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The increase in IoT applications has made cameras ubiquitous in various fields 
spanning from healthcare and autonomous vehicles to energy-constrained 
applications like battery-powered wearables. This proliferation has created a need 
for low-power camera modules for resource-constrained IoT nodes/edge devices. 
As the quality of images improves, these cameras produce a data deluge. Standard 
digital cameras generate data in the order of ~Gbps, which requires compressing 
the data within the camera module (e.g., SONY IMX 317) using lossy compression 
schemes like MJPEG or H.264. For instance, a 4K 12fps video generates around 
~1 Gbps of data, which can be compressed to ~50 Mbps using MJPEG. Compared 
to H.264, MJPEG has lower latency and lower complexity, making it suitable for 
real-time edge applications. Standard digital data compression suffers from 1) high 
ADC energy consumption digitizing all samples, 2) Intermediate data storage 
requirements, and 3) huge computation power to compress the data, making it less 
desirable for edge cameras. The emergence of low-power camera imagers [1], such 
as the STM VD55G1 with power consumption as low as 3-10mW, has increased 
the demand for efficient compression techniques that minimize computational power 
as shown in Fig.1(a) and (b). 
 Recent advancements in Time domain [2]-[7] and analog computation [8]-[14], 
particularly in AI-hardware and In-sensor analytics, have motivated a shift towards 
performing computations before digitization. This approach not only leverages the 
low-power analog computing but also reduces ADC conversion energy, as only a 
fraction of samples needs to be digitized, while eliminating the need for large 
intermediate storage units. In Fig.1(c), [8], a switched-capacitor (SC) MAC(Multiply-
accumulate) approach has been demonstrated for direct analog-to-MJPEG (dAJC) 
compression, offering better energy efficiency than its digital counterparts. However, 
it suffers from process-dependent SC-Discrete Cosine Transform (DCT) weights, 
power-hungry intermediate buffers, larger area, and speed limitations. In this work 
as shown in Fig.1(d) and (e), those concerns are addressed through a mixed-signal 
computing macro that utilizes Time-Domain weight and Integration for MAC and 
division to enable dAJC (TD-dAJC). The TD-dAJC technique maps DCT weights to 
time pulses extracted from a 32-Phase PLL(by XORing the selected phases), 
making the weights PVT invariant. PVT-tolerance of the integrating MAC is achieved 
using built-in current control, enhancing computed MAC accuracy. Unlike SCs, the 
TD technique eliminates need for large capacitances and hence intermediate 
power-hungry buffers, making the solution significantly lower area and lower power, 
while achieving 20x faster operation speeds (5MSps [8] to 100MSps). Time pulse-
based computing makes TD-dAJC more suitable for lower-scaled technology nodes 
compared to voltage or current-based analog techniques. This work achieves a 25x 
improvement in energy per pixel compared to digital implementations and a 13x 
improvement over previous SC-based implementation with an increased frame size 
and frame rate as shown in Fig.1(f).  
 The unit TD-MAC circuit is shown in Fig. 2(a). A source-degenerated native 
NMOS (M0) is used for linear voltage-to current (V-I) conversion, with Vth ~ 0 mV, 
allowing an input swing of (Vdd/2) which helps maintain a high SNR as the signal 
traverses through MAC stages. The output swing is matched to input swing (unity 
gain), eliminating the need for buffers. The resistor(R) is adjusted to compensate for 
process variations in the V-I conversion ratio and capacitor value. The input voltage 
signal is converted from V-I using M0 and mirrored using cascoded current mirror 
and is integrated on a capacitance CMAC, for a specific time proportional to the 
DCT weight. Switches S1 and S0 are closed during the DCT weight time pulse, 
leading to multiplication. M3 acts as a cascode device making the integration current 
less sensitive to (VOUT). After multiplication, S0 and S1 open, reducing static 
current during idle phases. This process repeats for 8 clock cycles, accumulating 8 
multiplications for 8 input samples and corresponding TD weights onto CMAC, 
realizing an 8x1 MAC. Fig.2(a) (bottom) shows the Pseudo-Differential MAC units 
(PD-MAC) for handling signed weights. Switches IPxDP/N adjust connections 
based on the DCT weight’s sign. For positive weights, the input (Vin+) goes to VINP, 
while VINN connects to a DC common mode (CM) voltage (Vin-); for negative 
weights, this is reversed. Fig.2(b) shows the time domain MAC computation 
waveforms. For negative weights t3 and t4, V3 and V4 connect to VINN, with VINP 
connected to the CM voltage. The VOUT waveform shows subtraction for these 
weights. Fig.2(c) shows the system diagram with MJPEG blocks. The MJPEG 
compression applies the 2D-DCT to 8x8 pixel blocks. After DCT, the computed 8x8 
values are element-wise divided by a quantization matrix (Q50), which controls 
compression ratio and image quality. Following quantization, the compressed 

