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Abstract. Optical properties of fractal nano-structured composite materials, such
as fractal aggregates of metal colloids and metal-dielectric films near the percolation
threshold, are reviewed. It is shown that the fractal geometry results in localization
of plasmon excitations in the “hot” spots, where the local field can exceed the applied
field by several orders of magnitude. The high local fields of the localized fractal
modes result in dramatic enhancement of optical responses, making feasible the surface-
enhanced spectroscopy of single molecules and nanocrystals.

MODELING IRREGULAR STRUCTURES OF
RANDOM MEDIA

Much of physics is dominated by questions of symmetry. This is especially ob-
vious in condensed matter physics where translational symmetry dominates both
concept and language. And with justification; the elegance of symmetry arguments
is so appealing that it tends to push aside many other issues. Yet there is a host
of phenomena whose symmetries, if they exist at all, are hidden: the dynamics
of a pile of sand, the growth through accretion of clusters such as soot particles
and algal colonies, thin film growth and surface etching, the structures of cermets,
porous media, globular polymers and proteins, randomly branched objects, and
so on. These have always been items of fascination. However, their complexity
had, in the past, forestalled the same level of deep dynamical and structural un-
derstanding as for crystals. All that is changing; interest in “disordered” systems
is growing rapidly owing to the advent of powerful and plentiful computational
resources which have dragged in their wake the theoretical innovations needed to
truly understand these phenomena. Among the resulting insights are, ironically,
the discovery of new symmetries: a seemingly unsymmetrical cluster, for example,
might, possess dilational symmetry — when portions of it are magnified or reduced
they look structurally similar to the whole. The fascination with non-linear systems
has even led to the insight that order is often a parametric accident of chaos.
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[image: image2.png]Clearly a comprehensive overview of all of the current physics being pursued on
random media would be vast. We will, therefore, restrict our attention to optics of
random media, and specifically the optics of fractals [1]). This is because by invoking
dilational symmetry a number of robust, and somewhat unexpected, phenomena
are encountered.

A great deal of the progress in the physics of random media arose because of
breakthroughs in modeling the irregular structures of complex disordered systems.
Among the many descriptions proposed, two of the most powerful rely on concepts
of fractals, encompassing self-similar (or self-affine) structures [2] and percolation
[3]. These two models are capable of satisfactorily simulating a large class of the
random media referred to above.

A fractal cluster with radius of gyration R, consisting of N identical particles
would obey a scaling law of the form N = (R/Ro)?, where D, called the fractal
Hausdorff dimension is, in general, fractional and, for a true fractal, less than the
dimension of the embedding space d. Ry is a constant which expresses the scale in
terms of which the description of the cluster is framed. Its minimum value, for a
cluster composed of particles, is of the order of the minimum separation between
particles.

Fractals are self-similar or self-affine. A self-similar cluster is characterized by a
single value of D and scales equivalently in all three dimensions. In contrast, self-
affine structures have different scaling properties in the (z,y) plane from that in the
direction, z, normal to that plane. Deposited films, the roughness of etched surfaces,
and self-similar fractals projected onto a plane are often self-affine structures.

Percolation theory (which is closely related to the concept of fractals [1,3]) is par-
ticularly useful in describing random systems that form as a result of the growth
to eventual coalescence of one phase in a two-phase system, as in metal-dielectric
“semicontinuous” films. Percolation represents the simplest description of a disor-
dered system. A percolation System can be thought of as a set of clusters formed by
connecting a fraction of the vertices of an appropriate lattice with “bonds”. When
the fraction of the total number of possible bonds p is less than a critical value Des
only finite clusters exist; at P = p. there appears an “infinite” cluster spanning the
entire sample. The mean size of the finite clusters is characterized by a correlation
length £ that increases as £ ~ [p ~ p.|™ when p approaches Pc- In many cases the
finite clusters are fractals for r < . :

The most intriguing discovery involving fractals is that dynamical excitations of
fractals are, in general, localized, while for compact systems, they are, in general,
delocalized over the body of the excited object. This is because all physical exci-
tations of a translationally invariant crystal: phonons, polaritons, magnons, etc.,
can be represented by running plane waves, i.e. by Fourier harmonics, which are
eigenfunctions of the shift operator, V, representing the translational invariance
symmetry. However, running waves are not eigenfunctions of the dilation symme-
try operator, and fractals are not translationally invariant. Hence, in many cases,
they cannot transmit propagating running waves.

The strongest scattering occurs from inhomogeneities whose dimensions are of
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the same scale as the wavelength of the dynamical excitations. Anderson localiza-
tion, for example, may result from coherent multiple scattering in random systems
with uncorrelated disorder. A fractal, although in some sense disordered, is, nev-
ertheless, correlated on all length scales lying between the size of its constituent
particles to one corresponding to the dimensions of the fractal. Fractals are unique
in that, because of their scale-invariance, there is no characteristic length for the
inhomogeneities. Instead, inhomogeneities of all sizes (raging between the afore-
mentioned lower and upper limits) are present in the fractal. Hence, whatever
the wavelength of excitation there will always be fluctuations of the requisite size,
resulting in strong scattering that can lead to localization.

Localization of excitations in fractals was first predicted for acoustic excitations
{4] and demonstrated in an ingenious experiment by Sapoval et al. on a fractal
drum-head [4], and for optical excitations by Stockman and Shalaev [5]- Recently,
Stockman et al. [6], showed that localization in fractals is inhomogeneous in the
sense that eigenmodes with very different coherence radii can coexist at the same
wavelength; at frequencies close to the resonance of individual particles even chaotic
behavior of the eigenmodes can occur.

What all of this means is that for a fractal object the optically excited distribution
of the resonant electrical polarization will not be homogeneous on the fractal but
concentrated in “hot spots” much smaller in size than the size of the fractal and
often much smaller than the wavelength. When sufficiently concentrated, the large
electromagnetic fields in the hot spots can result in very large enhancements of
optical nonlinearities and in other effects, such as photochemistry that is usually
associated with high fields.

