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Custom integrated circuits aim to solve important problems with ultra-high efficiency, 
making use of analog and digital circuits, with well-known trade-offs. This work is about a 
new paradigm which is neither analog nor digital, we call it a p-circuit [See for example,  
1-12]. In terms of inputs and outputs, our p-circuits look like digital circuits (Fig. 12.2.1), 
thus requiring no ADC’s or DAC’s. However, the output is not a Boolean function of the 
inputs. It is a random binary variable whose probability P(B=1) of being 1 is given by an 
analog function A of the inputs which takes on values continuously between 0 and 1.  
 
Building p-circuits: Figure 12.2.2 shows how a p-circuit can be built using building  
blocks each of which takes four inputs, combines them to compute an analog quantity  
A(b1, b2, b3, b4) and generates a binary output B with P(B=1) = A as shown in Fig. 12.2.1. 
This single output is replicated four-ways as shown to facilitate the creation of a two-
dimensional array through tiling. The circuit operates by sequentially updating the output 
of each of the N building blocks (or p-gates) based on its current inputs. Each of the N  
p-bits is updated it (denoting iterations) times. What problems can we solve with this two-
dimensional array? For starters, we can solve Quadratic Unconstrained Binary Optimization 
(QUBO) problems described by cost functions E of the form E = - Σi bi hi – 0.5 Σi,j (bi Wij bj) 
where the indices (i,j) run over the sites of the two-dimensional lattice, and the weight matrix 
Wij is non-zero only if i and j are nearest neighbors. Optimization requires us to find 
configurations {b} that minimize the cost function E. 
 
A statistical approach to this problem is to generate samples from a probability distribution 
function (PDF) P ~ exp(-E({b})) so that low E configurations appear with high probability. 
This can be done if we generate new samples from the existing sample by modifying a 
single p-bit bk out of the collection {b} such that P(bk=1) = [1+exp(-εk)]^(-1) where  
εk = E(bk=0) – E(bk=1) = hk + Σj (Wkj bj). The algorithm is implemented by repeatedly 
performing a core operation, consisting of: (1) looking at n binary inputs (where n depends 
on the number of non-zero elements of Wkj for a given k), and (2) generating a random 
binary output following the probability given above. Several ASIC implementations [13-25] 
use similar concepts in commercial process. We will now describe an ASIC implementation 
using a commercial 65nm process, which solves a class of QUBO problems [1]. 
 
ASIC design: Figure 12.2.3 shows the system architecture: The ASIC, comprising a 1,440 
p-bit computer, employs a 72 p-gate array as its primary computing units for stochastic 
computing.  Additionally, it incorporates two types of memory: weight memory and p-bit 
memory. These memories serve the purpose of providing weight values Wkj from the cost 
function E that define the specific QUBO problem. The iterative process involves 1,440  
p-bits, which are updated over 20 cycles. During each cycle, 72 p-bits are updated through 
72 p-gates. Figure 12.2.3 (bottom-left) shows the implementation of a p-gate, which takes 
up to 7 p-bits as inputs along with their corresponding weights. Following the equation  
εk = hk + Σj (Wkj bj),  the probability is calculated using an exponential LUT and compared 
with a random number generated by an Xoshiro128+ PRNG, as depicted in Fig. 12.2.3 
(bottom-right). After each cycle, an updated p-bit is written back into the p-bit memory. 
Each iteration updates all p-bits to generate a new sample from the PDF, P ~ exp(-E({b})). 
 
ASIC measurement results: Figure 12.2.4 shows measured results from our IC. Figure 
12.2.4 (top) shows the solution to the problem described in [1].  The convergence index 
reaches a threshold value after some iterations.  Figure 12.2.4 (bottom-left) shows the 
measured power. The p-bit computer consumes 328uW active power at 10MHz at 0.5V 
core voltage, with leakage power contributing to an additional 57.42uW.   Notably, 
approximately 70% of this power is consumed by the p-gate array.  
 
Energy per operation: Figure 12.2.5 (left) compares the energy cost of the core operation 
discussed earlier, estimated for each of four options, namely, (1) CPU, (2) 125MHz FPGA, 
(3) 10MHz ASIC and (4) clockless circuit with s-MTJ’s. We evaluated the energy based on 
solving a QUBO problem like the one described earlier except that the lattice is 3D and  
non-rectangular [1] for which each p-bit looks at 5 inputs rather than 4. The number of p-
bits N = 1,440, while the problem required it = 25,000 iterations. We have also used the 
same architecture to solve other QUBO problems featuring different values of (N, it) 
requiring different amounts of total energy, but the energy per operation is characteristic 
of the hardware used to implement it. Figure 12.2.5 (right) shows the energy and times for 
several other implementations reported in the literature, which we discuss below in the 
section “How we compare.”  
 
The costliest implementation (Fig. 12.2.5 left) is on a CPU for which we estimate ~uJ per 
operation, while our ASIC implementation requires ~pJ per operation, which is six orders 
of magnitude smaller. Note that these energy estimates should be applicable to any 

algorithm that can be implemented by repeatedly performing the same core operation 
requiring a p-gate with 5 binary inputs, allowing us to evaluate the analog function simply 
using an LUT with 25 = 32 entries. But if each p-gate were to look at many more inputs, the 
core operation may consume more energy. But how versatile is our core operation and the 
p-gate implementing it? We believe it can be used way beyond the QUBO problem described 
above as illustrated by the following example from a common generative model. 
 
