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Abstract

It is demonstrated that metallic horseshoe-shaped (also referred to
as u-shaped) nanostructures can exhibit a magnetic resonance in the
optical spectral range. This magnetic plasmon resonance is distinct
from the purely geometric LC resonance occurring in perfectly con-
ducting split rings because the plasmonic nature of the metal plays
the dominant role. Similarly to the electrical surface plasmon reso-
nance, the magnetic plasmon resonance is determined primarily by
the metal properties and nanostructure geometry rather than by the
ratio of the wavelength and the structure’s size. Magnetic plasmon
resonance occurs in nanostructures much smaller in size than the op-
tical wavelength. Electromagnetic properties of periodically assembled
horseshoe-shaped nanostructures are investigated, and the close prox-
imity of the electrical and magnetic plasmon resonances is exploited in
designing a negative index meta-material. Close to the magnetic plas-
mon resonance frequency both magnetic permeability µ and electric
permittivity ε can become negative, paving the way for the develop-
ment of sub-wavelength negative index materials in the optical range.
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1 Introduction

Extending the range of electromagnetic properties of naturally occurring ma-
terials motivates the development of artificial (or meta-) materials. For ex-
ample, it has recently been demonstrated that meta-materials may exhibit
such interesting properties as negative dielectric permittivity ε < 0 (see,
for example [1], [2]), negative magnetic permeability µ < 0 [3], and even
both [4, 5]. The double-negative case of ε < 0 and µ < 0 (often referred to
as the left-handed and negative refractive regime) is particularly interesting
because of the possibility of making a "perfect" lens with sub-wavelength
spatial resolution [6]. In addition to the super resolution, unusual and some-
times counter-intuitive properties of negative index materials (NIMs), which
also referred to as left-handed materials (LHMs), make them very promising
for applications in resonators, waveguides and other microwave and optical
elements [7, 8, 9, 10].
Negative refraction has been convincingly demonstrated in the microwave

regime [5, 8, 9, 11]. For microwave NIMs, artificial magnetic elements (pro-
viding µ < 0) are the split-ring resonators or the swiss roll structures. In
the microwave part of the spectrum, metals can be considered as perfect
conductors because the skin depth is much smaller than the metallic feature
size. The strong magnetic response is achieved by operating in the vicinity
of the LC resonance of the split ring [3, 12]. The same technique of obtaining
µ < 0 using split rings was recently extended to mid-IR [12] by scaling down
the dimensions of the split rings. In the microwave, as well as (to a lesser
degree) in the mid-IR part of the spectrum, metals can be approximated
as perfect conductors because the skin depth is much smaller than the fea-
ture size of the structure. Therefore, the frequencies of the LC resonances
are determined entirely by the split ring geometry and size but not by the
electromagnetic properties of the metal. In accordance with this, the ring
response is (resonantly) enhanced at some particular ratio of the radiation
wavelength and the structure size. Thus we refer to the LC resonances of
perfectly conducting metallic structures as geometric LC (GLC) resonances.
The situation drastically changes in the optical part of the spectrum,

where thin (sub-wavelength) metal components behave very differently when
their sizes become less than the skin depth. For example, the electrical
surface plasmon resonance (SPR) occurs in the optical and near-IR parts of
the spectrum due to collective electron oscillations in metal structures. Many
important plasmon-enhanced optical phenomena and applications of metal
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nano-composites are based on the electrical SPR (see, for example, [13]).
Plasmonic nature of the electromagnetic response in metals for optical/mid-
IR frequencies is the main reason why the original methodology of GLC
resonances in microwave/mid-IR spectral range is not extendable to higher
frequencies.
For the optical range, NIMs with a negative refractive-index have been for

the first time demonstrated in the experiment [14] where the authors observed
the real part of the refractive index n = −0.3 at the telecommunication
wavelength of 1.5µm. In that report the authors experimentally verified
their early theoretical prediction for negative refraction in an array of parallel
metal nanorods [15]. Note that the losses become progressively important
with increasing frequency toward the optic band. Moreover, the elementary
cell of the resulting structure is on order of the wavelength. Making a true
NIM requires the cell size to be less than λ/2. Therefore, miniaturization of
the cell size is of major interest, and can be accomplished, for example, by
utilizing plasmonic effects [16, 17, 18, 19].
It is also necessary to take into account from the beginning that dielec-

tric permittivity ε = ε0 + iε00 and magnetic permeability µ = µ0 + iµ00 are
complex values. The structure that exhibits the negative real dielectric per-
mittivity ε0 ≈ −0.7 and negative real of magnetic permeability µ0 ≈ −0.3 in
green light (λ ≈ 0.5µm) has been investigated in Ref. [20]. However rather
large imaginary components (µ00 ≈ 1.0 at the resonance) has not allowed the
observation of the negative refraction.
Thus the demonstration of a negative index meta-material in the regime

where plasmonic effects are important remains elusive. Plasmonic effects
must be correctly accounted for to design a meta-material with optical mag-
netism. Below we show that specially arranged metal nanoparticles can sup-
port, along with the electrical SPR, magnetic plasmon resonance (MPR).
The MPR’s resonance frequency ωr can be made independent of the ab-
solute characteristic structure size a and λ/a ≡ 2πc/ωa. The only defining
parameters are the plasmonic permittivity εm(ω) and the structure geometry.
Such structures act as optical nanoantennas by concentrating large electric
and magnetic energies on the nanoscale at the optical frequencies. The mag-
netic response is characterized by the magnetic polarizability αM with the
resonant behavior similar to the electric SPR polarizability αE: real part of
αM changes the sign near the resonance and becomes negative for ω > ωr,
as required for negative index meta-materials. We show that the electro-
static resonances must replace (or strongly modify) GLC resonances in the
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optical/mid-IR range if a strong magnetic response is desired.
The idea of using electrostatic resonances for inducing optical magnetism

