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Side channel analysis (SCA) is a low time-complexity technique of 
extracting secret information from a cryptographic IC, which calls for 
low-overhead generic resilience techniques. While architectural and 
logical countermeasures [1] are explored widely, recently generic 
circuit-level countermeasures (e.g. voltage regulators [2-4], power 
balancing [5] or through a switched capacitor current equalizer [6], 
using an on-chip machine learning model [7, 8], and signature 
attenuation [9, 10]) have gained prominence due to low overheads 
and being architecture agnostic. Typical digital cryptographic core 
has two controllable ports, i.e., supply and clock. Most of the circuit-
level/physical layer countermeasures have primarily utilized the 
power port to reduce the side-channel leakage signal-to-noise ratio 
(SNR). Related to the clocking port, well-studied system-level clock 
frequency randomization techniques have been deemed ineffective 
with post-processing. However, the impact of circuit-level changes in 
the clocking circuitry and its device-circuit-system level interactions 
with inherent properties of digital circuits and its impact on SCA 
leakage remains unexplored. Another key requirement for the 
countermeasure is to make it fully synthesizable for scalability across 
different technology nodes. This work, for the first time, exploits the 
inherent variability of CMOS digital circuits by providing a controlled 
slewed clock and demonstrates an extremely low-overhead 
technique for immunity against power and EM SCA, which can be 
easily combined with any of the supply port countermeasures for 
multiplicative effect on SCA resilience. 
While CMOS digital circuits are abstracted logically in terms of their 
functionality guaranteed up to the fmax, their power consumption 
profile is a strong function of circuit-level changes in the clocking 
network. Controlled clock-slew results in the following effects: 1) 
register internal clock slew propagation leading to 2 important 
variability in digital circuits, namely 2) duty cycle distortion, and 3) 
slew-dependent latch delay variability (hence flip-flop (FF) toggle 
point variability). In presence of the controlled clock slew, 2 important 
process dependent factors, namely 4) location-dependent variability 
in Elmore delay and 5) intra-die process variation (device mismatch) 
also get amplified increasing 1-3 which increases the SCA security 
further. Additionally, system-level clock randomization is now more 
effective in presence of the slewed clock as the post-processing 
techniques become ineffective when the sharp edges are absent. 
The effect of the clock slew is gradually reduced as it passes through 
internal buffer stages of FF (Fig. 1, Effect 1), but not fully suppressed 
(bottom right). Slews S1, S2 present at the master and slave stages 
of FF determine its toggle points (Fig. 1, bottom), making the power 
profile a complex function of the input and slew, instead of just the 
input. Note that S1 and S2 are internal to register and hence do not 
drive clock of different parts of the designs ensuring functional 
correctness. Duty cycle gets distorted (Fig. 2, Effect 2) based on the 
rise time (tr), especially for high input slew (low slope) cases with less 
than full-scale clock swing, which in turn changes the time between 
different leakage points in the power supply, making it harder to 
attack. Providing slewed clock to FF makes latching time (Effect 3) a 
function of tr as well as the input since tlatch_HL  tlatch_LH. Slewed clock 
affects the Elmore delay (Effect 4) which further increases 
cumulative slewness at clocks of different FFs, enhancing SCA 
security. Combinational delay does not vary with slew (Fig. 2, bottom 
left) ensuring no set-up violation in the design. Large slew (very small 
slope) could lead to hold time increase; however, clock-q delay 
increases with respect to slew as well ensuring significant positive 
slack (Fig. 2, bottom middle). Due to this, we observe no functional 
failure in the IC. Performance can be impacted only by <1% (up to 
CL=0.87pF) to <10% (CL=1pF) in terms of fmax, if clock buffer is not 
able to drive the clock port and does not reach toggle point due to 
extra capacitance in this design. However, this is not fundamental to 
this SCA resilient technique. We can mitigate the performance 
degradation by overdesigning clock buffer or by increasing the 
driving capability of the same buffer at the cost of power overhead. 
This performance trade-off benefits in SCA resilience (<1% fmax 
degradation, but 1800x improvement in MTD). Fig. 2 (bottom right) 
shows ~10x increase in variance of power trace of clock-slewed AES 

