better performance in terms of power and input-
referred noise. During normal clock operation, the sampler outputs (OUT1/2) will 
always be 0 and 1, respectively. In the presence of clock glitch, the deviation from 
normal operation of the positive detector (1A), as shown in Fig. 2-bottom left, 
ensures detection of glitches that affect the high state of the clock. Simultaneously 
operating the negative detector (1B) ensures detection of glitches that affect the low 
state of the clock. Clock glitches trip the detector circuit outside the acceptance 
window and create an output flag.  Given that clock glitches are anomalies in time 
and detecting fine time leads to high power consumption, this architecture converts 
time anomalies to voltage anomalies and detects them in the voltage domain. A 
discrete-time integrating amplifier (Fig. 3) enables current-efficient time-to-voltage 
conversion. The output differential voltage is proportional to the clock high duration 
(TINT) and the transconductance (Gm) of the input nMOS pair. An nMOS cross-
coupled integrating amplifier with cascading [11] enhances the current efficiency 
(Gm/Id), thereby reducing power consumption. Time-multiplexed operation further 
reduces the power consumption of each integrator by keeping them off for 50% of 
the clock period. Integration also reduces the impact of supply or input voltage noise 
at the differential output, enabling the detection of sharper clock glitches.  
Voltage glitch detection (Fig. 3) operates on the principle of extracting maximum 
information through differentiation (dV/dΔt) and filtering out other sources that can 
interfere with the detection. The self-biased inverter is used as the differentiator due 
to its low power consumption, followed by a current starved inverter to provide an 