is relatively recent. For example, electrostatic resonances of periodic plas-
monic nanostructures have been recently employed to induce magnetic prop-
erties due to close proximity of adjacent nanowires [16, 17]. Higher mul-
tipole electrostatic resonances were shown [18] to hybridize in such a way
as to induce magnetic moments in individual nanowires. Strong electrosta-
tic resonances of regularly shaped nanoparticles (including nanospheres and
nanowires) occur for −2 < ε0m < −1. The resistive damping characterized by
the ratio ε00m/ε

0
m of the imaginary and real parts of the dielectric permittivity

of a metal is fairly strong for those frequencies corresponding to |ε0m| ∼ 1.
However, ε00m/ε

0
m is known to decrease for |εm| À 1. Therefore, there is

a considerable incentive to design nanostructures exhibiting resonances for
ε0m ¿ −1. Such horseshoe-shaped structures, first suggested in Ref. [21]
are described below. Spectrally, these structures support strong magnetic
moments at the frequencies higher than the microwave/mid-IR frequencies
supported by the traditional split ring resonators (see Refs. [3, 12] for details)
and lower than the ultraviolet frequencies supported by the sub-wavelength
plasmonic crystals described in Refs. [17, 18]. Conceptually, the horseshoe-
shaped structures described here are distinct from the earlier low frequency
structures because they are not relying on the GLC resonance for producing
a strong magnetic response because plasmonic properties of the metal are
very important when the sizes are small and the operational frequencies are
high. Below we present a three-dimensional theory of the magnetic resonance
in a plasmonic structure and related two-dimensional numerical simulations.
Specifically, here we develop a comprehensive theory and perform detailed

numerical simulations for negative index meta-materials based on horseshoe-
shaped structures. The possibility of optical magnetism in such structures
was first theoretically predicted [21] and recently experimentally verified [22].
Closely related split-ring resonator structures were also shown [23] to pos-
sess optical magnetism. Here we demonstrate that such horseshoe-shaped
structures may have negative dielectric permittivity, in parallel with negative
magnetic permeability, and thus they can be used for building a metamaterial
with a negative- refractive index.
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Figure 1: Currents in two parallel metal wires excited by external magnetic
field H. Displacement currents, “closing”the circuit, are shown by dashed
lines.

2 Analytical theory of magnetic plasmon res-
onances

We consider first a pair of parallel metallic rods. The external magnetic field
excites the electric current in the pair of the rods as shown in Fig. 1. The
magnetic moment associated with the circular current flowing in the rods
results in the magnetic response of the system. Suppose that an external
magnetic fieldH = {0, H0 exp(−iωt), 0} is applied perpendicular to the plane
of the pair (We suppose that magnetic field is along y axis and the rods
are in {x, z} plane). The circular current I (z) excited by the time-varying
magnetic field flows in the opposite directions in the nanowires as shown in
Fig. 1. The displacement currents flowing between the nanowires close the
circuit. We introduce the "potential drop" U (z) =

R b
a
Edl between the pair

where the integration is along the line {a (z) , b (z)}. To find the current
I (z) , we integrate the Faraday’s Law curlE = ik(H0+Hin) over the contour
{a, b, c, d} in Fig. 1, where k = ω/c is a wave vector, and Hin = curlA is the
magnetic field induced by the current. It is assumed that the nanowire length
2a is much larger than the distance d between the nanowires and the radius
b of a nanowire. We also assume that kd¿ 1. Under these assumptions, the
vector potential A is primarily directed along the nanowires (z direction).
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The use of the integral form of the Faraday’s Law yields

(IR− ik2Az + dU/dz)∆z = −ikH0d∆z, (1)

where the pair impedance R ' 2/(σπb2) ≈ 8i/(εb2ω), where ε = 1 +
i4πσ/ω ¿ −1 is the metal complex permittivity, and ±IR/2 are the electric
fields on the surface of the nanowires. Note that the wire resistivity is explic-
itly taken into account. This sets our calculation apart from the earlier work
on the resonances of conducting split ring resonators [24] and conducting
stick composites [2] because plasmonic resonances of the wire are now fully
accounted for.
Electric field E can be always presented in terms of the vector potential

A and electric potential φ as E = −∇φ + ikA. In the standard Lorentz
gage the electric potential φ equals to φ (r1) =

R
exp (ikr12) q (r2) /r12 dr2

and the vector potential A (r1) = c−1
R
exp (ikr12) j (r2) /r12 dr2, where r12 =

|r1 − r2| , q and j are charge and current density correspondingly. In the case
of two long wires the currents flow inside the wires. Correspondingly the
vector potential A has the only component in the direction z of the wires
A = {0, 0, Az}. Since the vector potential A is perpendicular to the line
{a (z) , b (z)} the potential drop U in Eq. (1) equals to U (z) =