Nowadays there is a growing interest in spectroscopy of single molecules and
nanocrystals (e.g., quantum dots). The signals in this case are obviously very small
and need to be enhanced. This is especially important when performing nonlinear
spectroscopy of single molecules and nanocrystals. The nonlinear optics has a much
larger arsenal of means to learn about molecules and other quantum-mechanical
objects than its linear counterpart. Since nonlinear optical signals are proportional
to the local fields raised to the power greater than one the enhancement can be much
larger for nonlinear processes than for linear ones. Ideally, this giant enhancement
can compensate for very small nonlinear optical cross-section and make feasible the
nonlinear spectroscopy of single molecules.

Below we first consider local-field enhancement in nanometer-sized metal parti-
cles and then the new and unique features of the enhancement that are opened up
in fractal composites of metal nanoparticles.

LOCAL-FIELD ENHANCEMENT IN NANO-SPHERES
AND NANO-SPHEROIDS

In this section we consider the local-field enhancement that can be obtained on
the surface of individual metal nanoparticles, which are much smaller that the
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[image: image3.png]wavelength of the incident electromagnetic wave. In such particles, the excitation
of free electrons (plasmons) can result in large local fields, much larger than the
applied optical field. The plasmon oscillations (also referred to as surface plas-
mons) are especially strong at the resonant excitation. This plasmon resonance is
associated with collective electron oscillations (surface plasmons). The displace-
ment of free electrons from their equilibrium position in a small particle results in
a uncompensated charge on the surface of the particle, leading to its polarization;
this polarization, in turn, results in a restoring force that causes electron oscilla-
tions. These plasmon oscillations can lead to the large local fields near the surface
of the metal particle so that a molecule adsorbed on the metal surface can produce
“surface-enhanced” optical signals. Possible shifts of the molecule energy levels
and creation of new resonances due, for example, of charge transfer mechanism
will not be considered here; this enhancement (referred sometimes to as chemical
enhancement) is not universal and can occur only for special molecules. In con-
trast, the electromagnetic enhancement is universal and takes places regardless of
the possible “chemical” renormalization of the molecule cross-section.

So, the metal particles we are concerned with are much smaller than the wave-
length and have sizes in the range between 5 nm and 50 nm. The field enhancement,
in this case, can be the largest. In bigger particles, the retardation effects become
important that spoil the quality-factor of the plasmon resonance; in smaller par-
ticles, electron scattering at the metal surface increases the resonance width and
thus decreases the quality-factor.

We note that since the plasmon resonance is due to the surface charge and thus
it is of the geometrical nature and depends only on the shape of a particle. For
spheres, for example, with the radii in the range roughly between 5 nm and 50 nm,
neither the resonance frequency nor its width depend on the particle size.

The optical responses of metals can, in many cases, be well approximated with
the Drude model. For a Drude metal, the dielectric constant is given by

1)

where dc conductivity o(0) is related to plasma frequency wp and relaxation time
7 by 0(0) = w?r/(4r), and ¢ is contribution to € due to interband electron tran-
sitions. (Note that for the relaxation rate of collective plasmon oscillation 1 /7 the
following different notations 1/7 = w, = T' are interchangeably used in the lit-
erature and in this paper.) The Drude model describes well the optical response
associated with free electrons in metals; through the term €0, it also takes into
account the contribution to the dielectric constant due to interband electron tran-
sitions. The real and imaginary parts of the Drude dielectric function can be also
represented as
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where A/A; = (wr)™ and A/, = (w,/w).

We consider below spheroids, where two out of three semiaxes (a,b, and c) are
equal: b = c. In the case of a sphere, all the semiaxes are the same, a = b = c. In
prolate and oblate spheroids, we have @ > b = c and a < b = ¢, respectively. As
well known the largest local fields can be obtained at the tip of sharp structures;
therefore, we focus below on cigar-shaped spheroids, with a > b, and pancake-
shaped spheroids, with @ < . We also assume that the field is polarized along
the long axis of a spheroid, so that the largest field enhancement can be obtained.
Then the polarizability of a spheroid can be written as
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where p is a depolarization factor, V is the volume of a nano-spheroid and the host
medium was chosen, for simplicity, to be a vacuum. For a sphere, p = 1/3 and
V = (47 /3)R3 so that
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where R is the radius of the sphere.  For cigar-shaped spheroids, p =~
(b/a)*[In(v/2a/b) — 1]. For all realistic aspect ratios A = a/b, the depolarization
factor can be estimated as p ~ (A)72. [Really, for A = 3, A = 10, and A = 100,
for example, we have pA% =~ 0.4, 1.6, and 4, respectively. It is also clear that A
cannot be larger than 100 for particles that have the larger-axis’ size on the scale
of 10 nm; in fact, since the quality factor decreases when any of the spheroid’s axes
is outside the range of 5-50 nm (see above), the aspect ratio for spheroids with
a high-quality-resonance is limited roughly to 10.] For pancake-shaped spheroids,
we have p & (w/4)A~!, where the aspect ratio for oblate spheroids is defined as
A = bja. It is important to note that at the same aspect ratio A, the depolar-
ization factor in the quasi-one-dimensional “cigars” (or needles) is much smaller
than in the quasi-two-dimensional pancakes (or disks). This fact has important
consequences for the field enhancement as discussed below.

Now we consider the field enhancement that can be obtained in nano-sized
spheres and spheroids. The largest field enhancement can be obtain at the plasmon
resonance when the real part of the denominator in {4) becomes zero, i.e., at

d=¢(\)=1-1/p. (6)

According to the Drude model (2}, the resonant frequency at A < A, is given by
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[image: image4.png]A =X (1/p+ € — 1)V2. (7)

(For silver and gold, for example, \, ~ 60pm and 20um, respectively.) For a sphere,
€, = —2; for spheroids with a large aspect ratio, A > 1, the depolarization factor
issmall, p < 1, so that €, ~ —1/p and A, =~ »//P- The local-field enhancement
Ey/Ey at the surface of spheres and at the sharp edges of spheroids is estimated by

the resonance quality factor QJ; as

FE,
MM ~ Qs ~ (A1 /V)a(A,), (8)

where a(,) is the resonant value of the polarizability.
For a sphere the local-field enhancement is given by (see (5) and (8))
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For different noble metals, the magnitudes of Q; are on the order of 10 to 100 (for
silver, it is the largest, about 50 at the resonant frequency A. ~ 400 nm).