adjustable threshold voltage, rejecting supply noise in an amplified domain and 
creating a digital glitch flag. An RC-filter on the inverter supply ensures glitches only 
go to the detector input and not to the supply, which helps in avoiding missing alerts. 
A capacitive divider at the input aids in AC-coupled biasing while preventing direct 
supply to the ground path. The voltage glitch detector’s normally off state only 
consumes active power in the presence of voltage or electromagnetic interference 
(EMP). As a result, the total power consumption of voltage glitch detector is only 
1.27µW, <0.58% of power of implemented NIST lightweight crypto core ASCON. 
We utilize 320-bit data-path ASCON implementation for 80-bit security[12]. Load 
characterization for different supply voltages and frequencies shows power 
consumption ranging from 12µW at 0.8V supply, 500KHz to 850µW at 1V supply, 
50MHz. 
Fig. 4 presents the measured output waveform from the 65nm CMOS IC, illustrating 
the glitch flag generated when a periodic voltage fault of 200mV depth and 4ns width 
is introduced every 500ns. The IC glitch flag operates in two modes: continuous 
multi-glitch detection and single-glitch detection. In Mode 1, the IC can detect 
continuous incoming glitches to ensure the absence of false-positives or false-
negatives. In Mode 2, the flag output can latch to VDD in the presence of a single 
voltage glitch, resulting in a total latency of 900ps from the onset of the fault. The 
voltage glitch detection Shmoo plot demonstrates the detector’s performance under 
various voltage glitch depths and widths. A high-performance AWG is employed to 
generate voltage glitches with depths ranging from 100mV to 300mV and widths 
varying from 400ps to 8ns. Additionally, we present the impact of an electromagnetic 
pulse (EMP) attack on the supply rail of the IC and demonstrate the successful 
detection of an EMP attack using an on-chip detector for the first time. A 1.5W EMP 
generates a multi-peak glitch waveform on the IC supply, which the detector 
perceives as three concurrent glitches in Mode 1 (continuous detection mode) 
without any missed alerts. The EMP glitch detection Shmoo plot illustrates the 
detector’s performance with varying EMP glitch generation power and the distance 
of the inductor from the supply. The overall implementation of the voltage glitch/EMP 
detector occupies an area of 1500µm2 and 1.27µW power. 
Fig. 5 presents detailed measurements of the clock-glitch detector. The clock glitch 
generation circuit employs an internal counter to generate a configurable sharp 
pulse of 160ps to 1.2ns every 32 cycles of the input clock. This pulse can be added 
or subtracted to generate T1/T2 and T5-T12 clock glitches for continuous testing of 
clock glitch attacks. T3/T4 and broader clock glitch attacks are generated externally. 
The clock glitch Shmoo plot illustrates the detection performance. The detector can 
detect all tested glitch widths for T1-T4. For the remaining glitch widths, depending 
on the type of glitch, the crypto core is more susceptible to narrow glitch widths for 
T5-T6, T9-T10, and to wide glitch widths for T7-T8, T11-T12, respectively. In both 
ranges where the glitch is more effective, the detector successfully detects with zero 
errors. The clock glitch detector design offers a 4x improvement in the largest 
detectable glitch width (400ps in [9] to 1.6ns) for glitches where higher width is more 
challenging to detect. An operation frequency-independent comparison of glitch 
detectors is more suitable when compared in terms of duty-cycle deviation. The 
accurate detection window is improved from 4/50 [9] to 16-28/50 duty cycle 
deviation, depending on the type of clock glitch. Periodic detection (Fig. 5 top right) 
of all major types of clock glitches is tested while ensuring there are no missing 
alerts. In comparison to previous implementations of clock glitch detectors, the 
overall power consumption is significantly reduced by a factor of 33x at 2.5MHz and 
28x at 40MHz, as demonstrated in [9] and [8], respectively. Furthermore, duty-
cycled operation of the detector further reduces the power consumption to 6µW at 
2.5MHz and 53µW at 100MHz.  
Fig. 6 illustrates the accuracy and power consumption of the clock glitch detector 
across a range of supply voltages, demonstrating its wide operational range from 
0.85 V to 1.4 V. The complete clock glitch detector has an active area of 2250 µm2. 
The impact of clock glitch faults on the ASCON crypto core has been investigated, 
revealing that while the absence of clock glitches results in consistent ciphertext 
generation, the presence of glitches at different clock cycles enables successful 
fault injection, leading to diverse ciphertext outputs. The comparison table 
demonstrates a power improvement of 3.6x to 33x over state-of-the-art clock 
detectors while simultaneously expanding the detection window by 4x. Additionally, 
the performance and power consumption of a dedicated on-chip voltage/EMP glitch 
detector are presented for the first time. Although the FIA detectors are design-
agnostic, when compared to the example ASCON core (216 µW at 10 MHz), the 
overhead of the voltage/EMP and clock-glitch detectors is negligible, comprising 
only 0.58% and 5% respectively. The die micrograph, power, and area breakdowns 
of the implemented IC are presented in Fig. 7.  
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Fig. 1.  Clock, voltage, and EMP glitch exploitations on digital designs, optimal 
operating principles for detecting clock and voltage glitch, inversion property of 
different types of clock glitches, previous design-agnostic clock glitch detectors. 

Fig. 2.  Overall system architecture of the implemented IC, clock glitch detector 
architecture; normal clock operation and deviation from it in the presence of clock 
glitch, affecting high state of the clock. 

Fig. 3.  Implemented integrating amplifier architecture and benefits in detecting 
glitches; Operation and load-characteristics of on-chip ASCON crypto core; 
Voltage glitch detector and operation analysis 

Fig. 4.  Implemented integrating amplifier architecture and benefits in detecting 
glitches; Operation and load-characteristics of on-chip ASCON crypto core; 
Voltage glitch detector and operation analysis   

Fig. 5.  Clock glitch generation architecture; measured clock glitch detector 
output waveforms, detection Shmoo plot and comparison with other state of the 
art achieving 3.6x-33x benefit compared to [9]. 

Fig. 6.  Measured performance of Clock glitch detector for varied supply voltage; 
Effect of clock glitch on implemented ASCON core showing different ciphertext 
output, comparison with prior-art. 
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Fig. 7 Chip Micrograph; Power and area breakdown of the different sub-systems; 
IC specifications 
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