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With the growing presence of body-worn cameras, head-mounted 
devices, and smart glasses in the era of Internet of Bodies (IoB) and 
Internet of Things (IoT), the demand for low-power, smaller form-
factor nodes for video sensing, computing, and communication with 
an ability for long term usage and easy integration on the body have 
been steadily increasing. As shown in Figure 1, conventional 
architectures employ front-end ADCs to convert all the sensed 
analog samples to digital bits (high data volume) and then compress 
it using DSP blocks before communication. However, such 
implementations consume high conversion energy [1] and generate 
huge data volumes that need significant energy for communicating 
over wireless modalities, like Wi-Fi (which consumes 50-400mW for 
HD video at 30fps), Bluetooth cannot yet transfer HD video), etc. 
Recent non-IC based video sensing solutions [2] uses pulse-width 
modulated backscatter system, where the analog sampled values 
are converted to pulse widths before modulation, using COTS 
components and backscatter communication, which cannot support 
higher bandwidth. Although it eliminates the need for front-end ADC, 
the solution has bigger form factor and can function with only smaller 
frame sizes (112 x 112 at 13 fps), while consuming significantly 
higher power (2.36 mW), which makes it unsuitable for high-speed 
video transmission around the human body. In recent years, Human 
Body Communication (HBC) has emerged as a promising low-power 
alternative for wireless communication, providing easy integration 
with the body and keeping the data secured close to the body. These 
sensor nodes are also required to get real time inference from the 
data received from the sensors for proper data analysis. This 
inferencing workload can be transferred to an On-Body processing 
hub which can be of higher power and larger form factor, hence, 
transferring the high-power processing from the sensors to the hub, 
enabling distributed processing of the signal. We present the first 
monolithic solution ATC-VSN (Analog Voltage to Time Converter 
Video Sensor Node) for ultra-low power energy harvester friendly 
VSNs, to achieve a low-power sensing and communication solution 
for transmitting video around the body. It exploits the time-domain 
data representation to eliminate the need for front-end ADC and 
utilizes the low power, wideband and secure HBC communication 
modality to transmit the pulse-width modulated analog signal through 
the human body to the On-Body processing hub where the real time 
inferencing can be realized exhibiting > 21.9 pJ/Sa  energy 
efficiency, which is orders of magnitude improvement over state of 
the art techniques [2]. For body worn cameras, a design space is 
explored where a direct ATC image sensor output followed by ultra-
low power (ULP) HBC channel using time domain samples can 
enable order of magnitude reduction of power consumption in body 
worn VSNs, making ATC-based VSNs an energy-efficient 
replacement for ADC less implementations. 

 ATC-VSN presents the first on-chip validation of Analog to Time 
Conversion and communication using pulse-width modulated analog 
values for ULP VSNs. Figure 2 shows the overall system architecture 
of the ATC chip, implemented in a 65nm CMOS process. To mimic 
the operation of analog camera(sensing), the gray scale image pixel 
values are read column/row wise and serially converted into analog 
voltage samples (within a voltage dynamic range), before feeding it 
to the IC using Arbitrary Waveform Generator (AWG). The input 
waveform is sampled using a high frequency clock generated using 
an on-chip Ring Oscillator (RO). Care is taken to maintain at least a 
4X oversampling for accurate reconstruction of the input in post 
processing. The RO is designed using a 7-stage single-ended 
current starved inverters, where the frequency can be controlled 
using the supply voltage or the bias of the pull-up or pull-down path 
of the current-starved inverters. The sampled input voltage is stored 
on a capacitor (=1pF), which is discharged using a constant current 
source, which can be either controlled by a 5-bit Scan Control or by 

the reference current (Iref). During high-speed 
operation, the discharge current (Idis) is used to 
tune the pulse width and achieve a larger 
dynamic range to represent the analog voltage 
values of pixels. The voltage across the 
discharging capacitor is compared with a 
reference voltage VTh, which is generated using 
a 5bit DAC, providing another knob to control 
the mapping of the analog voltages to pulse 
width. Hence, the resulting pulse-width of PWM 
signal depends on the sampled voltage across 
the capacitor, the discharge current and threshold voltage (VTh). 
Figure 2 (bottom) shows the circuit diagram and resulting waveforms. 

 To transmit the generated PWM waveform, the HBC driver 
couples the binary (digital-like) PWM signal to the human body for 
communication. Since the human body has a flat-frequency 
response in the Electro-Quasi-Static EQS region (~ up to 10’s of 
MHz) of operation [3], the time-domain characteristics (pulse-widths) 
of the waveform remain intact during transmission and only the 
amplitude of the signal gets attenuated due to the channel loss. 

