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Machine learning assisted quantum super-
resolution microscopy

Zhaxylyk A. Kudyshev1,2, Demid Sychev1,2, Zachariah Martin1,2, Omer Yesilyurt1,2,
Simeon I. Bogdanov3,4, Xiaohui Xu1,2, Pei-GangChen1,2, AlexanderV. Kildishev 1,
Alexandra Boltasseva 1,2 & Vladimir M. Shalaev 1,2

Oneof themain characteristics of optical imaging systems is spatial resolution,
which is restricted by the diffraction limit to approximately half the wave-
length of the incident light. Along with the recently developed classical super-
resolution techniques, which aim at breaking the diffraction limit in classical
systems, there is a class of quantum super-resolution techniques which
leverage the non-classical nature of the optical signals radiated by quantum
emitters, the so-called antibunching super-resolution microscopy. This
approach can ensure a factor of

ffiffiffi
n

p
improvement in the spatial resolution by

measuring then -th order autocorrelation function. Themain bottleneckof the
antibunching super-resolution microscopy is the time-consuming acquisition
of multi-photon event histograms. We present a machine learning-assisted
approach for the realization of rapid antibunching super-resolution imaging
and demonstrate 12 times speed-up compared to conventional, fitting-based
autocorrelation measurements. The developed framework paves the way to
the practical realization of scalable quantum super-resolution imaging devices
that can be compatible with various types of quantum emitters.

Due to the wave nature of light, the spatial resolution of conventional
far-field microscopes is fundamentally limited by the diffraction limit
to approximately half the wavelength of the incident light, known as
the Rayleigh criteria1 or Abbe limit2. Far-field super-resolution micro-
scopy (SRM) techniques that aim at overcoming the diffraction limit
could greatly impact the fields of biology, physics and chemistry, as
well as device engineering, semiconductor industry, and could lead to
novel applications3–8. The developed SRM techniques typically break
one ormore of the underlying fundamental assumptions on the nature
of light-matter interaction within the optical system, under which the
diffraction limit is derived. Specifically, it is assumed that the illumi-
nation intensity is homogenous, the optical response of the stationary
object is linear, and all the optical fields in the system are classical.
Recently, a plethora of novel super-resolution techniques, including
stimulated emission depletion9, structured illumination microscopy10,

photoactivated localization microscopy11, and stochastic optical
reconstruction microscopy12 has been developed. All the aforemen-
tioned techniques are realized within classical optical systems via
breaking the homogeneity, linearity, or stationarity assumptions.

Another promising route in the realizationof SRM techniques is to
take into account the quantum nature of light13–16. Recently, several
quantum schemes, utilizing multimode squeezed light17 and general-
ized quantum states18 have been proposed. These approaches use
complex quantum states of light as an illumination source, which
demand highly efficient, deterministic sources of such quantum pho-
tons or entangled photon pairs. In contrast, several SRMs have been
developedby relyingon thequantumnatureof the light emittedby the
object itself. This approach is based on fact that some quantum
sources of light produce emission with sub-Poissonian temporal pho-
ton statistics, which can be analyzed bymeasuring the autocorrelation
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function of the emission19. By analyzing the n-th order autocorrelation
function at zero time delay g nð Þðτ =0Þ of nonclassical light emitted
from a point source, it is possible to reduce the size of the effective
point spread function by a factor of

ffiffiffi
n

p 20–22.
The antibunching-based SRM can be coupled with a classical

approach to further improve the resolution of the imaging system. By
combining image scanning microscopy with the measurement of the
second-order quantum photon correlation, a spatial resolution of four
times beyond the diffraction limit was achieved23 with only a modest
hardware overhead compared to regular confocal scanning micro-
scopy. This combination makes the antibunching-based SRM techni-
que a very attractive platform for imaging quantum light sources, as
these are typically analyzed using confocal scanning microscopy. The
main bottleneck of this framework is the time required for the acqui-
sition of the time-resolved photon statistics needed to accurately
determine the values of the autocorrelation function at zero delay.
This accuracy depends on the number of registered correlated photon
detection events. The time requirement scales up exponentially with
the increasing order of the autocorrelation function. This exponential
time cost makes antibunching based SRM techniques prohibitively
difficult for in situ and live tissue samples, where despite a great
potential of quantum metrology to image such samples24–26, bio-
markers still exhibit limited “photon budgets.”27 Hence, in order to
realize scalable and practical antibunching-based SRM, one needs to
develop a fast and precise approach to determine gð2Þðτ =0Þ.

