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Abstract—With the growing demand for artificial intelligence
(AI) and the Internet of Things (IoT), there is an increasing
need for smart vision sensors and cameras with energy-efficient
computing capabilities. While previous works have explored in-
sensor computing for feature extraction, they often rely on
memory-based weight storage or fixed kernels, limiting their
flexibility and energy efficiency. This paper introduces a low-
power, programmable, memory-less convolution engine designed
for feature extraction in the analog domain. The proposed engine
utilizes a linear large-signal voltage-to-current converter-based
Time-Domain (TD) multiply-accumulate (MAC) cell, employing
time pulses as weights. A 32-phase subsampling phase-locked
loop (SS-PLL) is implemented to generate 5-bit Time Domain
weights for a programmable 3x3 kernel employed for feature
extraction. The in-sensor convolution engine achieves an energy
efficiency of 0.4 pJ/pixel at a data rate of 300 MSps, making it
suitable for resource-constrained, battery-operated devices.

Index Terms—Artificial intelligence (AI), convolution, feature
extraction, multiply-accumulate (MAC), processing in sensor
(PIS), in-sensor computing, time domain computing

INTRODUCTION

Rapid advancement of deep neural networks (DNN) and ar-
tificial intelligence (AI) has led to a wide array of applications
in image recognition and classification, now integral to smart
surveillance, autonomous vehicles, and medical diagnostics
as shown in Fig. 1(a). This has driven the development of
sophisticated image processing techniques demanding high
computational power and efficiency. Although high-quality im-
age sensors have improved resolution and quality, the resulting
surge in data has led to exponential increases in the energy
consumption of analog-to-digital conversion (ADC) [1]. The
vast data access required for multiply accumulate (MAC)
operations in computing algorithms results in considerable
power consumption and latency, creating critical challenges
for integrating intelligent networks into power-constrained
Internet of Things (IoT) devices [2] [3].

To address these issues, the concept of in-sensor feature
extraction is gaining traction. As illustrated in Fig. 1(c),
this approach contrasts with traditional computation by uti-
lizing Time-Domain in-sensor Feature Extraction (TD-FE).
Instead of employing high-resolution ADCs and transmitting
full-resolution data at high frame rates, TD-FE technology
leverages early-stage image processing for feature extraction,
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Fig. 1. Overview of the analog-to-digital conversion energy challenges and
the benefits of Time-Domain in-sensor Feature Extraction (TD-FE).

thereby reducing data transmission and computational work-
load. For example, a gray-level image sensor with dimensions
Y × Z and N -bit output typically requires Y × Z × N -bit
data transfer for a single kernel convolution in conventional
architectures. In contrast, a TD-FE circuit that executes a 3x3
convolution reduces the output data size to Y

S × Z
S × M

bit (where the stride = S with an M bit ADC), achieving
bandwidth and energy savings by a factor of S × S × 2N−M
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[4].
Furthermore, modern DNNs require billions of MAC oper-

ations per inference. Given that these computations demand
relatively low precision, analog computing becomes feasible,
offering greater efficiency than digital methods in low signal-
to-noise ratio (SNR) regimes. Hence, TD-FE based on comput-
ing in the analog time domain shows better energy efficiency
results than SOA analog, digital equivalent circuits, as shown
in Fig. 1(b) [5].
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Fig. 2. Methodology and Illustration of various kernel matrices used for
different applications in time-domain kernel generation.

I. METHODOLOGY

A. Background on Feature Extraction with Convolution

Feature extraction using convolution is a fundamental tech-
nique in image processing and computer vision, particularly
in the context of convolutional neural networks (CNNs).
Convolution involves sliding a filter or kernel across an image
to produce a feature map. This process helps identify and
extract relevant features, such as edges, textures, and patterns,
from input data [6].

