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Strong fluctuations of Tocal fields may result in very large optical nonlinearities in small-particle composites.
Enhancement associated with particle clustering is found for a number of optical processes, including four-
wave mixing (FWM), third-harmonic generation (THG), Raman scattering, and nonlinear refraction and ab-
sorption in Kerr media. Field fluctuations and optical nonlinear susceptibilities are especially large in fractal
clusters. The enhancement of optical processes is expressed in terms of the resonant linear absorption by
collective dipolar eigenmodes in a cluster, and quality factors, ¢, of the modes (¢ 1). It is shown that the
susceptibility of a composite material consisting of random small-patticle clusters is proportional to q° for
Raman scattering and the Kerr optical nonlinearity, and to ¢* and g® for THG and FWM, respectively. For all
of these processes, a spectral dependence of the effective susceptibility is found. Broad-scale numerical simu-
lations of the optical response in small-particle composites are performed to complement the theory. The
simulations are in reasonable agreement with available experimental data.

I. INTRODUCTION

Nonlinear electrical and optical properties of nanostruc-
tured composites have attracted much attention in recent
years.!"'* Composite materials can have much larger nonlin-
ear susceptibilities at zero and finite frequencies than those
of ordinary bulk materials. The enhancement of the nonlinear
optical response in composites is due to strong fluctuations
of the local fields; these fluctuations are especially large in
composites with fractal morphology.>!*!5 Nanostructured
composite materials are potentially of great practical impor-
tance as media with an intensity-dependent dielectric func-

* tion and, in particular, as nonlinear filters and optical bistable

elements. A typical system under consideration is a compos-
ite material in which a nonlinear material is embedded in a
host medium which can be linear or nonlinear. The response
of a nonlinear composite can be tuned by controlling the
volume fraction and morphology of constitutes.

Stroud and Hui,! and Flytzanis with co-workers,” consid-
ered the electromagnetic response of nonlinear particles ran-
domly embedded in a linear host in the dilute limit when the
interaction between particles is small. Perturbation expan-
sions that allow one to determine small corrective terms for
nonlinear susceptibility were developed by Yu, Hui, Stroud,
and their co-workers® (some related problems, including the
case of spherical nonlinear inclusions, have also been studied
by Bergman with co-workers®). These authors also consid-
ered the case where inclusions and host material may possess
nonlinearities up to the fifth order.

Sipe and Boyd studied nonlinear susceptibility of com-
posites within the Maxwell-Garnett model.” Hui and Stroud
have generalized the differential effective-medium approxi-
mation, which they developed previously to model the effec-
tive linear response of a fractal cluster, to treat the effective
nonlinear rf:sponse:.10 Their analysis showed that the cluster-
ing of particles can result in an appreciable enhancement of
the nonlinear response per particle (relative to the totally
random case) only when a host is a better conductor than the
nonlinear inclusion. A similar conclusion was obtained by Yu
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who applied a multifractal analysis of the voltage distribu-
tion for a deterministic fractal cluster embedded in the hier-
archical lattice."!

Strong enhancement of nonlinear susceptibilities at zero
frequency near a percolation threshold was pointed out by
Zhang and Stroud.'? Critical behavior of nonlinear compos-
ites near the percolation threshold was also analyzed by Hui
and by Yu with co-workers.'® Using the effective-medium
approximation (EMA) and the transfer-matrix numerical
simulations for random networks, Zhang and Stroud have
obtained a strong enhancement of cubic nonlinear suscepti-
bility in a metal-insulator composite near surface-plasmon
resonances. ' Recently, Levy, Bergman, and Stroud showed
that an induced cubic nonlinearity can be generated in a
composite, even though none of its components possess it
intrinsically.'

The aggregation of particles often results in fractal clus-
ters. The number of monomers in a fractal cluster, N, scales
as N=(R,/Ry)P, where D is an index called the Hausdorff
dimension, R, is the radius of gyration, and R, is a typical
separation between nearest neighbors. The pair-correlation
function, g(r), in a fractal cluster also has a power-law de-
pendence, g(r)OCrD ~4 where d is the dimension of the em-
bedding space. A fractal is called nontrivial if D<<3.

Shalaev and his co-workers?™ studied nonlinear optical
properties of fractal aggregates and showed that the aggrega-
tion of initially isolated particles into fractal clusters results
in a huge enhancement of the nonlinear response within the
spectral range of collective dipolar resonances (e.g., surface-
plasmon resonances). The eigenmodes were found by diago-
nalizing the interaction operator of the dipoles induced by
light on particles forming the cluster. Giant fluctuations of
the local fields were studied by Stockman with co-workers. !¢
Many of the dipolar eigenmodes are strongly localized in
different parts of a cluster with random local structure'6-13
(however, there are delocalized modes as well); this leads
ultimately to strong fluctuations of local fields in fractals.

The prediction of a huge enhancement of optical nonlin-
earities in fractal clusters> was then confirmed
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expen'ment::ﬂly3 for the example of degenerate four-wave
mixing (DFWM). Aggregation of initially isolated silver par-
ticles into fractal clusters in this experiment led to a
10%-fold enhancement of the efficiency of the nonlinear four-
wave process.:

Numerical simulations of the nonlinear optical response
in fractal clusters have been previously performed for the
special case of diluted clusters.'? This model can describe, in
particular, nanoparticles in a fractal host such as a polymer-
tree. In the central part of the diluted cluster spectrum, the
nonlinear optical response scales as a function of the gener-
alized frequency variable,* whereas, in the wing, the re-
sponse can be well described by the binary approximation.?

In this paper we present large-scale numerical simulations
for a number of nonlinear optical processes in composite
materials consisting of original nondiluted fractal clusters. In
particular, the model of cluster-cluster aggregates (CCA’s)
with D=1.78, that provides a good description of metal col-
loid aggregates, is used in the simulations. The results of
calculations are averaged over an ensemble of 500-particle
CCA’s. Particles in a cluster are assumed to interact via light-
induced dipolar fields resulting in the formation of collective
eigenmodes. The simulations are based on exact formulas,
describing the nonlinear cptical responses in an arbitrary
(fractal or nonfractal) small-particle composite. These for-
mulas are expressed in terms of the ensemble-average prod-
ucts of local fields (or local linear polarizabilities) that are
found through the decomposition over the dipolar eigen-
modes of a cluster. A comparison with available experimen-
tal data is also performed.