R b
a
Edl =φa−

φb, where φa and φb are the electric potential in the points a (z) and b (z).
We consider the excitation of the antisymmetric mode when the currents in
the wires are the same in absolute value but are opposite in the direction (see
Fig. 1). Correspondingly the electric charge per unite length Q (z) = Qa =
−Qb. We assume that the diameter b of the wire is much smaller than the
distance d between them and the wire length 2a À d. Then the potential
drop U (z) between the pair estimates as U (z) = Q(z)/C, where the inter
wire capacitance C is independent of the coordinate z and is estimated in
the Appendix as C ' [4 ln(d/b)]−1.
The vector potential Az (z) is proportional to the electric current Az (z) =

(L/c) I (z) /2, where the wire pair inductance is estimated as L ' 4 ln (d/b)
(see Appendix.) Note that both C and L are purely geometric factors that
do not depend on the plasmonic nature of the rods. The product LC can
be estimated as LC ' 1. Yet, in the above consideration we never assumed
that the wires are made from the perfect metal or from a metal with real
conductivity, i.e., imaginary permittivity. Moreover, the two wire nanoan-
tenna has most interesting behavior when metal dielectric constant is real
and negative. The plasmonic nature of the metal is accounted for below.
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We substitute U (z) andAz (z) into Eq. (1), taking into account the charge
conservation law dI/dz = iωQ (z), and obtain a differential equation for the
current:

d2 I (z)

d z2
= −g2I (z)− Cdω2

c
H0, (2)

where −a < z < a, I (−a) = I (a) = 0, and the parameter g is given as

g2 = k2
h
LC − 8C

¡
(kb)2 εm

¢−1i
. (3)

The two-wire antenna is resonantly excited whenG = ga = Nπ/2, whereN is
an integer. Note that the material properties of the metal enter the resonant
parameter G through the dielectric permittivity εm. In the context of the
wire pair, the earlier discussed GLC resonances [3, 15, 12, 24, 26] correspond
to the wire thickness b much larger than the skin depth (k2 |εm|)−1/2. This
approximation, typically valid for microwave and mid-IR frequencies, yields
g = k/

√
LC and the resonant condition ka = π/2, also known as the antenna

resonance.
Let’s consider the opposite ("electrostatic", as explained below) limit of¯̄̄

8C [(kb)2εm]
−1
¯̄̄
À 1. In the electrostatic regime G depends only on the

metal permittivity and the aspect ratio:

G2 ' −2(a/b)2 ln (d/b) /εm, (4)

but not on the wavelength and absolute length of the wires. Sharp resonance
in Eq. (2) requires that G2 be positive, possibly with a very small imagi-
nary part. Indeed, for IR/visible frequencies εm is negative (with a smaller
imaginary part) for typical (Ag, Au, etc.) low loss metals. Metal dielectric
constant εm can be approximated by the Drude formula:

εm (ω) ∼= εb − (ωp/ω)2 / (1− iωτ/ω) , (5)

where εb is a "polarization" constant, ωp is the plasma frequency, and ωτ =
1/τ is the relaxation rate. For considered here silver nanoantennas the con-
stant εb approximates as εb ≈ 5, the plasma frequency ωp ≈ 9.1 and the
relaxation rate ωτ ≈ 0.02 [28]. For example, at λ = 1.5µm the silver dielec-
tric constant estimates as ε0m ≈ −120 and ε00m/ |εm| ≈ 0.025.
We consider now the electric field in the system of two conducting rods

still assuming the electrostatic limit when the propagation constant G is
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given by Eq. (4). The electric charge Q (z) and the current I (z) (Q (z) =
(iω)−1 dI (z) /dz) are given by solution of Eq. (2)

Q (z) = Q0
sin (Gz/a)

cosG
, (6)

I (z) = i
Q0aω

G

µ
1− cos (Gz/a)

cosG

¶
, (7)

where Q0 = ib d kH0

√−εm/
h
4
√
2 ln3/2(d/b)

i
. Using the Lorentz gauge we

can write the equation for the electric potential

φ (r) =

Z
q (r1)

exp (ikR1)

R1
dr1 −

Z
q (r2)

exp (ikR2)

R2
dr2, (8)

where q (r1) and q (r2) are electric charges distributed over the surface of the
rods 1 and 2, R1 = |r− r1|, R2 = |r− r2|, and the integration goes over the
rods 1 and 2. We consider the electric field between the rods, i.e., in {z, x}
plane (see Fig. 1) and assume that |x| ¿ a, |z| < a, and the distances to the
rods d1 = |x− d/2| À b and d2 = |x+ d/2| À b. Then we can integrate in
Eq. (8) over the cross-section of the rod after which it takes the one-dimension
form

φ (x, z) =

Z a

−a
Q (z1)

∙
exp (ikR1)

R1
− exp (ikR2)

R2

¸
dz1, (9)

where the linear charge density Q (z1), obtained from q (r1) by integration
over the rod circumference, is given by Eq. (6) [Q (z1) = −Q (z2)], the dis-
tances R1 and R2 take the following form R1 =

q
d21 + (z − z1)

2, R2 =q
d22 + (z − z1)

2. Two terms in the square brackets in Eq. (9) cancel when
|z − z1| > d, as it is discussed in the Appendix. Since we assume that kd¿ 1
and d ¿ a we can put the exponents exp (ikR1) ' exp (ikR1) ' 1 and ex-
tend the integration in Eq. (9) from z1 = −∞ to z1 =∞. Resulting integral
is solved explicitly and we obtain the analytical equation for the electric
potential in the system of two nanowires