For a spheroid, according to (4) and (8), the resonant enhancement is estimated
as

(10)

where for the second estimate we used (2), (3), and (7). Thus, the local-field
enhancement is estimated as

e Ar
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for the cigar-shaped spheroids, and as
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for the pancake-shaped spheroids.

One can see that the local-field enhancement in spheroids can significantly exceed
that in spheres, especially, in cigar-shaped nano-structures, where it exceeds the
quality-factor in spheres roughly by the aspect ratio A. These larger values for the
field-enhancement in spheroids are achieved at the resonant frequencies, €'(},) ~
—1/p, which are significantly shifted toward the infrared part of the spectrum,
where ¢ are negative and large in magnitude so that the resonance can occur at
very small values of the depolarization factor p.

Thus, to obtain a strong field enhancement at a particular €m<m_gm&r A one can
use a nano-spheroid with the aspect ration such that €(\) = —1 /p+1= ~1/p, for
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small p. However, it is not easy, in general, to fabricate a nano-spheroid with a given
aspect ratio. Besides, for spectroscopic purposes, we need to have enhancement in
a broad spectral range, so that a spectroscopic signal from any optical transition
of arbitrary molecule could be enhanced.

An alternative possibility is to use structures formed by spherical nano-particles
(colloids, for example), which are typically much easier to make. For example, it
is clear that a straight chain of N spheres should have roughly the same optical
resonances as a prolate spheroid with the aspect ratio A = N. By taking different
configurations of colloids one can obtain resonances (and thus enhancement) at
different optical frequencies that depend on the geometry of the whole structure.
This approach, however, has the same drawback: there are only few frequencies at
which the compact structure of nanospheres resonates. This is because the dipole-
dipole interactions between particles arranged into the “conventional” geometry is
long-range so that a compact system of particles always resonates as a whole at the
frequencies depending on the object’s external surface. Really, if we integrate the
dipole near-field, oc 1/73, in the conventional 3d space, we obtain the logarithmic
divergency; this indicates that the system resonates as a whole. For example, close-
packed particles within a spherical volume have roughly the same optical response
as the sphere within which the particles are packed, so that all the resonances are
grouped near ), such that () = —2.

Thus, in both cases of spheroids and compact structures of colloidal particles,
large enhancement can be achieved only at few frequencies depending on the ge-
ometry of the structure. For spectroscopic studies, however, it is very important to
have a broad-band enhancement. In other words, we would like to have the local-
field enhancement as strong as in spheroids, but within a broad spectral range,
including the visible and infra-red parts of the spectrum, so that optical signal
from any molecular transition could be enhanced and probed spectroscopically.

In that sense, fractal nano-structures considered below seem to be the materials
of choice. Because of the scale-invariant geometry of fractals, optical excitations
are not spread over the whole structure but rather tend to be localized in small,
nm-sized areas, which have very different local geometries and thus resonate at
different frequencies. As a result, fractals provide enhancement within unusually
large spectral interval, from the near-UV to the far-infrared. Below we consider two
important classes of fractal nano-structures, fractal aggregates of colloidal particles
and metal-dielectric films near the percolation threshold.

LOCAL-FIELD ENHANCED OPTICAL RESPONSES IN
FRACTAL AGGREGATES

An electron microscope image of a typical fractal aggregate of colloidal Ag parti-
cles is shown in Fig. la. The aggregate’s fractal dimension, D = 1.78, suggests that
it was formed through cluster-cluster aggregation [2], a process that can be read-
ily simulated numerically. Cluster-cluster aggregates are formed [2] when initially
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[image: image5.png]FIGURE 1. Electron Emnnomz%r_ of a fractal colloid aggregate. Voids corresponding to all
length scales are present, the minimum being the size of a single particle, the maximum one the
size of the entire cluster. This is a graphic illustration of the statistical self-similarity and hence
the fractal nature of the cluster. The radii of the individual particles is ~ 10nm, while the size of
the cluster is ~ 1um.

isolated nanoparticles diffuse randomly in solution adhering to other nanoparticles
they encounter. The resulting clusters, of all size, themselves diffuse and aggregate.
The process never ends but growth slows dramatically when all of the particles are
subsumed in very large, slowly-diffusing and infrequently colliding clusters.

When the constituent particles of a fractal cluster are irradiated by light of the
amplitude E(, oscillating dipole moments d; are induced in them which interact
strongly through dipolar forces leading to the formation of collective optical modes.
(Note that throughout the text we interchangeably use for the external field am-
plitude the notations Ey and E(®.) The coupled-dipole equations (CDE) for the
induced dipoles acquire the following form [1]:

dia=ao | EQ + 3 Wiapd;p | - (13)
J#i

In the quasi-static dipole approximation, for example, the interaction operator W

between the dipoles has the form

Wijap = (ia|W|jB) = Awﬂ@.b?..u - mnmﬁ.w.v /75 (14)

where r; is the radius-vector of the ith monomer and r;; = r; — r;. The Greek
indices denote Cartesian components of vectors and should not be confused with
the polarizability oy of spherical particles forming the aggregate.

Since W;;q5 is independent of the frequency w in the quasi-static approxima-
tion, the spectral dependence of solutions to (13) enters only through ap(w). For
convenience, we introduce the variable
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Z(w) = 1/ ap(w) = —[X(w) + i5{w)]. (15)
Using (5), we obtain

X = —Releg '] = ~R*[1+3(¢ —1)/]e — 1{3, (16)

§ = —Imfoyt] = 3R3" /le — 12 (17)

The variable X indicates the proximity of w to the resonance of an individual
particle, occurring for a spherical particle at € = —2 (that corresponds to X = 0),
and it plays the role of a frequency parameter; § characterizes dielectric losses.
The resonance quality-factor is proportional to §~!. At the resonance of a spherical
particle when € = —2, we have (R3§)™! = (3/2)|€/€"|. However, for collective
resonances of an ensemble of particles occurring at [¢'] > 1 (see below), we have
(R®3)™" =~ |e|?/(3¢€"), which increases with the wavelength. One can find X () and
§(A) for any material using theoretical or experimental data for ¢(A) and formulas
(16)-(17).