Future directions:  Figure 12.2.6 shows a series of transformations each of which has a 
form similar to what we discussed, namely ck = F(hk + Σj (Wkj bj)) turning a set {b} into a set 
{c} . Given a specific non-linear function F, training algorithms have been developed that 
can find appropriate [W], {h} for each transformation such that a random input image is 
transformed into a recognizable image. However, we cannot implement the standard 
algorithms with the p-gates we discussed since, (1) the non-linear function F is usually 
deterministic while our p-gates are probabilistic, and (2) F operates on a large number of 
continuous variables while our p-gate operates on a small number of binary variables. 
 
We need to change these training conditions so that the resulting [W], {h} can be 
implemented using p-gates for which Fig. 12.2.6 provides a proof-of-concept, hopefully a 
stepping stone to more complex generative models like diffusion models or even large 
language models. Compared to the analog (or multi-bit digital) gates commonly used in 
implementing deep neural networks (DNN’s), the advantage of p-gates is that they work 
with binary inputs. But these binary quantities do not just approximate the analog 
information, they embed it statistically. One might think that we would have to average 
many samples to get acceptable results, but the results in Fig. 12.2.6 were obtained with 
just one sample. We believe that the true power of p-circuits lies in providing a natural 
platform for such probabilistic applications and algorithms.  
 
How do we compare? Ising computing is of course not new to this community [13-28], 
and the prior results in Fig. 12.2.5 (right) show energy costs ranging from pJ to μJ across 
various designs. Note, however, that time-to-solution (TTS) and energy-to-solution depend 
on the design choices, annealing method, and the target Ising problem. We also note that 
much previous literature [17, 19, 22-24] has applied in-memory computing techniques, 
significantly reducing the energy cost associated with repeatedly loading varying weights 
compared to classic digital designs, like our ASIC. We propose that the energy cost per 
operation per spin for a given number of inputs would be a fair metric for comparing 
different Ising solvers. 
 
Secondly, if all p-bits along with the weights can fit on a chip then the entire circuit can 
operate autonomously without clocking and this can reduce the energy cost significantly. 
Indeed our SPICE simulations of clockless circuits using experimentally benchmarked 
models for stochastic magnetic tunnel junction’s (s-MTJ’s) suggest 20μW x 50ps ~ fJ per 
operation [1, 9]. Such s-MTJ’s have only been demonstrated in laboratories but similar 
numbers should be achievable with other standard devices that can be taped out. The 
difficulty, however, is to scale up this clockless operation to address large problems. 
 
Finally, we note that this paper is not about a particularly energy-efficient implementation 
of Ising computing, of which there are many already. Indeed we have not yet implemented 
several standard techniques like compute-in-memory or the ones noted in Fig. 12.2.5 (right). 
It is well-known that specialization can reduce energy and delay, the challenge is to make 
it broadly applicable. Our primary message here is that a very broad variety of problems 
can be addressed through repeated application of the core building block or p-gate shown 
in Fig. 12.2.1 and hence the need to benchmark its energy and delay per elementary 
operation for different implementations. As we have discussed, p-gates arise naturally in 
Ising computing but are relatively unknown in the context of feed-forward DNN’s which are 
the staple of modern artificial intelligence (AI) [29,30]. We hope this paper will encourage 
the use of p-gates beyond the narrow confines of Ising computing. 
 
We end by noting an interesting similarity between p-circuits and quantum circuits that 
involve qubits coherently coupled to other qubits. A system of N qubits has an associated 
wavefunction  with 2N components whose squared magnitude gives the PDF. Quantum 
circuits multiply the wavefunction by a unitary matrix U, while p-circuits multiply the PDF 
by a stochastic matrix W. Both U and W are huge matrices of size 2N x 2N, too large for direct 
computation. But p-circuits can be used to generate samples efficiently that follow the 
correct PDF generated by W.  However, they are not very effective if the problems involve 
a complex unitary matrix U, like the quantum Fourier transform (QFT) in Shor’s algorithm, 
which can be sampled efficiently only with quantum computers.  
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Figure 12.2.1: Building blocks for analog (top left), digital (top right), and p-circuits 
(bottom). P(B=1) denotes probability of B being 1 rather than 0.

Figure 12.2.2: Building a circuit by tiling together 4-input p-gates. If each p-gate has 
more inputs then a more elaborate layout is required.

Figure 12.2.3: System level architecture of the prototype p-bit ASIC. An example  
p-circuits architecture (bottom left). Xoshiro128+ PRNG (bottom right).

Figure 12.2.4: Measurement results of an example p-bit ASIC fabricated with 
commercial process. Possibility of improvements.

Figure 12.2.5: Energy per operation per spin of the core operation, estimated for each 
of four options as discussed in text (left). Energy to solution and TTS plot for recent 
state-of-the-art Ising solvers (right).

Figure 12.2.6: A sequence of p-bit layers trained to turn a random initial image into a 
recognizable image.
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Figure 12.2.7: IC Micrograph and specification.
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