The paper is organized as follows. In Sec. II we present
the results of calculations of local-field intensities in fractal
and nonfractal clusters. In Sec. III we derive formulas that
describe enhanced optical processes in composites and
present the results of our numerical simulations. Specifically,
we consider the following optical phenomena: four-wave
mixing, harmonic generation, Raman scattering, and nonlin-
ear refraction and absorption in Kerr media. The obtained
results are briefly summarized and discussed in concluding
Sec. IV.

II. ENHANCED LOCAL FIELDS IN SMALL-PARTICLE
COMPOSITES

Similar to the preceding paper,?® we consider a system of
N polarizable particles (monomers) with the dipole-dipole
interactions between them at the optical frequency. The
monomers are positioned at the points r; (i=1,...,N) and
assumed to be much smaller than the wavelength, A, of the
incident wave. For the sake of simplicity we restrict our con-
sideration to the quasistatic limit (i.e., assume that R.<\).
Then, the interaction operator has the form
[5a5—3n(ij)ngj)]r73

@ i oo

T o 1#],
Was=(ialW|jB)= . (1
0, i=j,

where Greek indices stand for Cartesian components (the
summation over repeated Greek indices is implied),
I‘UEri—l‘j, and n(ij)Erij/r,-j.

The enhancement of optical processes in a small-particle
composite occurs because local fields exhibit strong fluctua-

‘

VLADIMIR M. SHALAEYV, E. Y. POLIAKOV, AND V. A. MARKEL 53

tions that significantly exceed the applied field. The local
field, E;, acting on the ith particle (monomer) in a cluster
can be found from the theory of the linear optical response:20

Eia=a0_1a,-'aﬁEg,)), (2)

where E(?) is the applied field, aj is the polarizability of the
individual monomer, and @; ,g is the local polarizability of a
monomer in a cluster which is related to the local dipole
moment d;, induced on the ith particle via the formula
d;iy= ai,aBEfgo) [cf., Eq. (13) of the preceding paper’®]. Note
that since we restrict our consideration to the quasistatic ap-
proximation, by E'®, E;, and d; we mean the amplitudes of
the fields and dipoles, i.e., the spatial- and time-varying fac-
tors are omitted. By solving the coupled-dipole equations
(CDE’s) in the quasistatic approximation, we obtain [see
Egs. (1), (7), and (12) of the preceding paper®®]

(ialn)(nljB)
“"'“ﬁ_% (w,—X)—id’ 3
where X=—Re[@;'],6=—Im[a;'], and w, and |n) are
the eigennumbers and eigenvectors of the interaction opera-
tor: (n|W|m)=w,8,,,; accordingly, (ia|n) are the compo-
nents of the vector |n) in the orthogonal basis |ia) (see the
preceding paper?®).

The light frequency w enters in the basic equations (2)
and (3) implicitly via the complex variable
Z=a, Yw)= —[X+i6]. Material and geometrical proper-
ties of monomers affect the problem only via the parameter
Z. The real part, X=X(w), plays the role of a spectral vari-
able instead of w, and the imaginary part, >0, describes
dissipation in a monomer; in general, § can also depend on
w. (Note that ay may describe not only the polarizability of
a simple monomer, such as a sphere, but also the polarizabil-
ity of a composite monomer, such as a coated sphere.) The
dependences of X and § on w for some real systems are
discussed in the preceding paper.”’

The parameter characterizing enhancements of the local-
filed intensities can be defined as follows:

G=(|E*)/|[ED)?, @)

where the symbol (---) denotes an average over an en-
semble of random clusters. As shown in Ref. 16, the en-
hancement G is related to the cluster absorption, Im
a(X)=(13)Im(a; ,,), as follows:

G=481+X% 8 Ima(X). 5)

According to (5), the enhancement factor G~ (X?/8)Ima for
|X|> 6, i.e., it can be very large, if Ima(X) is not too small.
Thus, we anticipate a huge enhancement for a system with a
strong inhomogeneous broadening, when Ima(X) is rela-
tively large in a wide range of |X|, including |X|> 6.
(Clearly, in the far Lorentz wing, when |X|— o, the absorp-
tion is Ima=~ 6/X? and G~1.)

As shown in the preceding paper (cf., Figs. 1, 2, and 3 of
Ref. 20), inhomogeneous broadening in fractal cluster-cluster
aggregates (CCA’s) is significantly larger than in nonfractal
composites, such as a random gas of particles (RGP) and a
close-packed sphere of particles (CPSP). (For details on the
mentioned models and on the corresponding numerical simu-
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FIG. 1. Enhancement factors, G, of local field intensities plotted
against A for 500-particle aggregates: fractal cluster-cluster aggre-
gates, CCA’s (solid line), a random gas of particles (RGP) with the
same as for CCA’s volume fraction of metal (short-dashed line), and
a close-packed sphere of particles, CPSP (long-dashed line).

lations, see Sec. III of Ref. 20.) Accordingly, we expect a
significantly larger enhancement of the local field-intensities
in fractal CCA’s.

Note that, since in fractals the fluctuations are very large
so that (|E|%)>(|E|)2,>!® we have (|AE[?)~(|E|?); there-
fore, in this case, G characterizes both the enhancement of
local fields and their fluctuations as well. In other words, the
larger fluctuations, the stronger enhancement.