We can write (13) in matrix form. The Cartesian components of 3-dimensional
vectors d; and E;, are given by (ia|d) = d; , and (ia|Ey,.) = E®. The last equality
follows from the assumption that the incident field is uniform throughout the film.
The matrix elements of the interaction operator are defined by ({a|W|j8) = W;; 45.
Then (13) can be written as: {Z(w) — W]|d) = |Ein.) . By diagonalizing the in-
teraction matrix W with W|n) = w,|n) and expanding the 3N-dimensional dipole
vectors in terms of the eigenvectors, we obtain the amplitudes of linear dipoles
induced by the incident wave and the local fields. The local fields and dipoles are
related as {1] E;q = 05 dia = 05 i as ES. The local field E; associated with ith
particle, E; = E;, can be found by solving the CDE as [1]

LR CEa (o

Equation (18) allows one to express the local fields in terms of the eigenfunctions
and eigenfrequencies of the interaction operator. The local fields can then be used
to calculate enhancement of various optical responses. Note that this approach is
not limited to the quasi-static approximation. Similar solution can be obtained
when the radiative terms in the interaction operator are taken into account [1}.

When particles touch each other the dipole approximation is not adequate. The
reason for this is that the dipole field (o< 7=2 in the near-zone) generated by one
monomer is not homogeneous inside the adjacent particle; it is much stronger near
the point where the monomers touch than in the center of the neighboring monomer.
Effectively, by replacing two touching spheres with two point dipoles located in their
centers, we underestimate the actual strength of their interaction. To account for
this effect one typically has to take into account the higher multipolar terms.
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[image: image6.png]Despite the fact that new efficient methods have recently been developed for cal-
culations beyond the dipole approximation {7}, they still computationally applicable
only for aggregates with relatively small number of particles or weak interactions
between the particles. In aggregates of metal particles, where resonance plasmon
oscillations can be excited and the dielectric constant can be very large, || ~ 10° to
10%, the inter-particle interactions are very strong so that any direct computational
calculations for aggregates of 10* particles are typically beyond the capability of
any computer.

To overcome the inadequacy of the dipole approximation and the overwhelm-
ing computational load of the “coupled multipole” methods, a phenomenological
procedure (that can be referred to as the cluster renormalization) approach has
been suggested by Markel and Shalaev (see, for example, [1]). This method further
develops the original idea suggested by Purcell and Pennypacker for add-shaped
objects and applies it to fractals. In this approach, a renormalized cluster is in-
troduced in which neighboring spheres are allowed to intersect geometrically. This
allows one effectively to take into account the stronger interaction between the
neighboring particles, which, as mentioned, is undervalued by the “conventional”
dipole approximation. The radii R of these spheres, as well as the distance a
between two neighboring monomers, are chosen to be different from the real exper-
imental ones: R # Rz, @ # Gegp; but it is required that the ratio a/R is equal
to (4m/3)!/3 ~ 1.612, the same as in the Purcell and Pennypacker model (for de-
tails, see [1]). The second equation for R and a can be obtained from the optically
important condition that the renormalized cluster has the same fractal dimension,
radius of gyration and total volume as the experimental one. It was shown that for
fractals, where D < 3, all these conditions are compatible, in contrast to non-fractal
clusters of particles. The above model of the effective intersecting particles allows
one to take into account the stronger depolarization factors for touching particles,
remaining within the “renormalized” dipole approximation. The model was shown
to yield results that are in very good agreement with experimental spectra of fractal
clusters [1].

Fig. 2 shows the local field E; distribution excited by light of wavelength A =
1y m at the surface of a simulated silver CCA deposited on a plane substrate. This
distribution was computed by using the solution (18) and the renormalized dipole
approximation described above. The largest fields are extremely localized; and the
local field intensity in the “hot” spots can exceed the applied field by up to 10°,
while the average enhancement is only ~ 102 to 103.

The resonance local field is estimated by |E,/E©®| ~ 1/6, as follows from (18),
which is the exact solution (for simplicity, we set hereafter R = 1). This result can
be also obtained from the simple fact that the linear polarizability o; = d;/E©®
of ith monomer in a cluster experiences a shift of the resonance w; because of
interactions with other particles (where w; is a real number, in the quasistatic
approximation). Therefore the polarizability of, say, ith particle can always be
represented as o; = 1/(05 " + w;) = [(w; — X) — i6]~!, where the shift w; depends
on interactions with all particles. In the limit of non-interacting particles, w; = 0
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FIGURE 2. Calculated field distributions on the surface of a silver fractal aggregate deposited
on the plane.

and o; = Qo = —(X +i6)"!. For the resonance particles w; = X(w;) = X, and
a, = /6. The local field is related to the local polarizability as E; = ag oy E©,
so that for X > § we obtain for the resonance field |E,| ~ (|X,|/8)|E@}. In the
optical spectral range | X,| ~ 1, and |E;| ~ 6 |E®)|. This estimate is qualitatively
in agreement with the results shown in Fig. 2.

In the long wavelength part of the spectrum, where |¢/| > 1, we see that
E./E® ~ §' ~ |¢'[?/". To compare with the cigar-shaped spheroids, where
|e.| ~ 1/p ~ A% we can write formally the enhancement in fractals as E,/E©® ~
p /e ~ AP|e|/e" ~ A(A/Ap). Since A ~ |€|2 ~ (A/},), the local field
enhancement in fractals increases with A as E,/E® ~ (AX;)/AZ. Thus, a fractal,
with its variety of local configurations of particles (where optical excitations are
localized), can be roughly thought of as a collection of {non-interacting) prolate
nano-spheroids, with all possible values of the aspect ratio.

1t is worth noting again that if a fractal structure would be replaced by some 3d
compact structure of spheroids (or any other particles), then, because of the long-
range interactions in non-fractal systems, there would, in general, be no localization
of the optical excitations in such structure. Instead in most normal modes, every
particle contributes significantly to the excitation, so that all the resonances depend
on the shape of the whole object and lie typically within a relatively narrow spectral
interval.