Recently, convolutional neural networks (CNNs) enabled the
rapid classification of quantum emitters depending on whether gð2Þð0Þ
is above or below a given threshold value based on sparse auto-
correlation function measurements28–30. Leveraging on these results,
we present a CNN-based regression model that allows an accurate
estimation of the gð2Þð0Þ value based on sparse data. Using the devel-
oped CNN model, we reduced the acquisition time in the
antibunching-based scanning SRM technique by 12 times, thus mark-
ing an important step towards the practical realization of scalable
quantum super-resolution imaging devices.

Results
Machine learning assisted antibunching super-resolution
microscopy
The antibunching SRM technique relies on the detection of quantum
correlations in the signal radiated by quantum emitters, which allows
for a gain in the spatial resolution of a factor of

ffiffiffi
n

p
by measuring n-th

order autocorrelation function21. This fact can be understood by con-
ducting a Gedanken experiment first proposed by Hell et al. 31. In the
case of a hypothetical emitter that emits photons by pairs, an
improvement in resolution can be theoretically obtained by sending
each of the two photons to a separate camera. Since the two cameras
will record two independent point-spread function (PSFs) estimates,
the spatial resolution can be improved by a factor of

ffiffiffi
2

p
via simple

multiplication. However, instead of requiring the emitter to emit pairs
of photons, one can acquire the same amount of information by
assessing an absence of the two-photon correlation in single photon
emission by measuring the second-order autocorrelation function.
Furthermore, one can achieve an arbitrarily high improvement in
resolution bymeasuring higher-order correlations in the emission of a
single photon emitter. In the most general form, the intensity dis-
tribution of the super-resolved image based on antibunching SRM
G nð Þðx,yÞ can be obtained via retrieving spatial distributions of the n-th
order autocorrelation function at zero timedelay g nð Þðx,y,τ =0Þ and the
number of detected photons eNðx,yÞ21:

G nð Þðx,yÞ∼ eNðx,yÞD En Xi = imax

i= 1

ciχ i, ð1Þ

here heNðx,yÞi is the average number of detected photon from a given
point x,yð Þ of the sample; χ i is a function of the product

g j1ð Þ x,y,0ð Þg j2ð Þ x,y,0ð Þ . . . g jlð Þ x,y,0ð Þ, where imax is the number of

ordered combinations, fulfilling the condition
Pl

k = 1 jk =n. For exam-
ple, for n= 2 case, Eq. (2) takes the following simple form21:

G 2ð Þðx,yÞ∼ eNðx,yÞD E2
1� g 2ð Þðx,y,0Þ� � ð2Þ

The most commonly used approach for retrieving the g 2ð Þð0Þ
value is a Hanbury-Brown-Twiss (HBT) interferometry measurement,
composed of a beam-splitter directing the emitted light to two single-
photon detectors connected to a correlation board (Fig. 1a). The cor-
relation board registers events consisting of pairs of detector clicks. It
then arranges these events into a histogram as a function of the time
delay τ between the clicks, which can be used for the post-processing
via Levenberg-Marquardt fitting:

g 2ð Þ τð Þ= 1� a1e
� τ

t1 +a2e
� τ

t2 , ð3Þ

Here, aj,tj ,j = 1,2 are the fitting parameters related to the internal
dynamics of the emitters. Figure 1b shows themain steps of the fitting-
based approach for the realization of the antibunching SRM technique.
The area of interest is divided into n×m pixels, and autocorrelation
histograms are acquired at each pixel. The autocorrelation measure-
ment is performed for several minutes. The L-M fitting is done over all
of the HBT histograms and the corresponding g 2ð Þ x,y,0ð Þ map is
retrieved. Finally, the resolved image is calculated via Eq. (2) (Fig. 1d).