φ (x, z) = 2 ln

¯̄̄̄
d/2 + x

d/2− x

¯̄̄̄
Q (z) , (10)

where Q (z) is given by Eq. (6). Extrapolation of this result to the surface
of the wires gives the potential drop U (z) = φ (d/2− b, z)−φ (−d/2 + b, z) =

8



4 ln (2d/b)Q (z) .Thus we obtain that the inter-wire capacitanceC = Q (z) /U (z)
= 4 ln (d/b) is a constant, which is independent of the coordinate z, in agree-
ment with estimate done in the Appendix.
The vector potential A = {0, 0, A} is calculated in a similar way

A (x, z) ' 1

c

Z a

−a
I (z1)

∙
exp (ikR1)

R1
− exp (ikR2)

R2

¸
dz1

' 1

c

Z ∞

−∞
I (z1)

∙
1

R1
− 1

R2

¸
dz1 '

2

c
ln

¯̄̄̄
d/2 + x

d/2− x

¯̄̄̄
I (z) . (11)

where the electric current is given by Eq. (7). Extrapolating to the vector
potential A to the surface of the first wire (x = d/2−b) we obtain 2cA = LI,
where the inter-wire inductance L equals to L ' 4 ln (d/b) . The inductance
L is also independent of the coordinate z in agreement with the Appendix.
Since the inter-wire capacitance C and inductance L both remain constant
along the wires, the Maxwell equations reduce to an ordinary differential
equation (2).
The electric field E = −∇φ+ ikA is calculated from the potentials (10)

and (11) as

Ex = −
2Q0 d

(d/2)2 − x2
sin(

Gz

a
) sec(G), (12)

Ez = −
2Q0

aG
ln

¯̄̄̄
d/2 + x

d/2− x

¯̄̄̄
× (13)∙

G2 cos(
Gz

a
) sec(G)− a2 k2

µ
1− cos(Gz

a
) sec(G)

¶¸
, (14)

where we still assume that |x| ¿ a, |z| < a, |x− d/2| À b and |x+ d/2| À
b. The transverse electric field Ex changes its sign with the coordinate z
vanishing at z = 0. Yet, on average the ratio |Ex| / |Ez| is estimated near the
resonance (G ≈ π/2) as |Ex| / |Ez| ∼ a/dÀ 1, that is the transversal electric
field is on average much larger than the longitudinal field at MPR. Near the
wires transverse field Ex increases even more: |Ex| ∼ Q0/b. The potential
drop ∆U between the points x1 = d/2+ l/2 and x2 = d/2− l/2 (2b < l¿ d)
is estimated from Eq. (13) as −2lQ (z) /d, and the corresponding electric field
Eout ' − 2Q (z) /d. This field should be considered an external field for the
wire at the coordinate y = d/2. The internal transverse potential drop across
the wire is estimated as |Uin| ' b |Eout| / |εm| ' 2 |Q (z)| b/ (d |εm|), where εm
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is the metal dielectric constant, which is assumed to be large |εm| À 1. The
problem of the internal transverse field closely resembles the classical problem
of the field induced in a dielectric cylinder by another charged cylinder placed
parallel to the first cylinder. An elegant solution of the problem can be found
in Ref. [25], Sec.7. In the discussed case |εm| , d/b À 1 it gives the above
obtained estimate for Uin. The ratio of the potential drop Uin across a wire
to the potential drop U (z) between the wires equals to¯̄̄̄

Uin (z)

U (z)

¯̄̄̄
' b

d |εm| ln (d/b)
¿ 1. (15)

For any practical purpose we can neglect Uin in comparison to U , which
allows to reduce the problem of charge and current distribution in the two
wire system to the solution of the ordinary differential equation (2) for the
electric current I(z). Condition (15) is important for the developed analytical
theory of MPR in the system of two thin rods. However, we can envision a
system (e.g. two closely packed metal nanowires or hemispheres) that still
reveals MPR, but condition (15) is not applied.
To clarify the nature of the resonance, it is instructive to compute the

ratio of the electric and magnetic energies at the resonance:

EE
EM
∼ c2

C−1
R
|Q (z) |2 dz

L
R
|I (z) |2 dz ≈ g2

k2
≈ 1− 2

ln (d/b)k2b2 |εm|
, (16)

where we assume that the spatial frequency g, given by Eq. (3), is close to
the resonance (ga ≈ π/2) and use the expressions for the specific capacitance
C ' [4 ln(d/b)]−1 and inductance L ' 4 ln (d/b) derived in the Appendix.

In the electrostatic limit
¯̄̄
8C [(kb)2εm]

−1
¯̄̄
À 1 we obtain UE/UM À 1 thus

explaining the name given to this regime. Because of the symmetry of the
electric potential considered here, it is clear that such polarization cannot be
induced by any uniform electric field. Therefore, the discussed resonance can
be classified as the dark mode [30].
The electric current I (z) is found from Eq. (2) and used to calculate the

magnetic moment of the wire pair m =(2c)−1
R
[r× j (r)] dr, where j (r) is

the density of the current and the integration is over the two nanowires. Thus
we obtain

m =
1

2
H0a

3 ln (d/b) (kd)2
tanG−G

G3
. (17)

The metal permittivity εm has a large negative value in the optical/near-IR
range while its imaginary part is small; therefore, the magnetic moment m
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has a resonance at G ≈ π/2 (see Eq. 3) when m attains large values. For a
typical metal we can use the Drude formula (5) for εm, where the relaxation
parameter is small ωτ/ω ¿ 1. Then the normalized magnetic polarizability
αM has the following form near the MPR:

αM =
4πm

H0V
=

16 a dωp

λ2 ωr
p
2 ln(d/b)

[1− ω/ωr − iωτ/ (2ωr)]
−1 , (18)

where V = 4abd, and MPR frequency ωr = b π ωp
p
2 ln(d/b)/(4a). Note that

the magnetic moment contains a pre-factor ω2da/c2 ¿ 1 that is small in the
electrostatic limit valid for sub-wavelength nanostructures, as was predicted
earlier [18]. Close to the resonance (G = π/2) the enhancement factor can
be very large for optical and infrared frequencies because of the high quality
of the plasmon resonance for ωr ¿ ωp. Therefore, the total pre-factor in
Eq. (18) can be of the order of one, thereby enabling the excitation of a
strong MPR.
Although the electric field energy near resonance is also very high, it is

primarily concentrated in the perpendicular to the wires component of the
electric field connecting the two wires as it was discussed after Eqs. (12) and
(13). If the wavevector of the propagating wave is in the plane of the wires,
and perpendicular to the wires, then the described above MPR does not
strongly affect the electric field component parallel to the wires. The inte-
gral from the electric field, which is generated in magnetic resonance between
the wires, exactly equals to zero as it follow from Eqs. (12) and (13). Envi-
sioning a composite material that consists of such wire pairs, we expect that
the magnetic plasmon resonance will not contribute to the dielectric permit-
tivity in the direction parallel to the wires. Therefore, such a medium is not
bi-anisotropic [24] and can be described by two effective separate parame-
ters: ε and µ. Prior work on inducing magnetic moments in nanostructured
materials [17, 18] in the electrostatic regime dealt with highly symmetric
(round) nanowires. Here we demonstrate that magnetic moment can also
be induced in the strongly non-symmetric (specifically, horseshoe-shaped)
nanostructures with a large negative value of ε.
We now consider a metal nanoantenna that has a horseshoe shape, which

is obtained from a pair of nanowires by shorting it at one of the ends (see

Fig. 2). When the quasi-static condition
¯̄̄
8C [(kb)2εm]

−1
¯̄̄
À 1 holds, the elec-

tric current I (z) in a horseshoe nanoantenna can be obtained from Eq. (2),
where the boundary condition changes to Iz=a = (dI/dz)z=0 = 0 and, as
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Figure 2: Optical magnetic permeability µ = µ1 + µ2 (µ1— continous line,
µ2—dashed line) estimated from Lorenz-Lorentz formula for the composite
containing @ shaped silver nanoantennas; volume concentration p = 0.3;
left curves: a = 200nm, d = 50nm, b = 13nm; right curves a = 600nm,
d = 90nm, b = 13nm; silver dielectric constant is estimated from the Drude
formula (5).

above, a À d À b. It is easy to check that the magnetic polarizability
αM is still given by Eq. (18), where a is now equal to the total length of
the horseshoe nanoantenna. Therefore, the horseshoe nanoantenna provides
the same magnetic polarizability αM at the twice shorter length. Magnetic
permeability µ = µ1 + iµ2 for a metamaterial where the silver horseshoe
nanoantennas are oriented in one direction (”z” direction in Fig. 1) and are
organized in the periodic square lattice is shown in Fig. 2; the optical pa-
rameters for silver were taken from [28]. As one can see in the figure, the
negative magnetism can be observed, for example, in the near-infrared part
of the spectrum, including the telecommunication wavelength of 1.5µm.

3 Numerical Simulations of two-dimensional
structures

To obtain a magnetically active in the optical range material, it might be
more convenient to employ (and much easier to model) a "two-dimensional"
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Figure 3: Magnetic plasmon resonance in a silver horseshoe-shaped nano-
antenna placed in a maximum of external field H0 which is directed per-
pendicular to the plane; the frequency corresponds to λ = 1.5 µm; silver
dielectric constant is estimated from the Drude formula (5).

meta-material, with the nanoantennas having a horseshoe shape in x, y plane
and infinitely extended in z−direction. When the quasi-static condition
|k2bdεm| ¿ 1 holds (b and d are thickness and distance between the op-
posite walls, correspondingly), the MPR frequency ωr is defined by the equa-
tion G2 = 2a

p
−2/ (εmbd) = π/2. The resonant magnetic field is shown in

Fig. 3. The finite elements code FEMLAB [27] was used to calculate the
field distribution. Note that the magnetic field inside the horseshoe is large
and of the opposite sign with the external field H0, resulting in a negative
magnetic permeability in a close proximity to the magnetic plasmon reso-
nance. To estimate the effective magnetic permeability we use an earlier
developed approach [13], which gives µz = 1 + p (sH0)

−1 R (Hin −H0) ds =

(32/π) a2 pλ−2 (π/2−G2)
−1 for a plasmonic crystal composed by the horse-

shoe nano-antennas, where Hin is the magnetic field inside a horseshoe, the
integration is over the area s = da, p is the concentration of the nanoanten-
nas organized in a square lattice. For a good optical metal, such as gold or
silver, µz becomes large and negative for ω > ωr. For example, the magnetic
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Figure 4: Optical magnetic permeability µ = µ1 + iµ2 (µ1— continuous line,
µ2—dashed line) of the composite containing silver nanoantennas shown in
Fig. 3 organized in a square lattice; volume concentration p = 0.4; silver
dielectric constant is estimated from the Drude formula (5).