     Figure 3 (top) presents the timing waveforms for an input sinusoid 
at 5MSps, depicting the variations in the pulse-widths for different 
voltage levels. The IC generates pulse-width modulated waveform 
corresponding to the analog voltage values (fed using AWG), which 
is coupled to the human body for communication using HBC driver. 
The PWM signal are captured using an oscilloscope and further 
processed in MATLAB. The pulse-widths of received PWM signal are 
measured and re-scaled back to voltage levels of the input. For 
performance evaluation, we have used standard image processing 
metrics, the Peak-Signal-to-Noise-Ratio (PSNR) and Structural 
Similarity Index (SSIM). Different sets of images are used for 
validating the functionality of the system. Figure 3 (bottom left) shows 
the dependency of generated PWM signal for various input data 
rates, illustrating the dynamic operating range of the input and output 
signals. Figure 3 (bottom right) shows that high frequency operation 
reduces the dynamic range of pulse-widths as well as it reduces the 
operable input voltage range. However, by proper calibration of the 
discharge current Idis  and the comparator threshold Vth, the input 
range can be further extended for operating effectively at higher 
frequencies.  

The entire ATC-VSN node occupies an area of 375 μm × 100 μm. 
Figure 4 (top left) shows the power consumption for different input 
data rates at varying supplies. The IC consumes 0.64μW- 110μW for 
sample rate varying from 0.1- 5 MSps, which is > 100X lower than 
other reported works in the literature. Figure 4 (top middle) presents 
the shmoo plot which depicts the operability of the IC for various 
supplies and data rates. Figure 4 (top right) shows the optimal VDD 
to be supplied for efficient functioning of the IC for various data rates. 
ATC-VSN exhibits a 21.9 pJ/Sample energy efficiency while 
operating at 5MSps and 0.75V core VDD supply. Figure 4 (bottom) 
evaluates the performance of the IC for different sets of images using 
PSNR and SSIM metrics. Checkerboard images exhibit better 
reconstruction qualities due to higher dynamic range at the input. We 
chose > 0.85 SSIM , user perception metric, as the acceptable image 
quality for our work, which is considered a standard for several image 
processing applications. Figure 5 (top) shows the input and 
reconstructed images and test-chip specifications. Reconstructed 
test images exhibits >22 dB PSNR and > 0.93 SSIM values. Figure 
5(bottom) shows the off-chip offline pre and post processing done in 
MATLAB, demonstrating the entire test flow.  

Figure 6, shows the measurement setup and compares the test chip 
performance with state-of-the-art communication ICs exhibiting the 
lowest energy efficiency of 21pJ/Sa and highest dynamic range of 
300mV at 5MSps video communication compared to the 
implementation in [2] due to maximally linear ATC, and ultra-low 
power flat-band EQS-HBC Communication link. 
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Fig 1. (Top left) Motivation for ATC-VSN. (Middle) Target application for Body 
worn VSNs (Top right) Bottlenecks in Low power communication: ADC and 
data communication energy. (Bottom) Challenges and Our contributions.  

 

 

Fig 2. (Top) Overall architecture of the ADC-less Image and Reconstruction IC. 
Circuit diagram (2.1.a) of 7-Stage Current Starved RO (2.1.b) Static Comparator 
(Bottom) The detailed circuit diagram of the IC along with the waveforms at 
various nodes. 

. 

Fig 3. (Top) Observed voltage waveforms: Input signal and the generated 
PWM signal. (Bottom) Shows the relation between the Input voltage and the 
Pulse width along with many-to-many mapping of Input Voltage to Pulse 
width for various Clock rates. 

 

 

Fig 4. (Top) Shows the power measurement plots for various sample rates, 
operable region of the ATC-VSN and energy efficiency plots. (Bottom) 
Shows the PSNR and SSIM plots for various clock rates for House and 
Checkerboard Image - Setup shown in Figure 5. 

 

 

Fig 5. (Top) The input and the reconstructed image along with the test chip 
specifications. (Bottom) The overall system used for analyzing the ATC-VSN 
non-idealities. 

 

 

Fig 6. (Top) Test PCB with provisions for electrodes to perform HBC testing 
and overall, the measurement setup. (Bottom) Comparison results with other 
state-of-the-art ICs. 
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Fig 4. (Top) Shows the power measurement plots for various sample rates, operable region 

of the ATC-VSN and energy efficiency plots. (Bottom) The PSNR and SSIM plots for various 
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