In our demonstration, we use single nitrogen-vacancy (NV)
centers in nanodiamonds dispersed on a coverslip glass substrate as
single photon emitters. These emitters typically yield between 104 and
105 counts per secondon eachof the single-photon detectors in theHBT
setup (when in focus) and exhibit fluorescence lifetimes between 10 and
100ns. During the scan, when the emitters are partially out of focus, the
fluorescence counts drop significantly. Consequently, in order to assess
g 2ð Þð0Þ via Levenberg-Marquardt (L-M)fittingwithanuncertainty varying
between ±0.01 to ±0.05, autocorrelation histogram acquisition times of
1min are required per pixel. In the pulsed excitation regime, thefitting is
not required to retrieve g 2ð Þð0Þ as long as the pump repetition period
is much longer than the emitter’s fluorescence lifetime. However, this
requirement becomes somewhat impractical when the emitter lifetime
is long as in the case of NV centers. The developed ML approach
addresses the aforementioned problem by rapidly estimating the
g 2ð Þ x,y,0ð Þ values based on sparse HBT measurement. The main frame-
work of the developed approach is shown in Fig. 1c. A CNN regression
network is trained on a set of “sparse” autocorrelation data with short
acquisition times (see the Methods section). Once trained, the CNN
networkestimates theg 2ð Þð0Þ values, requiring anacquisition timeof less
than 10 s.

Machine learning assisted autocorrelation function
measurement
The main building block of our ML assisted antibunching SRM tech-
nique is the CNN based regression model, used for retrieving gð2Þð0Þ
values. In this section, we highlight the structure of the CNN, its
training and testing, as well as compare its performance against con-
ventional L-M fitting. The training dataset for sparse second-order
autocorrelation histograms consists of measurements performed on a
set of 40 randomly dispersed nanodiamonds with NV centers on a
coverslip glass substrate. Figure 2a shows the schematics of the HBT
setup used for thesemeasurements. Two avalanche detectors (D1, D2)
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with 30 ps jitter are connected to a pulse correlator with a 4 ps internal
jitter. The co-detection events are recorded over a range of 500 ns and
collected into 215 equally sized time bins. For each of the 40 emitters,
hundreds of sparse autocorrelation histograms with 1 s acquisition
time are collected, until the total number of co-detection events in
their sum allows a precise ground truth (gð2Þð0Þ) estimation via L-M
fitting with fitting uncertainty varying between ±0.01 to ±0.05. The
estimated ground truth value is then assigned as a label to the entire
set of 1 s histograms.We then formedall thepossible combinations of 1
to 10 of these 1 s histograms to obtain training data that emulated
histograms with acquisition times from 1 s to 10 s. Such a data aug-
mentation process assumed that the emission is a process with no
memory over times exceeding 1 s and allowed us to significantly
extend the training dataset. More information on the training dataset
collection process and augmentation is described in the Methods
section. Additional details on the CNN structure and training can be
found in Supplementary Section 1, Table S1 and Figure S1.

Figure 2b shows the structure of the CNN used for gð2Þð0Þ regres-
sion. The CNN consists of one input layer, three hidden convolutional
layers, one max-pooling layer followed by dropout, three fully con-
nected layers, and one output node containing the regression result.
The input layer had 215 nodes corresponding to the number of bins in
the inputhistogram.The feature learningpart of theCNN isoptimized to
capture the salient features of the autocorrelation datasets, while the
regression part is trained to predict gð2Þð0Þ values based on these
extracted features. All the hidden layers were comprised of 260 filters.
The third hidden layer’s output is connectedwith themax-pooling layer,
followed by the dropout layer. The kernel size of the filters (4) is chosen
to be the same for each layer. Importantly, the CNN takes the total
number of two-photon detection events Nevents in the histogram as an
additional input. Nevents is concatenated to the output of the feature
learning part and used as a regularization term during the training
process. The 5s-10s histograms acquired on pixels where the contribu-
tion of the quantum emission to the total counts is negligible, feature

Nevents < 4, while the histograms on areas close to the quantum emitter
locations feature Nevents = 65 on average. To populate the “dark” pixels,
theCNNregressionnetwork is implicitly biased toproducegð2Þð0Þ= 1, on
the datasets with Nevents< 4 counts. Supervised training of the CNN
regressionmodel was performed using the augmented dataset of 5s-10s
sparse HBT histograms and the corresponding ground truth labels. The
training process is realized by performing adamax gradient descent
optimizationusing theKeras library32 for 100epochswithmeanabsolute
percentage error loss function. 80% of the dataset is used for training,
while the remaining 20% are used for validation and testing.