In fractals, in contrast, the resonance frequency of a localized surface plasmon
mode depends on the local configuration of particles at the mode location. A
random fractal is composed of a large variety of local geometries, each possessing a
different plasmon resonance frequency; as a result, the range of frequencies spanned
by the plasmon modes in a fractal cluster is unusually broad covering the whole of
the visible and infrared portions of the spectrum. Additionally, for most metals, the
electromagnetic energy and the enhancement of nonlinear optical effects and Raman
scattering increase towards longer wavelengths [1]. This is because for most metals,
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[image: image7.png]the real part of the dielectric function is negative (that is why metals are such
good reflectors) and its magnitude increases strongly towards longer wavelengths,
resulting in a parallel increase of the quality-factor of the plasmon resonances of
fractal clusters composed of metal particles.

Locally intense fields, as shown in Fig. 2, suggest a large number of un-
usual local optical and photochemical effects, among them, single-molecule spec-
troscopy. Specifically, because for surface-enhanced Raman scattering (SERS) the
local enhancement-factor o |E|* (8], it can reach magnitudes of 1012, making Ra-
man spectroscopy of single molecules possible [9].

The local-field enhancement for a nonlinear optical process can, in general, be
written as

Gn ~ (| Ei/ EO B, /EO™), (19)

where n = k + m. In particular, kK = 4, m = 0 describes the field enhancement
for SERS, and &£ = 2, m = 2 for the nonlinear refraction (optical Kerr effect). Sig-
nals associated with coherent nonlinear light scattering, such as four-wave mixing
(FWM), are proportional to the average square of the nonlinear polarization; hence
the FWM enhancement, for example, is [1]: Grwar = |G4|2

For fractals, an estimate for G, (at £ # 0) can be expressed in terms of the
polarizability ap = —[X(w) + i6(w)]™? of the individual particles composing the
fractal as 1]

Gp ~ ?_N*JT:T:FC,\:, (20)

where ¢, is a frequency-independent constant. In this formula, (| X|/4)" gives the
resonant local field (normalized to the applied field) raised to the n-th power and
dIm[a(X)] is the approximate fraction of resonant particles in the fractal, for a
given light frequency. The factor Im[a({X)] represents the average light extinction,
which differs significantly for fractals (D < d) and non-fractals (D = d).

For the average local-field intensity (n = 2}, it can be shown that the ezact result
is given by

(X% +46%)

Q”QN" %

Im[a(X)], (21)
in agreement with the estimate (20).

It is worth noting here that the zero-point field fluctuations, which are responsible
for spontaneous emission, are expected to be enhanced in the same manner as their
“classical” counterpart so that the formula (21) also characterizes enhancement of
spontaneous emission in fractals.

For non-fractal random systems, the extinction Im[a(X)] typically peaks near
the resonance frequency of the individual particles (where X (w) ~ 0) becoming
negligible for | X| >> 4, so that G, according to (20) is relatively small [1). Con-
trariwise, for fractals the factor Im[a(X)] remains significant even in the long wave-
length part of the spectrum, where | X (w)| 3> 4, leading to very large values of G,
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[1] (Ima(X) has roughly a box-like distribution in the interval —47/3 < X < 4x/3,
which in terms of A includes the whole of the visible and infrared parts of the spec-
trum [1]). Thus the large enhancement in a broad spectral range, as mentioned, is
a direct result of the localization of the optical excitations and of the broad variety
of resonating local structures.

We also note here that by exciting all {or most of) the fractal modes and matching
their phases one can produce attosecond light pulses; this is because the extremely
large spectral range of fractal modes (from the near-UV to the far-IR) in the spectral
domain corresponds to the attosecond time intervals in the time domains.

As an example of enhanced optical phenomena, we consider now in more detail
Raman Scattering (RS) and hyper-Raman scattering {HRS) for molecules adsorbed
on the surface of metal particles in a fractal aggregate. The HRS occurs typically
because of vibrations of molecules at, say, frequency 2. The frequency of the
scattered wave {w; = 27(c/A,)) in n-photon pumped hyper-Raman scattering is
given then by w; = nw — Q. The case of n = 1 corresponds to conventional RS. For
simplicity, we assume below that the shift €2 is small (less than the plasmon width
r).
The enhancement Gp_grs is defined through the ratio of the local (enhanced)
and the external (or probe) fields (E®):

2

Getins =< |EAP™ [Ex, 12 > / |EQ[" |EQ (22)

For conventional Raman (n = 1), with a relatively small Stokes shift (so that the
fundamental and Stokes fields are correlated in space):

4

X
Grs = Ginrs = Ga =~ _w §Ima (X)]. (23)

For hyper-Raman scattering, where the hot spots for the fundamental and Stokes
fields almost do not correlate (n # 1):

X

Gn_HRs = A_N

X

2 amael), e

" sIma cgv x A

where X, = X(},)-

In Fig. 3 we compare results of our numerical simulations based on the exact for-
mula (22) with theoretical formulas (23) and (24), for enhancement of RS and HRS
in fractal cluster-cluster aggregates of silver nanoparticle (D = 1.78). According
to the figure, theoretical estimates are in accord with numerical simulations and
predict giant enhancement: Grs ~ 107, Go_grs ~ 10'° and Gs_ggrs ~ 10'7. It is
important to emphasize that the local field enhancement in the hot spots can sig-
nificantly, by several orders of magnitude, exceed the average enhancement above.
Thus, the local enhancement for RS in the hot spots can be between 10 to 10'2,
whereas the average is on the order of 107 only. The local enhancements in the hot
spots for nonlinear optical processes, such as n-photon HRS, FWM, and others,
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FIGURE 3. Average enhancement of Raman and hyper-Raman (2- and 3-photon pumped)
scattering in silver fractal aggregates.

can be extremely large, twenty and even more orders of magnitude. This level of
local enhancement makes feasible nonlinear surface-enhanced spectroscopy of single
molecules and nanocrystals.