Below we present the results of calculations of G for
various small-particle composites. All quantities are ex-
pressed in units such that the diameter of a particle, a, is
equal to one. Our simulations were performed for 500-
particle clusters and were averaged over an ensemble of 10
random cluster realizations.?!~%°

In Fig. 1 we show the results of simulations for the en-
hancement factor, G, in silver CCA’s in vacuum compared
with that for nonfractal composites, RGP and CPSP. [In con-
trast to calculations of the preceding paper,®° the material
constants of silver were taken here from Ref. 26 instead of
Ref. 27; these two sources give slightly different values of
€(\). Further, no possible corrections associated with elec-
tron scattering are taken into account.] For the quantities
X(\) and &(N\) in (5), we used formulas (21)—(23) of the
preceding paper®® (the factor 2k°/3 in the expression for &
was neglected). The. quantity a(X) was calculated by nu-
merically solving the CDE’s in the quasistatic limit; in this
limit, the interaction operator, G=-V, in Eg. (1) of the
preceding paper® is equal to the W defined above. To solve
the CDE’s, we used the method based on the diagonalization
of the interaction matrix W (for details, see Sec. III of the
preceding paper.?°)

As seen in Fig. 1, the enhancement of local-field intensi-
ties in fractal CCA’s is significantly larger than in nonfractal
RGP and CPSP clusters, as was anticipated. The enhance-
ment can reach very high values, ~ 103, and increases with
\. This occurs because both the localization of fractal eigen-
modes and their mode quality factor (g~1/8
~|e—e€,]?/3€"€,) increase for the modes located in the
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long-wavelength part of the spectrum [see also Fig. 5 and
Eq. (21) of the preceding paper®®].

We next consider a more detailed comparison between
fractal small-particle composites and non-fractal inhomoge-
neous media (see also the discussion in Sec. VI of Ref. 20).
The simulations were performed for RGP and CCA’s having
the same volume fraction, p, filled by metal. The value of p
in a fractal cluster is very small (in fact, p—0 at R, —%).
According to the Maxwell-Gamett theory,® there is only one
resonant frequency in conventional (d=D) media with
p<€1; the resonance is just slightly shifted from the reso-
nance of an isolated particle occurring at X(w)=0. In con-
trast, in fractal media, despite the fact that p is asymptoti-
cally zero, there is a high probability, «r?~¢, of finding a
number of particles in close proximity to any chosen one.
Thus, in fractals, there is always a strong interaction of a
particle with others distributed in its random neighborhood.
As a result, there exist localized eigenmodes with distinct
spatial orientations in different parts of a cluster, where the
location depends on the frequency and polarization charac-
teristics of the mode. As mentioned above, some of these
modes are significantly shifted to the long-wavelength part
of the spectrum where their quality factors, ¢, are much
larger than that for a noninteracting particles at X(w)=0.
Thus, the dipole-dipole interaction of constituent particles in
a fractal cluster “generates” a wide spectral range of reso-
nant modes with enhanced quality factors and with spatial
locations which are very sensitive to the frequency and po-
larization of the applied field. The localization of modes in
various random parts of a cluster also brings about giant
spatial fluctuations of the local fields, when one moves from
“hot” to *‘cold” zones corresponding to high and low field-
intensity areas, respectively.

In the case of a CPSP, the volume fraction, p, is not small.
However, since the dipole-dipole interaction for a three-
dimensional CPSP is long range, one expects that eigen-
modes are delocalized over the whole sample, so that all
particles are involved in the excitation. Accordingly, fluctua-
tions (and enhancements) of local fields are much smaller
than in a fractal aggregate where the modes are localized.

As seen in Fig. 1, enhancements and fluctuations of local
fields in CPSP and RGP are significantly less than those in
the case of fractal CCA’s, in accordance with the above ar-

_guments.

The enhanced local fields result in enhancements of opti-
cal processes considered below. Based on the simulations
presented above, we anticipate that in fractal composites,
where the fluctnations are especially strong, the enhance-
ments can be very large. Below, we analyze various en-
hanced optical phenomena in a composite material consisting
of fractal CCA’s.

II1. ENHANCED OPTICAL PROCESSES

In this section we consider the intensity-dependent dielec-
tric function associated, in particular, with the Kerr optical
nonlinearity and harmonic generation. Enhanced Raman
scattering is also analyzed. (Note that although spontaneous
Raman scattering is a linear optical process, its enhancement,
as will be shown, is ~{|E;/E(®|%), i.e., has a nonlinear de-
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pendence on the field and, therefore, we consider the en-
hanced Raman scattering in this paper which is concerned
with nonlinear optics.) We derive formulas for enhancement
factors for various optical processes in a small-particle com-
posite and perform numerical simulations based on these for-
mulas.

A. Four-wave mixing

Four-wave mixing (FWM) is determined by the nonlinear
polarizability?®

3 .
,nggyﬁ(—wsvwliwl’_wz)’ 6

where w,=2w, — w, is the generated frequency, and w; and
w, are the frequencies of the applied waves. Coherent anti-
Stokes Raman scattering (CARS) is an example of FWM. In
one elementary CARS process, two ; photons are trans-
formed into w, and w, photons. Another example is degen-
erate FWM (DFWM); this process is used in optical phase
conjugation (OPC) which results in complete removal of op-
tical aberrations.?® In DFWM, all waves have the same fre-
quency (w,=®,=w,) and differ only by their propagation
directions and, in general, by polarizations. In a typical OPC
experiment, two oppositely directed pump beams, with field
amplitudes E") and E'("), and a probe beam, with amplitude
E® (and propagating at a small angle to the pump beams),
result in an OPC beam which propagates against the probe
beam. Because of the interaction geometry, the wave vectors
of the waves satisfy to the relation k;+k;=k,+k,=0.
Clearly, for the two pairs of oppositely directed beams, that
have the same frequency w, the phase-matching conditions
are automatically fulfilled.?®

Below we consider DFWM process where the total ap-
plied field is E@=EM+E' D +E?. The nonlinear polar-
izability, B, that results in DFWM, also leads to nonlinear
refraction and absorption (to be considered in Sec. III D) and
is associated with the Kerr optical nonlinearity. For coherent
effects, including the ones discussed in this section, averag-
ing is performed over a generated field amplitude (rather
than intensity) or, equally, over nonlinear polarizability. Note
also that the nonlinear polarizability, 8, can be associated
with either monomers or molecules adsorbed on them.