The performance of the trainedCNN regressionmodel is assessed
via calculating the mean absolute percentage error (MAPE) and the
coefficient of determination (r2) on the 5 s histogram datasets. Fig-
ure 2c shows the regressionplot of the L-Ffitting performedon 5 sHBT
histograms.

Markers show the average value of the prediction, while error bars
show the standard deviation over the set of 5 s histograms belonging to
the same emitter. Due to the sparsity of the HBTmeasurement, the L-M
fitting expectedly cannot ensureprecisefittingof thedata,which results
in MAPE= 32%, r2 = 70% and root mean square error (RMSE) of 0.215.

In contrast, the CNN regression model ensures very precise pre-
dictions of the gð2Þð0Þ values basedon 5 sHBThistograms (Fig. 2d).Due
to the ability of the CNN network to learn hidden correlations between
signature features of the sparse datasets and the ground truth labels,
the CNN regressionmodel shows excellent performance on the sparse
dataset and ensures lowMAPE (5%), a high coefficient of determination
of 93% and RMSE of 0.0018. The CNN performance is also robust
against the reduction of the acquisition time. We analyze the perfor-
mance of both approaches on 5 s, 6 s, and 7 s HBT datasets. The per-
formanceof the directfitting ensures 30% and 27%MAPEwhen applied
to 6 s and 7 s HBT measurements, respectively. The CNN regression
model ensures performance that ismuchmore robust than L-M fitting.
It ensures 3.92% MAPE on 6 s HBT datasets and reaches up to 3.58%
MAPE when applied to 7 s datasets.
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Fig. 1 | General framework of the machine learning (ML) assisted antibunching
SRM. Antibunching-based SRM image acquisition starts with an area of n by m
pixels (a) and measures complete antibunching histograms via Hanbury-Brown-
Twiss (HBT) interferometry at each pixel (b). The Levenberg-Marquardt (L-M) fit is
done on each pixel’s HBT histogram to retrieve g 2ð Þ x,y,0ð Þ distribution. Finally, the

super-resolved image is constructed using Eq. 2 (d). Alternatively, ML-assisted
approach relies on pre-trained CNN regression model, which allows to accurately
predict g 2ð Þ x,y,0ð Þmaps utilizing sparse HBTmeasurement data (c). The developed
approach ensures at least 12 times speed-up compared with the conventional L-M
fitting based antibunching SRM.
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Experimental realization of machine learning assisted anti-
bunching super-resolution microscopy
The benchmarking of the ML-assisted regression of autocorrelation
data enables the experimental demonstration of the ML-assisted
antibunching SRM. The experiment is realized on a sample of ran-
domly dispersed nanodiamonds with NVs on a glass substrate. In this
demonstration, the objective is scanned using a piezo-stage with sub-
10 nm resolution over the 775×775 nm2 region of interest, which is
divided into 1024 (32×32) pixels and contains one nanodiamondwith a
single NV center. Autocorrelation measurements are performed on
each pixel in 1 s time increments with a 7 s total acquisition time per
pixel. Along with the autocorrelation data, the corresponding photo-
luminescence (PL) map is retrieved (Fig. 3a).