B. Time-Domain Kernel Generation

The weight matrix, or kernel, is selected based on spe-
cific application requirements, as illustrated in Fig. 2, which
shows various kernels for different applications. These kernel
matrices are normalized and mapped to time pulses ranging
from 310 ps to 5 ns with 5-bit accuracy using the multiphase
clock generated by a 100-MHz phase-locked loop (PLL). The
time-domain kernel generation circuit selects the appropriate
clock phases from the multiphase PLL and utilizes the phase

differences between these clocks to generate time pulses
that are mapped to the kernel matrix. This kernel matrix
can be adjusted according to the specific feature that needs
to be extracted. The time pulses are generated in real-time
and used directly for multiply-accumulate (MAC) operations.
This approach is faster and more energy efficient compared
to storing weights in memory and fetching them for MAC
operations.

C. Multiphase PLL for Efficient Weight Generation

A key innovation in this design is the utilization of a low-
power (60 µW) 32-phase phase-locked loop (PLL) to generate
weights in the time domain to create the kernel matrix. This
approach offers significant advantages over traditional SRAM-
based weight storage.

1) Energy Efficiency: By eliminating the need to retrieve
weights from memory for each multiply-accumulate
(MAC) operation, the system achieves substantial energy
savings.

2) Improved speed: The direct generation of weights
through phase differences eliminates the latency asso-
ciated with memory access, resulting in a faster overall
operation. The weights are generated and used for con-
volution directly; the PLL provides the weights with a
frequency of 100 MHz, enhancing the overall speed of
the system.

3) Real-time Adaptability: The PLL-based approach allows
for dynamic weight adjustment, enabling the system to
adapt to different kernel requirements in real-time using
a digital FSM.

II. CIRCUIT IMPLEMENTATION

A. TD-MAC Unit Cell Design and Operation

The unit cell TD-MAC (Time-Domain Multiply-
Accumulate), as depicted in Fig. 3, is an analog computing
element designed for efficient multiplication and accumulation
operations. At its core, the unit cell employs a large signal
Voltage-to-Current (V-to-I) converter implemented using a
source-degenerated native NMOS device (threshold voltage
∼ 0mV).

The source degeneration technique enhances linearity by
introducing negative feedback. The larger the degeneration
resistor, the greater is the linearity improvement. However,
resistor sizing involves a careful trade-off between linearity
and input dynamic range.

The converted current is reflected using a current-mirror
configuration. The M3 transistor plays a crucial role in in-
creasing the output resistance seen by the capacitor, making
the reflected current less sensitive to voltage fluctuations across
the capacitor. The native input device (M0) is intentionally
small in size to minimize input capacitance and facilitate easy
cascading of multiple MAC units.

Switches S0 and S1 gate the current of the MAC unit,
activating it only during the integration phase. This design
choice ensures that the circuit remains off for the majority of
the MAC operation, resulting in high energy efficiency.
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Fig. 3. Design and operation of the TD-MAC unit cell, highlighting the
pseudo-differential architecture for handling positive and negative weights.

To compensate for process variations, the resistor is
equipped with a 5-bit trimming control. This allows for fine-
tuning of the resistor value to maintain consistent performance
across process corners.

The TD-MAC unit cell operates as follows: The analog
input voltage (Vin) is converted to a current (Vin/R) by the V-
to-I converter. This current is then integrated into the capacitor
CMAC for a specific integration time (tint), performing the
multiplication. The process is repeated for n cycles to realize
n accumulations. Each clock cycle, a new input Vin is fetched
from the image sensor for MAC operation.

The output voltage (Vout) of the TD-MAC unit cell can be
expressed by the following equation:

Vout =
Vin1 · tint1 + Vin2 · tint2 + Vin3 · tint3 + · · ·

R · CMAC
(1)

This equation demonstrates how the TD-MAC unit cell
performs multiple accumulations over time, with each term
representing a single integration cycle. The output voltage is
the sum of these individual integrations, where R and CMAC

remain constant, while Vin and tint may vary for each cycle.

B. Pseudo-Differential Architecture for Negative Weights

To accommodate kernel matrices with both positive and neg-
ative weights, the TD-MAC unit employs a pseudo-differential
architecture, as illustrated in Fig. 3 (bottom left). This design
allows for the realization of negative integration(for negative
kernel weights) and offers additional benefits in noise reduc-
tion.

For positive weights, the input voltage is applied to Vin+,
while Vin− is connected to a common mode voltage. In
contrast, for negative weights, the connections are reversed:
Vin− receives the input voltage, and Vin+ is tied to the
common-mode voltage. This configuration enables the circuit
to handle both positive and negative weights effectively.