A large variety of optical processes can be enhanced and otherwise modified by
incorporating fractal clusters in the media or by ensuring that aggregation results in
fractals. For example, fractals can be utilized to improve the performance of random
lasers, such as powder lasers and laser paints [10], where lasing emissions can take
place as a result of coherent multiple light-scattering in a disordered dielectric (or
semiconductor) with appropriate structural elements. The notion of creating a
“ring” laser cavity in a random medium through a sequence of multiple coherent
scattering events along a closed path is itself, a fascinating, and almost counter-
intuitive prospect. Scattering is normally considered detrimental to lasing; since,
in a conventional laser cavity, it tends to remove photons from the lasing mode. In
a properly constructed random medium, however, strong multiple scattering could
return photons to the amplification region resulting in mode amplification {10]. By
doping the laser powder or paint medium with fractal aggregates, or by imparting
a fractal character to the medium as a whole, one could significantly decrease the
pump power needed to effect lasing, in other words, one could decrease the lasing
threshold.

Fractals in Microcavities

Combining the energy-concentrating effects due to localization of optical exci-
tations in fractals with other means for producing strong resonances can result
in truly gargantuan local fields. For example, morphology-dependent resonances
(MDRs) in dielectric microcavities are well known phenomena which can produce
large intensity enhancements in the resonances that can lead to lasing [11]. These
resonances, which may have extremely high quality factors (Q = 10° to 10°), result
from confinement of the radiation within the microcavity by total internal reflec-
tion. (We note that in contrast to the Q; introduced above, characterizing the
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resonance enhancement for the field amplitude, the cavity’s quality-factor Q = Q,
gives the resonance enhancement for the intensity; accordingly, in terms of the en-
hancement efficiency, @ in cavities should be compared with @w in particles and
fractals.) Light emitted or scattered from a source within the microcavity may
couple to the high-Q MDRs in its spectral bandwidth, leading to the enhance-
ment of the spontaneous and stimulated optical emissions. Hence, seeding fractal
aggregates into appropriate microcavities should further increase the local fields.

Huge multiplicative field enhancement factors of this sort were obtained in [12],
where it was found that lasing emission can be observed from Rhodamine 6G (R6G)
dye molecules adsorbed on silver colloidal aggregates residing inside a cylindrical,
quartz microcavity, even for dye molarity and threshold pump intensity both 3
orders of magnitude lower than for the corresponding dye laser in the absence of
the colloidal aggregates. The fractal aggregates provide the resonant enhancement
which is sufficient to lower the lasing threshold to the level of a He-Ne pump laser,
at which point the overall observed enhancement of the light emission due to the
combined effects of the microcavity and the fractal resonances was between 10'° to
1012,

Huge enhancement of RS (from the sodium citrate present in minute concentra-
tion) in the fractal-microcavity composites has also been observed in [12]. The mea-
surements show that the combined gverage RS-enhancement in fractal-microcavity
composites is, at least, 10'? (with the factor 107 “coming from” the fractal col-
loids and the “extra” 10° being due to the microcavity). Because of concentration
of the enhancement in the fractal hot spots, the local RS-enhancement in fractal-
microcavities composite can be as large as 10'8, which is probably a record large
SERS. In microcavities with larger Q (which are available), the enhancement can
be even larger.

Surface-enhancement factor for hyper-Raman scattering from fractals is given by
Gn-grs in (22) and (24). In fractal-microcavity composites HRS can be further
enhanced by the microcavity’s MDRs. In the simplest approximation when the
fractal and cavity’s modes are “decoupled,” the resultant enhancement for HRS
is given by the product Gn_pgrsg{®, where g{%) describes the cavity enhancement.
This factor depends on whether the fundamental and Stokes waves couple to the
MDRs of the cavity. If only the Stokes wave at w, is coupled to MDRs than

&)~ Q(X,), where Q(,) is the cavity quality-factor at the Stokes frequency
(note that, if needed, Q can also take into account the decrease of the resonance
quality due to the presence of fractals inside the cavity). If only the fundamental
wave is coupled to the MDRs, then g{Z) ~ Q™(}), where Q(J\) is the cavity quality-
factor at the fundamental frequency. When both waves are coupled to MDRs,

") ~ Q™(A)Q()s); and if none of them is coupled to MDRs, than g{®) ~ 1.

By combining the field enhancement in fractals with the microcavity’s MDR
enhancement, a truly gigantic enhancement can be obtained, especially, when both
the fundamental and Stokes waves are coupled to the cavity modes [12]. Therefore,
despite the fact that Raman hyper-polarizabilities are extremely small (so that
under the normal, no-enhancement conditions, they can hardly be observed), in
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[image: image9.png]the fractal-microcavity composites, hyper-Raman scattering can be detected even
at very low laser pumps. In recent experiments [12] the dramatically enhanced 2-
and 3-photon pumped hyper-Raman scattering in fractal-microcavity composites
was observed at extremely low pump powers provided by a He-Ne laser. Thus,
placing fractal nanostructures in a microcavity opens new avenues for spectroscopy,
including the nonlinear one, of single molecules.

Another cavity effect arises from the possibility of enhancing the spontaneous
emission (SE) rate [13] of an emitter placed in a cavity (Purcell effect). Origi-
nally formulated for a localized dipole in resonance with a single cavity mode with
quality-factor @), the SE rate in the cavity mode referenced to the SE rate in a
homogeneous medium, is given by the Purcell figure of merit F' ~ QA3/V, where V
is the effective cavity volume. By placing a fractal aggregate in a microcavity fur-
ther enhancement of the zero-point fields (and thus of the SE rate) can be achieved
because of the high-quality factors of the aggregate’s optical excitations and their
localization in sub-wavelength regions of space. Under optimum conditions, the SE
rate can be enhanced by the factor given by a product of G defined in (21) and the
Purcell figure of merit F.

LOCAL-FIELD ENHANCED OPTICAL RESPONSES IN
PERCOLATION METAL-DIELECTRIC FILMS

Random metal-dielectric films consist of random metallic islands separated by
dielectric regions. As the metal fraction increases, the percolation threshold is
reached at which point a continuous metal pathway exists connecting opposite
edges of the “percolation” film (also referred to as semicontinuous metal film). For
an infinite film this continuous irregularly-shaped metal cluster is infinite in size.