The cross-section of the diffraction-limited image, taken along
the blue dashed line (Fig. 3a), is shown in Fig. 3b. Gaussian fitting of
the intensity distribution yields a full width half maximum
(FWHM=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnð2Þ

p
σ) of 310nm. We therefore treat the PSF of the

optical microscope as a Gaussian distribution with a FWHMof ~300nm
(see Supplementary Figure S2 for setup PSF characterization). By L-M
fitting the 5 s sparse histograms of each pixel, the gð2Þðx,y,0Þ map is
retrieved. Due to the sparsity of the HBT histograms, the L-M fitting
expectedly leads to a noisy reconstruction of the gð2Þðx,y,0Þ distribution
(Fig. 3c). Figure 3d shows the corresponding reconstructed image of
Gð2Þðx,yÞ (Eq. 3). The cross-section of the obtained image and corre-
sponding fitting with the same σ value as of the original PL image are
shown in Fig. 3e. Here we can see that the gð2Þðx,y,0Þ obtained via L-M
fitting leads to a noisy, blurred image without any gain in spatial reso-
lution, which is a direct consequence of the inaccurate retrieval of the
gð2Þðx,y,0Þ In contrast, the CNN-based antibunching SRM ensures the
expected √2 gain in resolution on sparse 7 s HBT scan. Figure 3 (f, g)
show gð2Þðx,y,0Þ distribution retrieved via using the pre-trained CNN (f)
and corresponding super-resolved image (g). Here, we can see that ML-
based framework ensures precise reconstruction of the gð2Þðx,y,0Þmap,
and as a result achieves a

ffiffiffi
2

p
gain in the spatial resolution of the

reconstructed image. Gaussian fitting of the cross-section
distribution of the resolved image shows that ML assisted approach
ensures a FWHM of 219 nm, which corresponds to σCNN =
σ=

ffiffiffi
2

p
(Fig. 3h).

Up until now, we have considered an acquisition time of 7 s per
pixel. However, the robustness of the regression model indicates that
the developed approach can be efficiently applied to more sparse
datasets. Figure 4a–c shows the reconstructed images basedon 5 s, 6 s,
and 7 s HBT scans, respectively, and Fig. 4d compares their cross-
sections, which appear stable against the reduction of the acquisition
time. It isworth noting that the fitting-based approach requires at least
1min of HBTmeasurement per pixel for precise retrieval of the gð2Þð0Þ
values, as it has been observed during dataset collection process
(Section 2). This time requirement significantly depends on the prop-
erties of the single-photon emitters, e.g. quantum purity, lifetime, and
emission rate, and can be significantly longer in the case of low emis-
sion rates of the emitter. Here, the developed ML-assisted anti-
bunching approach ensures up to 12 times speed-up compared with
the fitting-based approach.

ThedevelopedML-assisted SRM is also capable of resolving closely
spacedquantumemitters (Fig. 5). Figure 5a–c shows the PL distribution,
CNN-based retrieved gð2Þðx,y,0Þmap and the resolved image of the two
NVs separated by ~600nm distance. By comparing the original PL dis-
tribution and the resolved image, the expected

ffiffiffi
2

p
improvement in the

spatial resolution is observed. By performing the Gaussian fitting of the
cross-section (taken along the dashed line in Fig. 5a), one can retrieve
the FWHM values of each of the lobs, which are equal to ~465 nm
(Fig. 5d). By performing the same fitting on the resolved image,

ffiffiffi
2

p

narrowingof the emission features (FWHM=330nm)by theCNNbased
approach is confirmed. We also use a Monte-Carlo simulation (para-
meters are tabulated inTable S2) to confirmenhanced resolutionof two
closely spaced emitters (Figures S3 and S4), as well as three closely
spaced emitters (Figure S5). See Supplementary Section 3 for further
details on the simulation and its results.
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Discussion
The proposedML assisted regression technique allows for a significant
speed-up of quantum SRM imaging. Specifically, the performance of
the CNN-assisted SRM is demonstrated on nanodiamonds that contain
single NV centers as quantum emitters. In the microscopy of quantum
light sources, the developed ML-assisted super-resolution framework
ensures a speed-up of 12 times compared to the conventional L-M
fitting-based approach for retrieving the second-order autocorrelation
value at zero delays, g 2ð Þ 0ð Þ. The proposed approach can be extended
to rapid measurements of higher-order autocorrelation functions,
which opens up the way to the practical realization of scalable quan-
tum super-resolution imaging systems. It is worth noting that the
single-to-noise ratio of quantum imaging scanning microscopy

decreases with the greater density of markers for the case of higher-
order autocorrelation measurements. This makes it difficult to extend
quantum imaging scanning microscopy to higher order correlations.
While the approach developed in this work opens the way to speed-up
the antibunching-basedmicroscopy in general, it is an open question if
the ML-assisted techniques can be used for overcoming the afore-
mentioned issues. This interesting avenue can be a subject of future
studies.