The orientation-average nonlinear polarizability in an iso-
tropic medium can be expressed, in general, through two
independent scalar functions f; and f, as?®

(:B(:ﬂ)‘y& O=fs :ﬁy5+faA;B'y5, (7)
1
A:ﬁya=§{5aﬁ575+ OayOps+ 8as0py}s (8)

1
Azpys=3{8apdyst SuyOps=20us0p, )

where the symbol (- --)o denotes an average over orienta-
tions. The terms f,A* and f,A~ are totally and partially
symmetric parts of 8, respectively (over a8 and y3d).
When a cluster consists of monomers, the field acting
upon them is the local field E; rather than the applied field
E®. Also, the dipolar interaction of nonlinear dipoles
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should be included. Taking these arguments into account, we
write the following system of equations for the light-induced
nonlinear dipoles:

dNe=3B0) o sEi JEF s+ a(a)x)Ej: Wiodlls, (10)
where the prefactor 3 represents the degeneracy factor that
gives the number of distinct permutations of the frequencies
w, w, and o e

Hereafter, we assume that the corrections to the local field
E; associated with nonlinear dipole moments d} - are small
and can be neglected. This allows us to find E; [see Egs. (2)
and (3)] by solving first the CDE’s for linear dipoles d;, and,
then, to substitute these fields to the CDE’s (10) for nonlinear
dipoles d™-.

Using similar procedures that were used to solve the
CDE’s for linear dipoles [see Egs. (5)—(7) of the preceding
paper’’ and Egs. (2) and (3) of this paper], we obtain the
solution of (10) in the form

LE=32605,,3%, Adicln)(nliB)E, 5E, 1575 N

Substituting the expression (2) for the local fields E;, we
find for the mean nonlinear dipole moment

(EB=3(BIEPEVEDS. (D
where
3
(.39;3:3:9 = Z3Z*<.32');3' y' 8 Yo @), at ) pr 8%,y “ra;j 8 5(>13)

represents the effective nonlinear polarizability of a particle
in a cluster. To obtain (13), we assumed that averaging over
the orientations of a nonlinear particle and averaging over an
ensemble of clusters can be performed independently.

The substitution of ( ,8%75 o from (7)—(9) into (13) re-
sults in several products like the following

E3 ey AT~ AT A
Barpr Oy 5/ @)t a1 5y v 1 51 = (8] @) (@) &) 56
(14)
where (&T&) 0= ' a® o and (aTa®)
j&ilaBT e e B J& Jys
=a; g1y} 5 5 (the T symbol in &" denotes a transposition
of the matrix &). Averaging over the orientations in (14)
gives

AT A AT A
(4] &) ap(@; &) yodo

1 AT AT 4%
=—1—5—6‘aﬁ575[2 Tr(a;j a;)Tr(a; a;)

1
—Ti(& &a;af)]+ 35 (arBpst 8as3py)

X[3 Tr(&] &) Tr(a] &F) ~Tr(a] &;&] &¥)]. (15)

[Formula (15) can be proved by performing a contraction
over all pairs of indices.]

Proceeding similarly with the other products of the &
symbols [originating from A, 5 in (7)-(9)] and polarizabil-
ities a; in (13), we obtain

—
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By =Fsbagyst Fab opyes (16)

where

1
F,=—=2Z%f(Tr(&T &) Tr(&7 &) +2 Tr(&] &ié]

A¥
15 @; )>Z17)

1
Fa=—6-Z3Z*fu<Tr(&iTo‘z,-)Tr(Ex,-T&;")—Tr(&iT&,-&,.T&;“)). (18)

According to (16), the symmetry of the nonlinear polariz-
ability of an isolated monomer [see (7)—(9)}, is reproduced
in the mean polarizability of a cluster. The totally symmetric
part of the monomer’s nonlinear polarizability “generates” a
totally symmetric part of the cluster polarizability (F,*fs);
the same is valid for the partially symmetrical parts (F,
%fa).

If the laser frequency lies far outside a band of the reso-
nant modes of a cluster, i.e., |X(w)| is much larger than all
lw,| in (3), then, a;~aq for all i (recall that Z= ay). In
this case, the interaction between particles in a cluster is not
important, and, as follows from (17) and (18), F,=f, and
F,=f,, ie., the nonlinear polarizability of a particle in a
composite is equal to that of an isolated particle.

We now consider the enhancement of DFWM that accom-
panies the aggregation of particles into clusters. Let particles
be first randomly embedded and well separated in a linear
host medium. We assume that the volume fraction, p, that
the particles occupy is small and one can neglect their inter-
action. Then, let particles aggregate in many random clusters
that are relatively far from each other (i.e., the inter-cluster
interaction is still negligible). Thus, after the aggregation, we
obtain a mixture of many clusters (each cluster may consist
of thousands of particles). The average volume fraction filled
by particles remains, obviously, the same. However, particles
within one cluster now strongly interact via light-induced
dipolar fields.

The described scenario of aggregation occurs, for ex-
ample, in a silver colloid solution. In that case one first pro-
duces a silver sol (nonaggregated particles in solution), e.g.,
by reducing silver nitrate with sodium borohydride.?* Addi-
tion of an adsorbent (like phthalizine) promotes aggregation,
forming fractal colloid clusters with fractal dimension
D=1.78 (see also the preceding paper™).

Before the aggregation, the nonlinear polarization, P,
of particles in a spherically isotropic medium can be pre-
sented as®®

PO ) = gEO(E). E©%) + % pE©*(EO. E®),
(19)

where the coefficients a and b are related to f and f, intro-
duced in (7) as follows:

2 -1 2 -1
a='3—(fs+fa)Pv0 s b=§(fs—2fa)pvo (20)

with v, being the volume of one particle [for a sphere,
vo=(4m/3)RL].