values are reordered in a zig-zag pattern to group lower-frequency components.  
Fig.2(d) shows TD weights generation from the 32 phases of a 100MHz clock. 
Selected phases are used by an XOR gate-based weight generator to create 7-
unique time pulses corresponding to each 7-unique value in DCT weight matrix. 
These pulses are then directed to the MAC units for the DCT and Quantization 
operation. values are element-wise divided by a quantization matrix (Q50), which 
controls compression ratio and image quality. Following quantization, the 
compressed values are reordered in a zig-zag pattern to group lower-frequency 
components.  Fig.2(d) shows TD weights generation from the 32 phases of a 
100MHz clock. Selected phases are used by an XOR gate-based weight generator 
to create 7-unique time pulses corresponding to each 7-unique value in DCT weight 
matrix. These pulses are then directed to the MAC units for the DCT and 
Quantization operation. 
Fig.3 shows the circuit-diagram of the TD-dAJC, the input image processing setup 
and the post-processing. The input image is divided into 8x8 pixel matrices, with 
pixel values ranging from 0-255, mapped to the input voltage range. These voltages 
are sent to the Vin+ port of the IC using an Arbitrary Waveform Generator (AWG) 
as shown in Fig.3(a). The input sampling clock (CLK_AWG) is provided to the IC’s 
clocking circuitry. The synchronizer block selects appropriate clock phases from the 
32-phase clock (for Clock and Data Alignment) and sends them to the TD-DCT 
weight generation block. This block generates the input sampling clocks, DCT 
weight time pulses and Quantization(Q) time pulses, which are then buffered and 
sent to the MAC units in the DCT computation core, and the Q-block as shown in 
Fig.3(b). The DCT circuit operates in 2-stages, processing an 8x8 matrix of pixels 
at a time as shown in Fig 3(c): the first stage(1D-DCT) consists of 8-PD-MAC units. 
These units receive sampling clocks (IP1DP/N) and DCT weight pulses (tint1D), 
computing MAC output for one column in 8-cycles at the output capacitor. In the 9th 
cycle, these outputs are sampled to the next stage using 2D-DCT sampling clocks 
(IP2DP/N). The second stage(2D-DCT) comprises eight such 1D-DCT units, with 
DCT weight pulses (tint2D) provided at an 8x lower frequency. The DCT core 
computes the 2D-DCT of an 8x8 image block in 72 cycles (9 cycles x 8 columns), 
resetting the 1D-DCT block after each column.  Following 2D-DCT, Quantization 
occurs using in-situ Q-blocks during the off-phase of the 72nd cycle. This block 
performs elementwise TD-division by sampling the 2D-DCT output to the input of a 
TD-MAC unit cell that subtracts an appropriate ratio of the output from the same 2D-
DCT output capacitor based on the Q50 matrix as shown in Fig.3(e). This technique 
reduces area by eliminating the need for an extra capacitor by reusing the same 
2D-DCT integration capacitors. The quantized samples are serialized such that 
significant samples are first followed by insignificant samples using a zig-zag 
traversal block with an analog mux and a digital controller, which are then sent to 
the output. The output samples, when sent to an off-chip comparator, activates the 
ADC only for significant samples (typically 5-10%), while the Run-Length-Encoding 
(RLE) is activated for insignificant samples, saving ADC energy by digitizing only 
significant samples as shown in Fig.3(d). 
 The source degeneration resistors in the MAC units use a 5-bit binary 
controllability to compensate for process variations. Fig.4(a) illustrates that the 
integration current can be adjusted to restore the integrated values to nominal levels 
in both fast and slow process corners. The rms noise current contributions of MOS 
and resistor in the unit TD-MAC are used to determine the integrated rms noise 
voltage at the 2D-DCT output after 72 cycles, which is ~20 µV for an output 
capacitor of 200 fF. For an 8-bit ADC, the rms noise voltage must be below 50 µV 
to achieve a target SNR of 16 dB. Thus, the design meets the noise requirements. 
Utilizing a larger output capacitor (~200 fF) aid in achieving lower rms noise voltage 
as shown in Fig.4(b). The capacitor sizing helps handle non-idealities(clock 
feedthrough, charge injection) and (switching and KT/C) noise. In the measurement 
setup (Fig.4(c)), a 4K RGB image is decomposed into 3-grayscale channels. The 
pixels are serialized to analog voltages and sent into the IC using an AWG. The 
compressed samples are captured and exported via an oscilloscope for analysis. 
The reconstructed image is generated by applying inverse-DCT on the measured 
analog samples in MATLAB and compared against the original image to verify 
compression fidelity. The results in Fig.4(d) show PSNR values of 30.1 dB for the 
MNIST dataset and 29.7 dB for 4K-checkerboard image.  
 Fig.5(a) highlights measurement results showing power consumption vs. VDD 
plot. The PSNR variation vs threshold voltage in Fig.5(b), indicates the measured 
optimum threshold value (Vth) for the ADC for best PSNR. Fig.5(c) shows input data 
of a 4K image, computation duration, and 100 MSps compressed analog samples. 
A zoomed in batch of 64 analog samples is also presented. The shmoo plot 
(Fig.5(d)) shows the operability of the ASIC for different supply voltages at 100 
MSps. Fig.6 compares the test chip performance with state-of-the-art JPEG 
encoders [15]-[17] and DCT compression circuits [18]-[19] exhibiting a data rate of 
100 MSps (20x improvement), enabling a resolution of 4K 12fps/HD 30fps RGB, 
and an energy efficiency of only 2pJ/pixel (25x improvement). Fig. 7 shows the die 
micrograph, technology specs, and the power distribution of the IC. 
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Fig. 1. a) Motivation for Low Power Cameras. (b) Challenges in Digital cameras 
(c)Previous SC based solution (d) TD-dAJC overview (e) Key techniques in TD-dAJC. 
(f) Comparison with SOTA digital and SC-based implementations. 