Methods
Experimental setup
The sample with nanodiamonds containing NV centers was prepared
by cleaning a coverslip glass substrate with solvents, treating it with
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Fig. 3 | Machine learning assisted antibunching SRM of a single NV center.
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ultraviolet radiation for an hour, and drying a 5μL droplet of a soni-
cated nanodiamond solution (20 nm average size, Adamas Nano) on
the coverslip surface. Optical characterization was performed using a
custom-made scanning confocal microscope with a 100 μm pinhole
based on a commercial inverted microscope body (Nikon Ti−U). To
locate the emitters, objective scanning was performed using a P-561
piezo stage driven by an E-712 controller (Physik Instrumente).
Immersion microscopy was performed using an oil objective with a
numerical aperture (NA) of 1.49. The optical pumping in the CW
experiments was administered by a continuous wave 532 nm laser
(RGB Photonics). Power on the order of 1mW (measured before
entering the optical objective) was used to pump the NV centers. This
excitation power is above the NV center saturation power, and was
used in order to obtain sufficient photon counts in the 1 s auto-
correlation histograms for the machine learning algorithm to extract
g(2)(0) values. The excitation beamwas reflectedoff a 550 nm long-pass
dichroic mirror (DMLP550L, Thorlabs), and a 550nm long-pass filter
(FEL0550, Thorlabs) was used to filter out the remaining pump power.
Two avalanche detectors with a 30ps time resolution and 35% quan-
tum efficiency at 650 nm (PDM, Micro-Photon Devices) were used for
single-photon autocorrelation measurements. Time-correlated pho-
ton counting was performed by a “start-stop” acquisition card with a
4 ps internal jitter (SPC-150, Becker & Hickl). The total histogram span
was set to 500ns and the co-detection events were collected into 215
time bins.

Training dataset
In order to train the regression network, autocorrelation measure-
ments were performed on a set of 40 emitters. For each emitter,
autocorrelation datasets were acquired in series of 1-second-long
intervals. These “sparse” datasets acquired for each emitter were
compounded into a “full” dataset, from which the g 2ð Þ 0ð Þ value was

attained using the L-M fitting algorithm. Autocorrelation measure-
ments on each emitter were performed by repeating acquisitions for
one second, until accumulating about 300 co-detection events per bin
in total. To extract an estimate of the autocorrelation at zero delays,
the complete autocorrelation histograms were fitted according to a
three-level emittermodel (Eq. 3) using the Levenberg-Marquardt (L-M)
method.

L-M fitting is realized by using non-linear least squares to fit a
function, g 2ð Þ τð Þ, to data. The main goal of the fit is to determine
parameters (a1,a2,t1,t2) that minimizes the mean absolute difference
between data and the function. It is worth noting that the position of
the zero-th time-bin is assumed to be known.

The training dataset at this point consisted of 9416 sparse HBT
histograms. The emitters in the dataset covered a broad range of
g 2ð Þ 0ð Þ values from0.1 to0.884,while the total number of counts of the
1 s HBT histograms was in the range of 1.2 to 61.

The 1 s HBT histograms were used for data augmentation.
Specifically, we formed all the possible combinations of 1 to 10 of
these 1 s histograms to obtain training data that emulated histo-
grams with acquisition times from 1 s to 10 s. This was done via
bin-wise summation of the histograms. Such data augmentation
processes assumed that the emission is a process with no memory
over times exceeding 1 s and allowed us to significantly extend
the training dataset.

Data availability
The datasets generated and/or analyzed during the current study are
available from the corresponding author on request.

Code availability
The code used for the ML-assisted measurements and simulations is
available from the corresponding author on request.
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