permeability (both real and imaginary parts) of a metamaterial composed
of silver horseshoes has a sharp resonance for ω = ωr shown in Fig. 4. The
real part µ1 of the optical magnetic permeability turns negative for ω > ωr.
Figure 4 also reveals the spectral range λ ≥ 1 µm where µ1 is still less than
−1 while the relative losses are small: δ = µ2/µ1 ¿ 1. The losses are crucial
for a such application of NIM as the perfect lens. Losses could, in principle,
be further reduced by cooling the metal nanoantennas to cryogenic temper-
atures. Simple estimates show that even at the liquid nitrogen temperature
the electron mean free path becomes of the order of the horsshoes size. The
optical properties of metals are not well understood when the mean free path
becomes larger than the nanoantenna size. For these reasons we only consider
meta-materials at the room temperature.
To illustrate the effective magnetic properties of the horseshoe meta-

materials, we simulated em wave propagation in the plasmonic crystal com-
posed from silver nano-antennas shown in Fig. 3. (The first three horseshoe
columns are well seen in Fig. 5a). The em wave is incident on the crystal
from the left, its vacuum wavelength is λ = 1.4µm. The wave is evanescent
in the crystal, as can be clearly seen from Fig. 5, and the transmittance
T < 10−6. This evanescence is due to the negative magnetic permeability of
the crystal that could be rather large at the resonance (see Fig. 4). One way
of making this crystal transparent is to fill the space between the columns
of the horseshoes by a material with negative dielectric constant ε = −3.
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Figure 5: Wave propagation through a two-dimensional (infinitely extended
in the normal to the page direction) plasmonic crystal near the plasmon
magnetic resonance. The crystal is composed of the horseshoe-shaped sil-
ver nano-antennas shown in Fig. 3, volume filling ratio p = 0.4, λ = 1.4 µm.
Magnetic fieldH of the incident em wave is directed along z−axis perpendic-
ular to plane of picture; Hz = 1 in the incident wave. (Left) Spaces between
the horseshoes are filled with vacuum: no propagation. (Right) Spaces be-
tween the horseshoes are filled with a hypothetical ε = −3 material: wave
propagates into the structure.

We speculate that such a modification can lead to a double-negative meta-
material. This is confirmed by the numerical simulations. The results are
shown in Fig. 5 (right). Indeed, the addition of a negative-ε material turns
our negative-µmeta-material into transparent NIM. Note that the negative-ε
material was added only between the adjacent columns of horseshoe-shaped
nano-antennas. No additional material was placed in the exterior of the
nanoantenna. This was done intentionally because modification of the nanos-
tructure region where most of the magnetic field is concentrated is known [29]
to affect the magnetic effective permittivity.
Interestingly, the horseshoes themselves can exhibit a double-negative be-

havior when they are closely packed. We designed a two-dimensional dense
periodic structure consisting of alternating up and down horseshoe nanoan-
tennas. One half of the elementary cell is shown in Fig. 6a; another half of the
elementary sell is obtained by 180◦ degree rotation in xy plane. (The struc-
ture then repeats itself in x and y directions; separation between antenna
centers is 80nm, horizontal periodicity is 160 nm, vertical periodicity is 400
nm; see Fig. 5). Dispersion relation ω(kx) for the electromagnetic wave prop-
agating through the periodic structure in x direction has been calculated
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by numerically solving the Maxwell’s equation for magnetic field Hz. For
computational simplicity, we have assumed a hypothetical lossless plasmonic
material with the frequency-dependent dielectric permittivity ε = 1−ω2p/ω2,
where 2πc/ωp = 225 nm. The frequency ω and the wavevector k are normal-
ized to ω0 = 2πc/λ0 and k0 = 2π/λ0, respectively, where λ0 = 1.5µm.
Remarkably, one of the propagating modes (shown in Fig. 6b) exhibits

the left-handedness: its group velocity vgr = ∂ω/∂k opposes its phase ve-
locity. Fig. 6a shows the magnetic field profile and the electric field inside
the elementary cell for kx = 0 (magnetic cutoff condition corresponding to
µ = 0). Magnetic field is concentrated inside the horseshoes, and has oppo-
site signs in the adjacent horseshoes. The dominant field in the structure is
Ex which does not contribute to the Poynting flux in the propagation direc-
tion. Note that arrows in Fig. 6 indicate the value the electric field takes at
their origin. Then Fig. 6 clearly indicates that the electric field of MPR is
mainly confined inside the horseshoes and is almost negligible in the metal.
As we have mentioned above there is a half of the elementary cell in Fig.̇6.
In another half cell the Ex field has opposite direction so that the average Ex

is zero. The electric field is primarily potential (i.e. can be derived from an
electrostatic potential), but has a non-vanishing solenoidal component that
produces the magnetic field. The potential drop between the metal arms is
much larger than the potential drop between external and internal interfaces
of an arm. This behavior of the MPR electric field, obtained from direct
computer simulations, resembles our analytical results for two wire system
(see discussion at Eqs. (12) and (13)). The fact that the dominant electric
field Ex does not change the sign inside the cell along the direction of the
propagation indicates that the mode in question does not owe its negative
dispersion to the band-folding effect common in photonic crystals. The left-
handed behavior occurs in the vicinity of λ = 1.88µm, which is close to the
MPR resonance. The negative ε necessary for the negative refractive index
is induced by the proximity of the dipole-type electrostatic resonances [17].