Since after the aggregation the medium remains isotropic,
on average, the nonlinear polarization, P9, of a composite
consisting of clusterized particles has similar to (19) form

) P(3°)(w) =AE(0)(E(0) ) E(O)*) + %BE(O)*(E(O) . E(O)),
D

where A and B, are given by

2 _ 2 _
A=_3—(F5+Fa)Pv01, =§(Fs—2Fa)pv0]9 (22)

with F, and F, defined in (17) and (18), respectively. Note
that expression (21) contains terms < (EW.E'WDYE®* that
lead to a OPC signal in DWEFM,; it also contains the terms
Jeading to the Kerr nonlinear refraction (see Sec. III D).

The nonlinear susceptibility, ,\'/S[an, of a composite ma-
terial is defined via the relation

PG (0)=3305) o~ w; 0,0, @)Eg EES™,

where ;&5;5 can be expressed in terms of the ensemtle-
average nonlinear polarizability, { BE) ), as follows:

aBy
- o~/ (3 .
ngz,s(—w;w,w,-—a))—pvo (BE:E%(_W,CU,O),"G))).

(23)

In particular, if B is due to nonresonant electronic re-
sponse of adsorbate molecules (the aggregate modes, how-
ever, can be in resonance with the exciting field), the follow-
ing relation is valid: a=b,2ie., f,=0 [see Egs. (20)], and,
using (17), (18), (20), and (22), we obtain

Z=Z—=E. (24)

The efficiency of four-wave mixing is proportional to the
generated amplitude squared, and the enhancement due to
particle clustering is given by

GFWM= lFs/fsiz
(xX2+ 8%)*
T 225

X |(Tr(&F &) Te(af af) +2 Tr(al &aT &)
(25)

We can easily generalize (25) for the case of a nondegenerate
FWM, such as CARS:

Grwm=F, If?
(X2+ 52)4
225
X |<Tr[&iT(ws)&;(wl)]Tr[&gT(wn)&,"(wz)]

+2 Tr{&,-(w:)T&i(wl)&f(wl)&}"(wz)])lz.
For a nonresonant excitation, when IX(w)I_le,I and
therefore a;~ag, we see from (25) that G=1, ic. there is

no enhancement in this case. e
We consider now the expression (25) in more detail and

introduce the quantity grwM dcﬁned as
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Using (3), this expression can be transformed to

grwm= 2 (Munit 2Knmi A WA A Y, (2T)
where A, =[(w,—X)—id8]"},
Mus= 2, (icin)(nljp)(ialm)(m|j')
JirJ
X (' [(US"B ) ia' (k) (k|"B"),  (28)
and
K= 2, (ialn)(n|jB)(ialm)(m|j'8")
JrrJ
X @B IDU"B)YGB INK"B).  (29)

According to (25) and (26), the enhancement factor,
Grwwm, has the form

(X2+ 8%

555 1{8 rm(X))I%. (30)

Grwm=

Performing the integration in (27), we find the following
sum rule for function gy :

f grwm(X)dX =2 ZIk (M i+ 2K e IR iRk i »
—x nm
31)

where

1
T (32)
The product of the A factors in Eq. (27) can be rewritten
as

An-AmAI-A;c|= = le{AnAmAl— RmkAnAm

+RnkRmk(An - A;ck)} (33)

It is instructive to find first grwy which is due to the
“resonant” difference of the eigenmodes in (27), i.e., to cal-
culate the contribution of only those modes for which
|w,—w,|<&. In this case, the R factors become very large.
Then, retaining in (33) only the term with the highest power
of R and using (3), we obtain from (27)—(29) the following
ensemble-average expression:

15
(grwm(X))= = 755 Ima(X). (34)
The quantity (grym(X)) satisfies the sum rule
(e 157
|7 tstwi0rax=- 65

For diluted clusters, it was shown that the enhancement
factor is closely approximated by the resonant contribution.*
Our conjecture is that for the case of nondiluted clusters the
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FIG. 2. The enhancement of degenerate or nearly degenerate
four-wave mixing, Ggwy, in CCA’s for negative (a) and positive
(b) values of the spectral variable, X. See the text for further expla-
nations.

expression (g (X)) also describes properly the functional
dependence on X and 6. Then, the enhancement factor,
Grwwm, can be presented as

( XZ + 52)4
GFWMN CmT[Ima(X)]z, (36)
where the prefactor, Cryyy, should be considered as an ad-
justable parameter.

In Fig. 2, we show the results of numerical calculations of
the enhancement factor, Gy, in CCA’s for X<0 (a) and
X>0 (b). The simulations were performed using formulas
(25) and (3). The solid lines in Fig. 2 describe the results of
calculations based on formula (36), with Cpyy found from
the relation Gpwyd®=1 in its maxima, occurring  at

X~ 4. The dashed lines represent a power-law fit for the ‘
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range 0.1<|X|<3 (6=0.05). The computed exponents
(8.31+1.00 for X<0 and 8.00* 1.00 for X>>0) are close to
8 for both positive and negative values of X. This value for
the exponent is not surprising, since, within the interval
|X]=3, the dependence of Ima on X (see Fig. 1 of the pre-
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spectrum. According to formulas (21) and (23) of the preced-
ing paper,? for the Drude model, <\ in the infrared part of
the spectrum; thus, ¥¢) strongly increases towards the
longer wavelengths, «\3.

ceding paper??) in (36) is relatively weak in comparison with
that which is due to the factor X® in (25) and (36). This X
dependence differs from that obtained for diluted CCA’s,
where the absorption has a scaling dependence, Im
a~|X|%1, with d,~0.3+0.1,2! and Gewy=|X|6F*%, in
accordance with (36).*

As seen in Fig. 2, the enhancement strongly increases
toward larger values of |X|. This occurs because the local
fields become stronger for larger values of |X| (according to
Fig. 1, the local-field intensities increase in the long-
wavelength part of the spectrum which corresponds to larger
|X| with X<0).

It also follows from Fig. 2 that the product Gy d® re-
mains, on average, the same for the two very different values
of &, 0.01 and 0.05. This indicates that, in accordance with
(36), the enhancement is proportional to the sixth power of
the resonance quality factor, Gewnm®q® (¢~& ') and
reaches huge values in the maxima occurring at X~ *4.