The pseudo-differential architecture offers two significant
advantages:

1) Facilitates the cancellation of common-mode noise, im-
proving the signal-to-noise ratio of the system.

2) It helps mitigate common-mode clock feedthrough, im-
proving the overall accuracy of MAC operations.

The final output of the TD-MAC unit is obtained by taking
the differential voltage between the two branches:

Vout = VP − VN (2)

A 32-phase PLL is used to generate the multi-phase clock
for integration time generation.

System Architecture
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Fig. 4. System architecture of the proposed time-domain feature extraction
circuit, including the role of the 32-phase PLL in integration time generation.

III. SYSTEM ARCHITECTURE

The proposed architecture, depicted in Fig. 4, features a
time domain feature extraction circuit (TD-FE) that utilizes
a 32-phase phase-locked loop (PLL) as a 5-bit memory.
This design leverages the phase differences between various
clocks to store kernel values. The phase selector chooses the
appropriate phases from the PLL, which are then used by
the integration time generator to produce integration pulses.
These pulses facilitate multiply accumulate (MAC) operations
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directly, enhancing speed and energy efficiency compared to
traditional methods that store weights in memory.

The sign-control finite state machine (FSM) manages input
switching to account for both positive and negative weights
in the kernel. The sign of each weight determines the input
connection to the pseudo-differential MAC. The capacitors
C1, C2, and C3 store accumulation results for each row of
the kernel. During each clock cycle’s positive phase, these
capacitors accumulate multiplication results corresponding to
elements in a column of the kernel. At the end of the third
clock cycle, the capacitors are shorted in the off-phase of the
clock, resulting in the accumulation of individual row MACs.
This process is illustrated in Fig. 4(bottom), showcasing the
feature extraction calculation.

The pixel values are fed into the convolution engine column-
wise, with the column size determined by the kernel size
(e.g., size 3 for a 3x3 kernel, size 5 for a 5x5 kernel). The
analog voltages corresponding to these pixel values are sent
to the time-domain multiply-accumulate (MAC) units. These
units multiply the analog voltage by the time pulse and store
the result in capacitors. Once the last column of the kernel
is processed and accumulated, the capacitors are shorted to
perform a row-wise accumulation. The final value of the
analog voltage is then sent to the analog-to-digital converter
(ADC) for digitization.

IV. RESULTS AND COMPARISON
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The proposed architecture is simulated using an input analog
image, as illustrated in Fig. 5. The simulation results include

a 100 MHz clock shown in the first part of the figure,
followed by the analog input image. Kernel-time pulses and
corresponding multiply-accumulate (MAC) operations are also
highlighted. The final voltage values are normalized to 1

15 ,
which can be adjusted by a shift and add operation after the
analog-to-digital conversion (ADC). The ideal output for the
simulated kernel is 13.33 mV, while the circuit achieves an
output of 13.65 mV.
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Fig. 6. Comparison table.

This architecture supports features such as edge detection,
sharpening, embossing, and outlining. It achieves an energy
efficiency of 0.4 pJ/pixel, significantly lower than comparable
works, making it suitable for energy-constrained applications.
The programmability of weights offers flexibility in adapting
to various tasks.

The proposed architecture offers a highly energy-efficient
and programmable solution for real-time feature extraction,
achieving significant improvements in power consumption and
flexibility compared to existing methods [7] [8] [9] [10].

V. CONCLUSION

The proposed architecture presents a novel real-time
in-sensor time-domain convolution processor with a pro-
grammable kernel for feature extraction, offering significant
advancements in energy efficiency and computational flexibil-
ity. By utilizing a time-domain approach with a linear large-
signal voltage-to-current converter-based MAC cell and a 32-
phase subsampling PLL, the proposed architecture achieves
an energy efficiency of 0.4 pJ/pixel at a 300 MSps data
rate. The system’s programmability allows for a variety of
feature extraction tasks, including edge detection, sharpening,
embossing, and outlining. Compared to existing methods, the
proposed solution provides substantial improvements in power
consumption and adaptability, making it suitable for energy-
constrained applications such as IoT devices and smart vision
sensors.
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