4 Conclusions

In conclusion, a new phenomenon of a magnetic plasmon resonance in metal-
lic horseshoe-shaped split rings was described. This resonance is distinctly
different from the geometric LC resonance described earlier for split rings
because it is determined by the plasmonic properties of the metal. This
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Figure 6: Plasmonic crystal composed from the horseshoe-shaped metal
nanoantennas; separation between antenna centers is 80 nm. Magnetic (color
and contours) and electric (arrows) fields inside a periodic array of horseshoe-
shaped nano-antennas at the cutoff (kx = 0). (b) Dispersion relation ω v. s.
kx for a left-handed electromagnetic wave.

work paves the way to designing metallic meta-materials that are magneti-
cally active in the optical and near-infrared spectral ranges. Presented three-
dimensional analytic calculations and two-dimensional numerical simulations
reveal that resonantly enhanced magnetic moments can be induced in very
thin (thinner than a skin depth) split rings with typical dimensions much
shorter than the wavelength (on the order of 100 nanometers). Periodic
arrays of such horseshoe-shaped nanoantennas can be used to design left-
handed meta-materials by exploiting the proximity of electric resonances in
the dielectric permittivity ε and magnetic permeability µ.
Acknowledgments: The authors acknowledge useful contributions and

discussions with D. Genov, and V. Podolskiy, and G. Tartakovsky. This work
was supported in part by the NSF grants ECS-0210445 and DMR-0121814
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5 Appendix

We derive equations for the capacitance C and inductance L between two
parallel wires of the radius b and length a separated by the distance d. We

17



suppose from the beginning that b ¿ d and d ¿ a. We also suppose that
the dielectric constant εm of the wires is large in absolute value |εm| À 1
whereas the skin depth δ ∼ k

p
|εm| ¿ b as it is explained in the text. To

find the capacitance C we first calculate the electric potential Φa in the point
with coordinate ra at the surface of the wire (point a in Fig. 1) obtaining

Φa =

Z
q1 (r1)

exp (ikra1)

ra1
dr1 +

Z
q2 (r2)

exp (ikra2)

ra2
dr2, (19)

where ra1 = |ra − r1| , ra2 = |ra − r2|, q1 and q2 are the electric charges
distributed over the surface of the rods; the integration goes over the surface
of the first (a, d) and second (b, c) rods in Fig. 1. For further consideration
we choose the coordinate system {x, y, z} with z axis along the (a, d) rod,
origin in the center of the system and the x axis connecting the axes of the
rods so that y axis is perpendicular to the plane of two rods. We introduce
the vector d = {d, 0, 0} between the wires and two dimensional unit vector
ρ (φ)= { cosφ, sinφ} in {x, y} plane, where φ is the polar angle. Then
the vectors in Eq. (19) can be written as ra (φa, za) = {b ρ (φa) + d/2, za} ,
r1 (φ1, z1) = {b ρ (φ1) + d/2, z1} , and r2 (φ2, z2) = {b ρ (φ2)− d/2, z2}. It
follows from the symmetry of the problem that the electric charge q1(φ, z) =
−q2(φ+ π, z) (recall that we consider antisymmetric mode when the electric
currents in the rods are equal in absolute values but follows in the opposite
directions.) We rewrite Eq. (19) splitting it in two parts

Φa ≡ Φ(0)a + Φ(1)a (20)

Φ(0)a (za, φa) =

πZ
φ=0

aZ
z=−a

q (φ, z) [
1p

∆z2 + b2∆ρ21
− (21)

1q
∆z2 + (b∆ρ2−d)2

]dz bdφ, (22)

Φ(1)a ≡
Z

q (r1)
exp (ikra1)− 1

ra1
dr1 −

Z
q (r2)

exp (ikra2)− 1
ra2

dr2, (23)

where∆z = za−z,∆ρ1= ρa−ρ = {cosφa − cosφ, sinφa − sinφ} ,∆ρ2= ρa+
ρ = {cosφa + cosφ, sinφa + sinφ}. Note that dimensionless vectors∆ρ1 and
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∆ρ2 satisfy |∆ρ1|, |∆ρ2| < 2 so that the the second terms in the radicals in
Eq. (21) are much less than a.
The electric currents in the rods and, correspondingly, electric charge q

changes with coordinate z on the scale ∼ a which is much larger than the
distance d between the rods. Therefore we can neglect z variation of the
electric charge for |∆z| < d. On the other hand the term in the square
brackets in Eq. (21) vanishes as ∼ d2/ |∆z|3 for |∆z| > d. This allows to
replace in Eq. (21) the charge q (z, φ) by its value q (za,φa) in the observation
point ra obtaining

Φ(0)a (za, φa) =

2πZ
φ=0

q (za,φ)

aZ
z=−a

[
1p

∆z2 + b2∆ρ21
− (24)

1q
∆z2 + (b∆ρ2−d)2

]dz bdφ; (25)

the accuracy of this replacement is about (d/a)2 ¿ 1. Since we consider
the quasistatic limit when the distance between the rods d ¿ λ and the
metal dielectric constant |εm| À 1 the potential lines in {x, y} plane are
close to the static case. Therefore we can safety suppose that the an-
gle distribution of the electric charge q (z, φ) is the same as it would be
in the case of two infinite metal cylinders in the static case: q (z, φ) =