design (red) with respect to unprotected 
(green) near 14th cycle posedge (empirically 
highest leakage point) which confirms the 
basis of SCA resilience.  
The IC consists of a parallel AES256 with 
slewed clock buffer and clock randomization 
circuit as shown in Fig. 3. HD between 13th and 14th rounds on state 
register is used as the attack point. Trigger is used for the trace 
alignment. Slewed clocking buffer provides the tunability to load the 
clock with different capacitors ranging from 100fF to 5pF (Fig. 3). We 
utilize a LFSR (seeded by an external TRNG for high randomness) 
which randomly selects between capacitors for enhanced security 
(Fig. 3, top right). A tunable ring oscillator is designed for the clock 
randomization (Fig. 3, bottom left). The number of stages is 
determined by the LFSR output to provide clock frequency 
randomization. Coarse frequency change is performed using a 3-
stage frequency divider (Fig. 3, bottom left). Time domain waveform 
of the 14th cycle of AES256 for a set of 6 different plaintexts are 
shown for different configurations (Fig. 4, top). Clearly, power profile 
at time point t, (P(t)) is data-dependent (x(t)) which is the basis of 
SCA (Hamming Distance (HD) model-based SCA detects dP/dx) in 
absence of slewed clock. Due to clock slew, power consumption 
(P’(t) =𝒇(𝒙(𝒕), 𝒕 − 𝑫(𝒔))) is dependent on slew (s)-related delay D(s), 
which is a non-linear function of the input data (x(t)) as shown in Fig 
4. Significant SCA resilience could be achieved if dP'/dx≪dP'/dD. 
Clock randomization (CR) is combined with the clock slew for 
enhanced security. Prior CR-based countermeasures with sharp 
clock were deemed ineffective as the traces can be aligned in time-
domain using post-processing or can be bandpass filtered for 
frequency-domain attack. With slewed clock, 1) power profile gets 
smeared in time-domain creating Inter-Symbol Interference (ISI) and 
2) determining randomized clock edge variations is hard to 
distinguish from power profile with slewed randomized clock, making 
time-realignment attacks extremely difficult. Leaky frequency 
components (~900MHz is most leaky as shown in measurements, 
Fig. 4, 5) could not be determined with 20M traces rendering 
frequency domain post-processing-based attacks on combined clock 
randomized slewed AES (CRSL-AES) extremely difficult. Entire 
circuit is completely synthesizable and fully placed and routed using 
commercial tools. Capacitors are implemented using DCAP cell from 
standard library.  
Correlational power analysis (CPA) attack is explored both in case 
of regular clock, slewed clock, and for the combined countermeasure 
with clock randomization. AES with slewed clock (SL-AES) provides 
>100x enhanced SCA security (MTD = 1.2M) with respect to the 
unprotected core (MTD = 11K). CR-AES alone provides SCA 
security against CPA attack with an MTD > 270K, however, correct 
key is revealed within 70K traces utilizing a bandpass filter. Time and 
frequency domain CPA attack performed on CRSL-AES could not 
reveal the correct key byte with >20M traces (Fig. 5). Frequency 
domain CPA is performed throughout the entire frequency spectrum 
of the power traces which confirms that leaky component cannot be 
determined in entire spectrum with 20M traces. The cumulative effect 
(CPA MTD>20M (1,800x) for CRSL-AES) is even more than 
multiplicative effect of the individual techniques (CPA MTD for SL-
AES: 1.2M (109x), CR-AES: 70K (6.4x)). Correlational EM Analysis 
(CEMA) attack fails to extract correct key even after 20M traces. 
There is no leakage observed using time-domain TVLA until 6M 
traces using fixed vs random |t|-test (Fig. 5). We observe that the 
power consumption is increased owing to the short-circuit current as 
both PMOS and NMOS common turn on time increases (Fig. 5), 
however this is <5%, the lowest reported amongst the 
countermeasures till date. Area overhead (11%) is one of the lowest 
compared to existing state-of-the-art countermeasures. Any 
capacitance beyond 870fF is not used to ensure high performance.  
A detailed comparison along with current overhead is presented in 
the table of Fig. 6. This design, for the first time, focuses on circuit-
level effects of the clock port and its interaction with inherent clock-
slew dependent variability of CMOS digital circuits that can be easily 
combined with existing and emerging power-port countermeasures 
for a multiplicative effect on SCA resilience. 
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Fig. 1. Motivation and overview of the design principles for slewed clocking circuit to achieve 
both power and EM SCA resilience. Effect 1 (bottom figures) shows the clock slew propagates 
through the register’s internal buffer. Change of slew through the buffers is shown in bottom 
right. 

Fig. 2. Impact of the clock slew namely uneven duty cycle distortion (effect 2), slew dependent 
latch delay (effect 3), amplified distribution delay (effect 4), probability of functional correctness 
along with design considerations are shown. No setup/hold violation is ensured.  

Fig. 3. System architecture showing the circuit details of the slewed clock AES (SL-AES), clock 
randomized AES (CR-AES), and the combined countermeasure clock randomized slewed 
AES (CRSL-AES). CRSL-AES is hard to be broken using SCA and more effective than CR-
AES and SL-AES combined. 

 
Fig. 4. Measurement Results: Power SCA (standard and post-processing based) 
demonstrating the resiliency of unprotected AES, SL-AES and CR-AES. SL-AES shows an 
MTD of 1.2M traces compared to 11K for the unprotected AES implementation.  

 
Fig. 5. Measurement Results: Standalone CR-AES is broken with 70K traces using band pass filtering. 
Time and Frequency Domain CPA/CEMA attack and TVLA on the unprotected vs. CRSL-AES256. 
CRSL-AES shows an MTD of >20M traces, which is >1800x improvement over the unprotected AES.  
TVLA shows 40000x improvement over unprotected design.  

 
Fig. 6. Protection summary, current overhead, and comparison with State-of-the-Art 
countermeasures. 
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MTD

Power
>20M 

(>1,800X)

>1.2B

1B a

(>40,000x)

>1.25B >7M 1.5M >1B 8M >100K >10M 255K

(>120,000x) (>178,000x) (14000X) (446X) (>125,000x) (4210x) (20x) (2500x) (120x)

EM
>20M 

(>1,800X)

>1.2B >1.25B NA NA >1B 6.8M

- - -
(>60,000x) (>138,888x) NA (>83,333x) (136x)

TVLA

Power
> 6M 

(>40,000X) 
937,500x

>27,000x a
290,000x NA NA - - - - -

EM
>6M 

(>40,000X)
277,780x 70,000x NA NA - - - - -

Attack Mode Power/EM Power/EM Power/EM Power/EM Power Power Power/EM Power/EM Power Power Power

aNot reported separately for power and EM, bDoes not include MIM Cap area, cDoes not include regulator area/power, dAll the experiments are done with <870fF capacitor with <1% performance overhead. 11% power

overhead is from clock driver+AES w.r.t. unprotected AES with standard clock driver. We do not include this design-specific overhead as power overhead of AES because this is not fundamental to the SCA resiliency

technique. Performance degradation can be mitigated by overdesign or increasing buffer’s driving capability at the cost of power overhead.
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