In the end of this section, we mention that a millionfold
enhancement of DFWM due to the clustering of initially iso-
lated silver particles in a colloidal solution was experimen-
tally obtained in Ref. 3. For spherical particles of radius
R,., the value of X and & can be obtained from formulas
(21) and (22) of the preceding paper.?’ Using the data of Ref.
26 for the material constants in silver, we find that for
A=532 nm (used in the experiment) X=~—2.55 and
6=~0.05. The coefficient R,;3 in Egs. (21) and (22) of Ref.
20, measured in units of ¢=1, was chosen to be as
R;3E(a/Rm)3=47T/3 (for details, see Sec. V of the preced-
ing paper?).

As seen in Fig. 2(a), for X=—2.55 and §=0.05, the
value of Gy is Grwam= 10%, in agreement with the experi-
mental observations of Ref. 3.

The obtained value in Ref. 3 for the nonlinear susceptibil-
ity in silver fractal composites is x*?~pXx 107> esu at
A =532 nm. Even for a very small metal fraction used in the
experiment of Ref. 3, p~1077, this gives ¥®9~1071 esu
(cf., a typical value of ¥ in crystals is ~ 10~ !> esu). More-
over, p is a variable quantity and can be, of course, in-
creased. We can assigned the value 1073 esu to the nonlinear
susceptibility, x®¢, of silver fractal clusters; the quantity
x9) is related to the nonlinear susceptibility, ¥, of the
composite (silver aggregates in water) via the relation
$P)=pXx ), The huge nonlinearity, x*<~107° esu,
with a time of the nonlinear response <30 ps,® makes metal
fractal aggregates very interesting for potential applications.

In the long-wavelength range of the spectrum, A >1000
nm, the quantity X is almost constant: X(\)~X,, where
a*Xy=—47/3 (ie., Xo=—47/3 in a=1 units). The excita-
tion in this spectral region, when X(\)=~ X, for all A, can be
described in terms of the single mode, called “zero mode”
(see Sec. V the preceding paper, Ref. 20). In this case, all the
spectral dependence for Ggwy is due to a A dependence of
the factor 679 in (36). Since Grwm~|x¥“vo/B%|%, we
conclude that }3*¢«< §73 in the long-wavelength part of the

B. Enhanced harmonic generation

We consider now harmonic generation and begin with
third-harmonic generation (THG). We assume that the phase-
matching condition is fulfilled. The THG process is due to a
third-order nonlinearity. The corresponding nonlinear dipole
moment is

NL 3
d; B(a;;ys i.8Ei yEi 5- (37
For isotropic media, the orientation-average nonlinear polar-
izability may be expressed in terms of one independent
constant?®

(Bohys—300,0,0))0=FfA 74,5 (38)

We first assume that the generated signal w,=3 w lies out-
side the cluster band of resonant modes and, therefore, ne-
glect the interaction of nonlinear dipoles oscillating at the
frequency w; [cf., Egs. (10) and (37)].

Similarly as done to obtain (13) from (10), we substitute
(2) for the local fields in (37) and factorize the average over
the orientations and over an ensemble of random clusters.
This gives the following expression for the nonlinear polar-
izability of a particle in a cluster;

(BSoye) =2 Bagry )0 @808, y21,55)- (39)
Further, similarly to the method used to obtam (16)—(18)
from (13), we find

<B$x3[;:‘)y5> FA afys: (40)

where

F=1_15'Z3fs<Tf(&i)Tr( [6)+2 T &di d)).  (41)

Note that the cluster polarizability, { ,BS;;,,) is totally sym-
metric as well as the polarizability of an isolated monomer,
( 3513;375)0; either is characterized by a single amplitude.

Enhancement of the third-harmonic generation process is
given by Grug=|(F/f)|?%; using (41), this results in

( 2+ 2)3

GTHG=—2T|(TI(&;-)TI( Tay)+2 Tr(a;a ).

42)

For the excitation outside the cluster band of resonant
modes, a;~ay and Gryg=1 in (42).

In Fig. 3, we present a log-log plot of Gy as a function
of X for three very different values of 6. Despite the strong
fluctuations, we can conclude from Fig. 3 that, on average,
the product Gygd* does not depend on &. Thus, in contrast
to the binary theory,? that predicts a small enhancement for
the highest-order harmonic generation, the present calcula-
tions demonstrate a p0531b111ty of a very strong enhancement:
G me* 6.
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FIG. 3. The enhancement of the third-harmonic generation,
G 1. in CCA’s for negative (a) and positive (b) X. See also the
text.

Based on the results of our simulations, we suggest the
following expression for the enhancement factor within a
band of the eigenmodes:

2)3
Grue™ CTHGT[Ima(X)]Z 43)
where the prefactor, Cyg, is an adjustable parameter. For-
mula (43) reflects, in particular, the indicated dependence
G x84

The solid lines in Fig. 3 represent the results of calcula-
tions using (43) with C.yg found from the different relations
for positive and negative X: Grygd*=0.1 in its maximum
(at X~ —4) for negative X, and Ggd*=0.01 in its maxi-
mum {at X~=4) for positive X. Recall that for FWM the
value of Cryy Was chosen so that Gead®=1 in both of its
maxima at X= *4. Thus, in order to fit the simulations, we
have to take the smaller values for the product Gygd* in its

VLADIMIR M. SHALAEYV, E. Y. POLIAKOV, AND V. A. MARKEL 53

maxima. This is probably due to the fact that the product of
the ; in (41) has poles (as a function of w,) lying in the
same complex semiplane; therefore, the average enhance-
ment, which can be estimated by integrating over w,, is
smaller. [In contrast, there is a complex conjugate term,

af , in the product of the a; in expression (25) that defines
the enhancement for FWM. Note that the presence of o

«E} in the nonlinear response indicates that an elementary
quantum mechanical process includes “subtraction” of a
photon.] Despite the indicated difference, the enhancement,
Gryg, is very large and can reach giant values for small
values of é.