Field localization has been predicted and observed in percolation films {1,14].
In Fig. 4 we see the field distribution calculated numerically on a semicontinu-
ous silver-on-glass film at the percolation threshold. It demonstrates, vividly, the
localization that characterizes random metal-dielectric films leading to large field
fluctuations over the film. A qualitatively similar distribution has been also im-
aged experimentally, using scanning near-field optical microscope [14]. At first
glance such striking inhomogeneity might seem surprising since, although a metal-
dielectric film near the percolation threshold consists of irregular fractal clusters
of different sizes, the film as a whole is, on average, homogeneous (as opposed to
fractals which are strongly inhomogeneous on all scales).

The localization of optical excitations, such as surface plasmon modes, in random-
metal dielectric films within regions often smaller than the wavelength represents
a special case of Anderson localization. As shown by Sarychev and Shalaev [1,14],
the problem of finding local fields and currents in a percolation film can be formally
mapped with the quantum-mechanical problem of the Anderson transition. Note,
that most previous treatments of the optical properties of these films were based on
mean-field theories that could not account for the field fluctuations and, therefore,
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FIGURE 4. Local field distribution on silver-glass percolation film at different wavelengths;
(a): A=1.5um and (b): A := 10um.

failed to reproduce one of the most striking features of the optics of percolation
films.

The presence of these very high local fields can be broadly understood on the
basis of the following arguments. The dielectric function of a 2d percolation film
is given by the exact formula ¢, = \/€4€n, Where €, = €, + i/, and ¢4 are the
dielectric constants for metal and dielectric, respectively. Since for a metal ¢/, < 0,
the imaginary part of ¢, is large even when €], — 0. Such a high effective absorption
in a loss-free film causes a great deal of electromagnetic energy to be stored in the
system leading to a dramatic increase in the local fields. In real systems the extent
of energy storage is limited by the finite losses which occur when €/, # 0.

Since at the optical frequencies ¢, is negative, metal particles can be roughly
thought of as inductor-resistor (L — R) elements, whereas the dielectric gaps be-
tween the particles can be treated as capacitive (C) elements. Then, the condition
€, = —€q means that the conductivities of the L — R and C elements are equal in
magnitude and opposite in sign, i.e. there is a resonance in the equivalent L—R—C
circuit corresponding to individual particles.

For ¢, = —¢,4 the local field in resonating particles is enhanced by the resonance
quality-factor Q¢ (which is the inverse of the loss-factor, Qo = x~!) so that the
field enhancement in this case is estimated by the product £~' (a/£4)?, where the
factor (a/€4)” takes into account that the resonating mode is localized within &, at
€, = —€4. (As simulations show £4 can be very small so that £4 ~ q; for simplicity
of consideration, we will omit this factor below.) The resonance modes excited by
a monochromatic light at €, = —e, represent only the fraction & of all the modes
so that the average distance (referred to as the field correlation length) between

the field peaks is given, in this case, by
& ~alVe> a. (25)

In the long wavelength part of the spectrum, however (where the largest field
enhancement occurs), |€,] >> ¢; so that the individual particles cannot resonate.
Still, we can renormalize the “high-contrast” system, with |e;,| > €4, to the case
of —€;, = ¢4 considered above by “dividing” the film into square elements of the
special resonant size
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FIGURE 5. (a): A typical element of a percolation film consisting of two conducting metal
clusters with a dielectric gap in between. (b): Different resonating elements of a percolation film
at different wavelengths.

v/(t+s)

e = aleml /ea) (26)

and considering these squares as new renormalized elements of the film [14]. Really,
using the known scaling dependences [3] for “metal” and “dielectric” squares of size
I (which, respectively, do or do not contain a metal continuous path through the
square):

em(l) ~ (/a) em (27

and

ea(l) ~ (/)" ey, (28)

we obtain that the dielectric constants of the renormalized elements with the size
l = I, are equal in magnitude and opposite in sign, i.e., —€m(lr) = €4(l,). Thus,
for these renormalized elements of the size I, there is a resonance similar to the
resonance in the R—L—C circuit describing individual metal particles in a dielectric
host. In this case, however, the effective (renormalized) R— L — C circuits represent
the resonating square elements.

For a two-dimensional percolation film, the critical exponents are given by t =~
s = v = 4/3; they represent the percolation critical exponents for conductivity,
dielectric constant, and percolation correlation length, respectively {3].

The light-induced eigenmodes in the high-contrast system with the resonating
squares of size I, are separated, on average, by the distance &4 which is by factor
I./a larger than the spatial mode separation Exq at €, = —¢q, ie.,

&~ (/)€ ~ 1V ~ alew|/\Jelea. (29)

To estimate the local fields in the resonating clusters, we consider first two ar-
bitrary metal clusters, with conductance 3,, = —i(a/4m)wey (1), separated by a
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dielectric gap, with conductance 4 = —i(a/4m)wey(l), as shown in Fig. 5a. The
clusters and the gap are both of a size [ and ¢,,(!) and ¢4(l) are defined in (27) and
(28), respectively. The equivalent conductance ¥, for ¥,, and X4 in series is given
by Y. = Z.24 \ (Xm + X4) and the current j through the system is j = £, Eyl.
The local field, however, is strongly inhomogeneous and the largest field occurs at
the point of the close approach between the clusters, where the separation between
clusters can be as small as a; then, the maximum resonance field F, is estimated
as B, = (j/Z4)/a ~ m\,cQ\QV\T + Q\nvciv\_\ma\ma_ (where we used Eqs. (27) and
{28)). For the “resonant” size [ = [, (see (26)), the real part of the denominator in
the expression for E, becomes zero, and the field F, reaches its maximum, where
it is estimated as E,/Ey ~ k(I /a), or using the expression (26), as

E./Ey ~ |enl??] (Veach) - (30)