Q (z)
q
(d/b)2 − 4 / (2π (d+ 2b cosφ)), where Q (z) is the electric charge per

unit length of the rod so that
R φ=2π
φ=0

q (z,φ) b dφ = Q (z) . Then the integral
in Eq. (24) gives the

Φ(0)a (z) = Q (z) arccosh

µ
d2

2 b2
− 1
¶
+O

¡
(d/a)2

¢
, (26)

where the second term includes all corrections to the integral (21) due to
finite size of the system. For the thin wires, considered here, when the radius
b is much smaller than the distance d between the wires the potential Φ(0)a

approximates as
Φ(0)a (z) ' Q (z) 2 [ln (d/b)] . (27)

The second term Φ
(1)
a in Eq. (20) is small in the limit of a ¿ λ, i.e.,

kra1, kra2 ¿ 1. The real part of Φ(1)a gives a small correction ∼ (d/a)2 to the
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potentialΦ(0)a that can be neglect. The imaginary part is important regardless
of its absolute value since it gives so-called radiative losses. To estimate the
losses we assume that b/d¿ 1 and neglect the angle dependence of the charge
distribution. Then we expand Eq. (23) in series of k and linearly approximate
Q (z) ' q1z (recall that Q (z) is an odd function of z) obtaining

Φ(1)a (z) ' −iQ (z) (ak)3 (kd)2 /45, (28)

where we neglect the terms with higher orders on k as well as all terms on
the order of (bk)2 .
Due to the symmetry of the system the potential difference U = Φa −

Φb between points a and b (see Fig. 1; za = zb) equals to U = 2Φa. The
capacitance C defined as C = Q (z) /U (z) is given by

1

C
' 2 arccosh

£
(d/ b)2 /2− 1

¤
− i

2

45
(ak)3 (kd)2 ' (29)

4 ln(
d

b
)− i

2

45
(ak)3 (kd)2 , (30)

where the first term is the capacitance between two parallel infinite cylin-
ders (see [25] Ch. 3 ); the second term gives the radiative losses due to the
retardation effects.
Consider now the inductance L between the wires. To find the inductance

L we first calculate the vector potential Aa in the point with coordinate ra
inside the wire. We neglect the edge effects and assume that the vector
potential is parallel to the axes of the wires obtaining

Aa =
1

c

Z
j (r)

µ
exp (ikra1)

ra1
− exp (ikra2)

ra2

¶
dr, (31)

where ra1 = |ra − r| and ra2 = |ra−r+ d|, j (r1) is the density of the current
and the integration goes over the volume of the first wire. We consider
the quasistatic case when the skin effect is small (kb

p
|εm| ¿ 1). Then the

electric current uniformly distributes over the cross-section of a wire and
j (r) = I (z) / (πb2). Following the procedure used above for calculating the
electric potential, the vector potential is expressed as Aa = A

(0)
a +A

(1)
a , where

A(0)a =
1

c

Z
I (z)

πb2

µ
1

ra1
− 1

ra2

¶
dr, (32)
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A(1)a =

Z
I (z)

πb2

µ
exp (ikra1)− 1

ra1
− exp (ikra2)− 1

ra2

¶
dr. (33)

The term A
(0)
a estimates in the same way as Φ(0)a . As result we obtain the vec-

tor potential A(0)a averaged over the cross-section of the wire in the following
form

A(0)a (z) ' I (z)

2c
[4 ln(

d

b
) + 1], (34)

where I (z) is electric current, and we neglect terms on the order (b/d)2 ¿ 1
and (d/a)2 ¿ 1. To estimate Eq. (33) we expand it in series on k obtaining
that the linear term equals to zero, k2 term gives small correction (∼ (kd)2)
to A(0)a and the third order on k gives the radiative losses, namely

A(1)a ' i(kd)2k
1

c

Z
I (z) dz ∼ 2iI (z)

c
(kd)2ka, (35)

where we rather arbitrary neglect variation of the current over the rod length
in transition to the second estimate. We obtain inductance L form the equa-
tion Aa −Ab = 2Aa = (L/c)I (z) as

L = 4 ln(
d

b
) + 1 + 4i(kd)2ka.

The first two terms correspond to the self-inductance per unit length of a
system of two parallel infinite wires ([25], Ch.34.) This estimate as well as
Eq.( 30) are certainly invalid near the ends of the rods, but in calculating the
current distribution I (z) and magnetic moment this region is unimportant.
We are now in a position to compare the radiation losses (given by imag-

inary parts of capacitance C and inductance L) and the ohmic loss in the
metal wires. In near infrared spectral region the dielectric constant εm for
a "good" optical meal (Ag, Au, etc.) can be estimated from the Drude for-
mula (5) as εm (ω) ∼ (ωp/ω)2 (1− iωτ/ω)

−1, where ωp is plasma frequency
and ωτ ¿ ω ¿ ωp is the relaxation rate. Thus we obtain that the real part
of the rod resistance Rohm ∼ 8

¡
ωτ/ω

2
p

¢
(a/b2) should be compared with "ra-

diation" resistance Rrad ∼ (kd)2(ka)2/c. For the silver nanowires, considered
in the paper, the ohmic losses either larger (Rohm > Rrad) or much larger
(Rohm À Rrad) than the radiation losses. Therefore we can neglect the imag-
inary parts of the capacitance C and inductance L and approximate them
for simplicity as

L ' 1

C
' 4 ln d

b
. (36)
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This estimate is of logarithmic accuracy; its relative error is on the order of
(4 ln d/b)−1 . Note that the radiation losses crucially depend on the parameter
ka. Magnetic plasmon resonance address in this paper becomes very broad
when ka > 1, placing a rather sever constraint on the length 2a of the wire.
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