The dashed lines in Fig. 3. show a power-law fit for
0.I<|X|<3 (6=0.05). The computed exponents are
6.08+1.00 for X>0 and 6.5+ 1.0 for X<0. However, the
fluctuations are so strong that based on the simulations we
cannot claim that there is a pronounced power-law depen-
dence.

In general, enhancement of nth-harmonic generation may

be estimated by
E}
[EOT

The estimate (44) is based on the assumption that the inter-
action of nonlinear dipoles oscillating at the frequency
w,=nwo can be ignored. If this interaction is of importance,
the estimate (44) should be replaced by

2

Ghuc™ ~|ao| 72"|( )| 44)

Ganc~| ao(@)] 2| ag(w,)| "2(af (@) ai@,))2. (45)

The experimental observation of the enhanced (by 3 or-
ders of magnitude) second-harmonic generation was reported
in Ref. 29.

C. Enhanced Raman scattering

In this section we consider the enhancement of Raman
scattering, Ggs, in particles aggregated into clusters. In our
previous work on this subject,? the simulations of the en-
hancement were performed only for diluted cluster-cluster
aggregates, whereas below we calculate Gyg for nondiluted
CCA’s and compare the results with experimental observa-
tions.

We assume that each monomer of a cluster, apart from the
linear polarizability, @, possesses also a Raman polarizabil-

ity, . This means that the exciting field, E‘”), applied to an

isolated monomer, induces a dipole moment, d°, oscillating
at the Stokes-shifted frequency, w,. To avoid unessential
complications, we suppose k to be a scalar; this gives
d°=xE. The Raman polarizability may be either due to the
polarizability of a monomer itself or to an impurity bound to
the monomer.

We consider spontaneous Raman scattering, which is an
incoherent optical process. This means that the Raman polar-
izabilities, «;, of different monomers possess uncorrelated
random phases:

(«f ) =|ul?5;.

) @
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This feature constitutes the principal distinction between x
and the linear polarizability, a. It ensures that there exists no
interference of the Stokes waves generated by different
monomers.

As was pointed out above, the field acting upon an ith
monomer in a cluster is the local field, E;, rather than the
external field, E‘9. Also, the dipole interaction of monomers
at the Stokes-shifted frequency, w,, should be included. Tak-
ing these arguments into account, we write the following
system of equations:

&= kiEiat o} 2, (ialWljB)d:g, 1)
J

where ay is the linear polarizability of an isolated monomer
at the Stokes-shifted frequency, w; .

The total Stokes dipole moment, D°, found by solving
@7), is:2

0
DZZEi d?a=ZsZ§ ki a2 peEpl s (48)

where Z,= () "}, ai=a,(X,), and «; is defined in (3).
The RS enhancement associated with particle clustering is
defined as?

o (D )
RS—NIKi2|E(O)|2 .

The above formulas (47)—(49) are exact and valid for any
cluster of particles. If the Stokes shift is so large that the
Raman-scattered light is well out of the absorption band of
the cluster, the polarizability «; in (48) and (49) can be ap-
proximated as &} ,5~Z 15,,[;, and the orientation-average
enhancement (49) acquires the following form:?2

1
Ggrs= |z|2ﬁ< Z_ la,.,,,ﬂ|2> =&(1+X%/6%)Ima. (50)

Thus, if the Raman-scattered light does not interact with the
cluster, the Raman-scattering intensity is simply proportional
to the mean square of the local fields, Ggs=G [cf. Eq. (5)].%

However, in more interesting case, the Stokes shift is
small and the Stokes amplitudes are also enhanced. Then, the
general expression (49) is needed; after averaging over ori-
entations, this gives

X2+ 8%)?
Gus=2 T qataara). oD
[For the nonresonant case, |X|>|w,|, we have a;= a, and,
therefore, Ggg=1 in Eq. (51).] According to (51), the en-
hancement of Raman scattering is determined by the en-
hanced local fields raised to the fourth power and averaged
over an ensemble of clusters,

Grs~({|E:/EO[")~[ag %] a,|*). (52

Similar to the case of FWM [see (26)-(30)], we may
express the RS enhancement in the form
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X+ 6%)?2
GRS=_—( 3 )<gRS(X)>’ (53)

with grs(X) given by

_rpaTA AT 4
grs=Tr &; a;&; af]

= KumuAaAnAFAY, (54)
nmilk

where K., is defined in (29).
The function ggs satisfies the following sum rule:*

f grs(X)AX=47Im D, KomyRuRmRur- (55
—> nmlk

Further, similar to (33), the product of the A factors in Eq.
(54) can be rewritten as

AnAmAI*A;ck=Rm1Rnk{(An‘/\m+Al*Al’:)_Rnl(An_-'\;k)
_Rmk(Am-A:)}' (56)

We first find gpg(X) due to the “resonant” difference of
the eigenmodes only, such that |w,—w,,|< & in (54). In this
case, for the ensemble average, we obtain

3
(grs(X)) = 553 Ima(X). (57)

The sum rule for the ensemble-average resonant contribution
has the form

® 3w
[ (srstnax=55 (58

It was shown in Ref. 22 that the resonant factor
(gks(X)) gives the dominant contribution to the enhance-
ment for diluted clusters. We conjecture that (gxg(X)) de-
scribes the functional dependence of the enhancement on X
and & for nondiluted clusters as well:

(X2+ 6%)?
Grs™ CRS——‘a'r—Ima(X), (59)

with Cgg being an adjustable parameter.

In Fig. 4, we plot the results of our simulations of Ggg
defined in (51) for negative (a) and positive (b) values of X.
The solid lines in Fig. 4 give the enhancement found from
(59), with Cgg obtained from the relation: Ggs® =3 in the
maxima occurring at X~ *4. The dashed lines represent a
power-law fit for Gggd® in the interval 0.1<|X|<3, with
5=0.05. The obtained power exponents (4.07+0.70 for
X<0 and 4.01:+0.70 for X>>0) are close to 4 for both posi-
tive and negative values of X. Similar to the above-
considered cases [see the discussion following Eq. (36)], the
dependence X* in (59) dominates the weak spectral depen-
dence of Ima(X) in the band of cluster modes.