 
Fig. 2: (a) TD-MAC and PD-MAC unit structure (b) MAC computation waveforms: 1D-DCT 
operation for 1 column of an 8x8 matrix (c) Block diagram outlining the TD-dAJC 
system. (d) Time Domain DCT matrix weights generator using a 32-phase PLL.   

 
Fig. 3. (a) Input image preprocessing (b) Clocking Circuitry (c) JPEG Compression 
circuit flow: the 2-stage DCT, Quantization and zig-zag traversal. (d) The off-chip ADC 
and RLE blocks for Sparsity-Aware ADC. (e) Quantization block operation. 

 
Fig. 4.(a) The process calibration analysis and % error reduction plots (b) The 
integrated rms noise voltage variation and Noise analysis (c) Measurement setup for 4k 
RGB image. (d) The measurement results for MNIST and Checkerboard images. 

 
Fig. 5.(a) Power consumption vs VDD at 50MHz and 100MHz. (b) PSNR variation vs 
ADC threshold voltage (c) Measurement waveforms showing compressed analog 
samples, zoomed in set of 64 analog samples for a 8x8 matrix (d) Shmoo Plot. 

 
Fig. 6. Comparison results with other state-of-the-art works. 
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Fig. 7 (a) Chip micrograph (b) Technology specs (c) Power distribution of the IC. 
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