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The increase in loT applications has made cameras ubiquitous in various fields
spanning from healthcare and autonomous vehicles to energy-constrained
applications like battery-powered wearables. This proliferation has created a need
for low-power camera modules for resource-constrained loT nodes/edge devices.
As the quality of images improves, these cameras produce a data deluge. Standard
digital cameras generate data in the order of ~Gbps, which requires compressing
the data within the camera module (e.g., SONY IMX 317) using lossy compression
schemes like MJPEG or H.264. For instance, a 4K 12fps video generates around
~1 Gbps of data, which can be compressed to ~50 Mbps using MJPEG. Compared
to H.264, MJPEG has lower latency and lower complexity, making it suitable for
real-time edge applications. Standard digital data compression suffers from 1) high
ADC energy consumption digitizing all samples, 2) Intermediate data storage
requirements, and 3) huge computation power to compress the data, making it less
desirable for edge cameras. The emergence of low-power camera imagers [1], such
as the STM VD55G1 with power consumption as low as 3-10mW, has increased
the demand for efficient compression techniques that minimize computational power
as shown in Fig.1(a) and (b).

Recent advancements in Time domain [2]-[7] and analog computation [8]-[14],
particularly in Al-hardware and In-sensor analytics, have motivated a shift towards
performing computations before digitization. This approach not only leverages the
low-power analog computing but also reduces ADC conversion energy, as only a
fraction of samples needs to be digitized, while eliminating the need for large
intermediate storage units. In Fig.1(c), [8], a switched-capacitor (SC) MAC(Multiply-
accumulate) approach has been demonstrated for direct analog-to-MJPEG (dAJC)
compression, offering better energy efficiency than its digital counterparts. However,
it suffers from process-dependent SC-Discrete Cosine Transform (DCT) weights,
power-hungry intermediate buffers, larger area, and speed limitations. In this work
as shown in Fig.1(d) and (e), those concerns are addressed through a mixed-signal
computing macro that utilizes Time-Domain weight and Integration for MAC and
division to enable dAJC (TD-dAJC). The TD-dAJC technique maps DCT weights to
time pulses extracted from a 32-Phase PLL(by XORing the selected phases),
making the weights PVT invariant. PVT-tolerance of the integrating MAC is achieved
using built-in current control, enhancing computed MAC accuracy. Unlike SCs, the
TD technique eliminates need for large capacitances and hence intermediate
power-hungry buffers, making the solution significantly lower area and lower power,
while achieving 20x faster operation speeds (5MSps [8] to 100MSps). Time pulse-
based computing makes TD-dAJC more suitable for lower-scaled technology nodes
compared to voltage or current-based analog techniques. This work achieves a 25x
improvement in energy per pixel compared to digital implementations and a 13x
improvement over previous SC-based implementation with an increased frame size
and frame rate as shown in Fig.1(f).

The unit TD-MAC circuit is shown in Fig. 2(a). A source-degenerated native
NMOS (M0) is used for linear voltage-to current (V-1) conversion, with Vth ~ 0 mV,
allowing an input swing of (Vdd/2) which helps maintain a high SNR as the signal
traverses through MAC stages. The output swing is matched to input swing (unity
gain), eliminating the need for buffers. The resistor(R) is adjusted to compensate for
process variations in the V-I conversion ratio and capacitor value. The input voltage
signal is converted from V-I using MO and mirrored using cascoded current mirror
and is integrated on a capacitance CMAC, for a specific time proportional to the
DCT weight. Switches S1 and SO are closed during the DCT weight time pulse,
leading to multiplication. M3 acts as a cascode device making the integration current
less sensitive to (VOUT). After multiplication, SO and S1 open, reducing static
current during idle phases. This process repeats for 8 clock cycles, accumulating 8
multiplications for 8 input samples and corresponding TD weights onto CMAC,
realizing an 8x1 MAC. Fig.2(a) (bottom) shows the Pseudo-Differential MAC units
(PD-MAC) for handling signed weights. Switches IPxDP/N adjust connections
based on the DCT weight's sign. For positive weights, the input (Vin+) goes to VINP,
while VINN connects to a DC common mode (CM) voltage (Vin-); for negative
weights, this is reversed. Fig.2(b) shows the time domain MAC computation
waveforms. For negative weights t3 and t4, V3 and V4 connect to VINN, with VINP
connected to the CM voltage. The VOUT waveform shows subtraction for these
weights. Fig.2(c) shows the system diagram with MJPEG blocks. The MJPEG
compression applies the 2D-DCT to 8x8 pixel blocks. After DCT, the computed 8x8
values are element-wise divided by a quantization matrix (Q50), which controls
compression ratio and image quality. Following quantization, the compressed

values are reordered in a zig-zag pattern to group lower-frequency components.
Fig.2(d) shows TD weights generation from the 32 phases of a 100MHz clock.
Selected phases are used by an XOR gate-based weight generator to create 7-
unique time pulses corresponding to each 7-unique value in DCT weight matrix.
These pulses are then directed to the MAC units for the DCT and Quantization
operation. values are element-wise divided by a quantization matrix (Q50), which
controls compression ratio and image quality. Following quantization, the
compressed values are reordered in a zig-zag pattern to group lower-frequency
components. Fig.2(d) shows TD weights generation from the 32 phases of a
100MHz clock. Selected phases are used by an XOR gate-based weight generator
to create 7-unique time pulses corresponding to each 7-unique value in DCT weight
matrix. These pulses are then directed to the MAC units for the DCT and
Quantization operation.