We now set, for simplicity, ¢4 = 1, €. = €, and take into account that |¢'| >
¢”. Then, to compare the field enhancement with that in spheroids, we formally
rewrite (30) in the form E./Ey, ~ Ale.|/e!, where we introduced A = (I./a) ~-
SNL that can be thought of as the “aspect ratio” of percolation modes. Note
that the geometrical factor A for the percolation modes is the same as in oblate
spheroids (see (12)). Recall that in fractals, E,/E, ~ A%le.|/¢", with A% ~ |¢!| so
that the geometrical factor in fractals is A% rather than A, as in percolation films
(cf. (12) and (11). Thus, the fractal modes localized on chain-like configurations
of particles can be roughly associated with cigar-shaped spheroids, whereas the
percolation modes on a two-dimensional metal-dielectric film can be associated
with the pancake spheroids. In accordance with this, the local fields in percolation
films, although very large, are still less than in fractals. Such difference is related
to the fact that scale-invariant fractals consist mainly of voids (represented on all
the scales, from the size of the particle to the size of the whole aggregate) and,
therefore, they are strongly inhomogeneous on all scales, whereas the percolation
films are macroscopically homogeneous. (We note, however, that for performing
the surface-enhanced spectroscopy, the semicontinuous metal films, in many cases,
can be more convenient to use than fractals; in addition, the filling factor by metal,
providing the enhancement, is typically larger in the metal-dielectric films.)

It is clear that in percolation films for any frequency of the applied field w there
are always resonant clusters of the size (26) [ = I, (w) ~ a(w/@,)%/*+9), where the
local field reaches its maximum E,, = E,. The resonant size [, increases with the
wavelength. It is important that at percolation, the system is scale-invariant so that
all possible sizes needed for the resonant excitation are present, as schematically
illustrated in Fig. 5b. At some large wavelength, only large clusters of appropriate
sizes resonate leading to field peaks at the points of close approach between the
metal clusters; with the decrease of the wavelength of the applied field, the smaller
clusters begin to resonate, whereas the larger ones (as well as the smaller ones) are
off the resonance, as schematically illustrated in Fig. 5b.
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[image: image11.png]The local field distribution on silver-glass percolation film shown above in Fig.
4 is in agreement with the presented consideration; the local fields form groups
of sharp peaks with the spatial separation between the peaks increasing with the
wavelength.

We can also estimate the number n(l,) of field peaks E, within one resonating
square of the size l;; these peaks are located along a dielectric gap in the “dielectric”
square of the I, size. The gap “area” scales as the capacitance of the dielectric gap,
so does the number of field peaks in the resonant square (cf. (28). Therefore, we
estimate n(l,) as

n(l;) o (I, /a)*". (31)

The high-order moments of the local field in d = 2 percolation films, according
to (19) can be estimated as G, ~ (|E;/EO¥[E, /EO™) ~ (E, ] E)*n(l,)/(&/a)?,
where as above n = k + m. Using the scaling formulas (29)-(31) for the field
distribution, we obtain the following estimate for the field moments at n > 1

: :m\.\ mSww :L
G~ () Amm\wm zA_S_MV , 2

€4 €m
where, we took into account that for two-dimensional percolation composites, the
critical exponents are given by t = s & v & 4/3,

Since [€n| 3> € and the ratio |e,] /€” > 1, the moments of the local field are
very large, G, > 1, in the visible and infrared spectral ranges. Note that the first
moment Gy =~ 1, that corresponds to the equation (E (r)) = E,.

In Fig. 6 we check the scaling formula (32) against numerical simulations for
silver-glass percolation films. We see that there is good agreement between the
scaling theory and results of simulations; the enhancement increases with the order
of optical nonlinearity and becomes very large in the long wavelength part of the
spectrum.

It is also important to note that similar to fractal aggregates, local enhancements
in the hot spots can be much larger than the average enhancements considered
above. As follows from considerations above and simulations of Ref. [14], the local
field intensities are enhanced up to |E/E,|? ~ 10%, for gold semicontinuous films,
and up to ~ 105, for silver percolation films. T herefore, for the Kerr-type nonlin-
earity, the local enhancement in the hot spots can be as large as 10® (gold) to 10*
(silver). Strong local enhancement (up to 10%) can also occur locally for SHG; the
SHG enhancement, however, decreases dramatically when the detected signal is av-
eraged over larger areas of the film. This is because of the destructive interference
between different local peaks in SHG that have strongly varying phases. For the
four-wave mixing, with the enhancement given by Grwas ~ |Gk|? [1,14], the local
enhancement in the hot spots can be especially gigantic, up to 102, for silver per-
colation films. With such level of local enhancements, the nonlinear optical signals
from single molecules and nanocrystals can be detected, which opens a fascinating
possibility of local nonlinear spectroscopy.
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FIGURE 6. Average enhancement of the high-order field moments Gr, withn > 1, for a
silver-glass random film as a function of wavelength at p = p.. The factors G, characterize
the enhancement of nonlinear optical processes of different orders. Results of the numerical
calculations for n = 2,3,4,5 and 6 are represented by +, 0, *, x, and #, respectively. The solid
lines describe G, derived from theory (see (32)).

To conclude this part we mention that the scaling in the structure of percolation
films (formed by fractals of different sizes) results in scaling of the field distributions
and the associated spectral properties, which bear considerable resemblance to the
properties of fractal aggregates as described previously.

In summary, the optics of random media displays a rich variety of effects some
of which are hardly intuitive. Field localization of various sorts occur and recur in
a wide gamut of disordered systems, most strikingly in those possessing dilational
symmetry, leading to the enhancement of many optical phenomena, especially non-
linear processes. Making judicious use of these enhancement effects and of other
aspects of the many complex resonances that distinguish these systems can lead
to new and unexpected physics and applications. When developed, in the fullness
of time, these disordered materials may attain a level of practical importance and
versatility that might rival or surpass their geometrically ordered counterparts.

This paper summarizes work performed in collaboration with a number of indi-
viduals. The author is especially grateful to Drs. Moskovits, Armstrong, Sarychev,
Gadenne, Rivoal, Markel, Boccara, Feldmann, Zyss, Sheng, Chang, Safonov,
Drachev, Gresillon, Ying, Mr. Podolskiy and Mr. Kim. Work was supported
in part by NSF, ARO, PRF, NATO, and by the AvH Foundation.
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