Fig.3 shows the circuit-diagram of the TD-dAJC, the input image processing setup
and the post-processing. The input image is divided into 8x8 pixel matrices, with
pixel values ranging from 0-255, mapped to the input voltage range. These voltages
are sent to the Vin+ port of the IC using an Arbitrary Waveform Generator (AWG)
as shown in Fig.3(a). The input sampling clock (CLK_AWG) is provided to the IC’s
clocking circuitry. The synchronizer block selects appropriate clock phases from the
32-phase clock (for Clock and Data Alignment) and sends them to the TD-DCT
weight generation block. This block generates the input sampling clocks, DCT
weight time pulses and Quantization(Q) time pulses, which are then buffered and
sent to the MAC units in the DCT computation core, and the Q-block as shown in
Fig.3(b). The DCT circuit operates in 2-stages, processing an 8x8 matrix of pixels
at a time as shown in Fig 3(c): the first stage(1D-DCT) consists of 8-PD-MAC units.
These units receive sampling clocks (IP1DP/N) and DCT weight pulses (tint1D),
computing MAC output for one column in 8-cycles at the output capacitor. In the 9th
cycle, these outputs are sampled to the next stage using 2D-DCT sampling clocks
(IP2DP/N). The second stage(2D-DCT) comprises eight such 1D-DCT units, with
DCT weight pulses (tint2D) provided at an 8x lower frequency. The DCT core
computes the 2D-DCT of an 8x8 image block in 72 cycles (9 cycles x 8 columns),
resetting the 1D-DCT block after each column. Following 2D-DCT, Quantization
occurs using in-situ Q-blocks during the off-phase of the 72nd cycle. This block
performs elementwise TD-division by sampling the 2D-DCT output to the input of a
TD-MAC unit cell that subtracts an appropriate ratio of the output from the same 2D-
DCT output capacitor based on the Q50 matrix as shown in Fig.3(e). This technique
reduces area by eliminating the need for an extra capacitor by reusing the same
2D-DCT integration capacitors. The quantized samples are serialized such that
significant samples are first followed by insignificant samples using a zig-zag
traversal block with an analog mux and a digital controller, which are then sent to
the output. The output samples, when sent to an off-chip comparator, activates the
ADC only for significant samples (typically 5-10%), while the Run-Length-Encoding
(RLE) is activated for insignificant samples, saving ADC energy by digitizing only
significant samples as shown in Fig.3(d).

The source degeneration resistors in the MAC units use a 5-bit binary
controllability to compensate for process variations. Fig.4(a) illustrates that the
integration current can be adjusted to restore the integrated values to nominal levels
in both fast and slow process corners. The rms noise current contributions of MOS
and resistor in the unit TD-MAC are used to determine the integrated rms noise
voltage at the 2D-DCT output after 72 cycles, which is ~20 pV for an output
capacitor of 200 fF. For an 8-bit ADC, the rms noise voltage must be below 50 pV
to achieve a target SNR of 16 dB. Thus, the design meets the noise requirements.
Utilizing a larger output capacitor (~200 fF) aid in achieving lower rms noise voltage
as shown in Fig.4(b). The capacitor sizing helps handle non-idealities(clock
feedthrough, charge injection) and (switching and KT/C) noise. In the measurement
setup (Fig.4(c)), a 4K RGB image is decomposed into 3-grayscale channels. The
pixels are serialized to analog voltages and sent into the IC using an AWG. The
compressed samples are captured and exported via an oscilloscope for analysis.
The reconstructed image is generated by applying inverse-DCT on the measured
analog samples in MATLAB and compared against the original image to verify
compression fidelity. The results in Fig.4(d) show PSNR values of 30.1 dB for the
MNIST dataset and 29.7 dB for 4K-checkerboard image.

Fig.5(a) highlights measurement results showing power consumption vs. VDD
plot. The PSNR variation vs threshold voltage in Fig.5(b), indicates the measured
optimum threshold value (Vth) for the ADC for best PSNR. Fig.5(c) shows input data
of a 4K image, computation duration, and 100 MSps compressed analog samples.
A zoomed in batch of 64 analog samples is also presented. The shmoo plot
(Fig.5(d)) shows the operability of the ASIC for different supply voltages at 100
MSps. Fig.6 compares the test chip performance with state-of-the-art JPEG
encoders [15]{17] and DCT compression circuits [18]-{19] exhibiting a data rate of
100 MSps (20x improvement), enabling a resolution of 4K 12fps/HD 30fps RGB,
and an energy efficiency of only 2pJ/pixel (25x improvement). Fig. 7 shows the die
micrograph, technology specs, and the power distribution of the IC.
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