As seen in Fig. 4, the product Ggs®°, on average, does
not depend on & in the region close to the maxima, and its
value there is close to unity. Thus, the strong enhancement of
Raman scattering, Ggs~ 8 °, can be obtained due to aggre-
gation of particles into fractal clusters.

In Fig. 5, experimental RS enhancement data, obtained
for a silver colloid solution in Ref. 30, are compared with
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FIG. 4. The enhancement of Raman scattering in CCA’s,
G gs, for negative (a) and positive (b) X. For details, see the text.

G gs calculated using (51). [The values of X and & for vari-
ous A were found using (21) and (22) of Ref. 20 and the data
of Ref. 26.] Only the spectral dependence of G gg is infor-
mative in this figure since only relative values of Ggg are
reported in Ref. 30. The experimental data presented in Fig.
5 are normalized by setting Grs==3 X 10* at 570 nm, which
is a reasonable value. Clearly, the present theory successfully
explains the giant enhancement accompanying particle ag-
gregation and the observed increase of Ggg towards the red
part of the spectrum. (The agreement is better than that ob-
tained with the use of the model of diluted clusters.22) The
strong enhancement towards the red occurs because the local
fields associated with collective dipolar modes in CCA’s be-
come significantly larger in the red part of the spectrum (see
Fig. 1).

D. Nonlinear refraction and absorption

In this section we consider the enhancement of the optical
Kerr nonlinearity. The Kerr polarizability has, in general, the
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FIG. 5. Theoretical and experimental enhancement factors,
G gs, for the silver colloid aggregates as a function of wavelength,
A

form ﬁféya(w;w,w, — ), and determines nonlinear correc-

tions (« the field intensity) to the refractive index and ab-
sorption. The Kerr-type nonlinearity can also result in degen-
erate four-wave mixing (DFWM) considered above.
Composite materials with large values of the Kerr nonlinear-
ity can be used as nonlinear optical filters. Under certain
conditions, they also manifest optical bistability'* which can
be utilized to build an optical analog of the electric transistor.
Therefore, there is significant interest in developing materi-
als with a large Kerr nonlinearity.

We consider the enhancement of the Kerr susceptibility
due to the clustering of small particles embedded in a linear
host material. We assume that the volume fraction, p, filled
by particles is small, and they are initially randomly distrib-
uted in the host. Since p is small, the interaction between
nonaggregated particles is negligible. The aggregation results
in many well-separated random clusters. The interactions be-
tween the dipoles induced by light on particles in a cluster
lead to the formation of collective eigenmodes; their reso-
nant excitation results in high local fields and the enhanced
Kerr susceptibility.

The Kerr nonlinear polarizability, 8, has the same
structure [see Eq. (6)] as the one describing DFWM. (In the
present case, however, we assume that there is only one ap-
plied field, E(9.) Although in Sec. IIl A we considered only
one specific process, DFWM, the analysis presented there
was general and most of the obtained results are applicable
for other phenomena associated with the Kerr susceptibility.

For isotropic media, the Kerr polarizability can be written
in the form (7), with two independent constants, f; and f,,
that are related to the constants @ and b in formulas (19) and
(20). The polarization of a composite with aggregated par-
ticles can be presented as follows:

3 _ =03 ) 0) =(0) (0
P(a c)(w)—3xg¢§;5 —w,w,w,—w)Efg )E(./ )E(5 *
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where the effective Kerr susceptibility, ¥*?), of the compos-
ite has the form [cf. (13) and (23)]

S(3c) —

3wy L3
Xapys=PLZ*(X i g1 31 500 X’ o), 3 8,1 X5 g1 5):

60)
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THETI Y

1Gxl 6°
13— ]G'xl 63=1.1X IO—mea

and <X£y33)75>0= vy 1(/3(0,3}75)0 , with v, being the volume of a
particle.

Proceeding similarly to the method that was used to ob-
tain (16)—{18) from (13), we find

(30}

Xopys= Gk sP ¢:A:,375+ GgaP Pad apys (61)

=1
where ¢, ,=vq fsa»

1
Gis =5 Z°Z*(Te(&] ) Te(&] &) +2 Trl & &, &),
(62)

and

1
GK‘a=gZ3Z*(Tr(&f&,-)Tr( ala®)—Tr(a&l a6l a})).
(63)

The factors G, and G, are identical to F /f  and F,/f,,
respectively [see Egs. (17) and (18)], and the enhancement
for the DFWM process can be expressed in terms of Gg ; as
Grww=|Gx %

In general, according to (61)—(63), there are two different
enhancement coefficients for totally symmetric (OCA:B),&)
and partially symmetric (A 4,5 parts of the susceptibility
in an isotropic system.3! The fact that there are two different
independent constants for the Kerr response in an isotropic
medium results, in particular, in a rotation of the polarization
ellipse.?® If the field E(? is polarized linearly or circularly,
the nonlinear polarization, P9, can be expressed in terms
of only one independent constant (F; and [F -+ F,] for lin-
ear and circular polarization, respectively).2§ Also, in the
low-frequency limit (where 8¢ is due to the nonresonant
electron response), the nonlinear susceptibility tensor must
be fully symmetrical, ie., F,=0, for an arbitrary light
pola.rization.28 Below, we calculate the enhancement associ-
ated with Gg ;=G . The enhancement factor is, in general,
complex: Gx=Gy+iGy. If B> is real, the real part, Gy,
and the imaginary part, G, determine the enhancement for
the nonlinear refraction and for the nonlinear correction to
absorption, respectively.

The enhancement for Kerr media can be also presented in
the form

_(X*+ 8)(X+id)
o 15

(gx)» (64)

where gx=grwm. and grwy is defined in (26)-(29). It was
conjectured in Sec. III A that (g pyny) and Ggwy can be ex-
pressed in terms of the absorption Ima(X) [see Egs. (34)
and (36)]. Accordingly, we assume that Gy is larger than
G [so that g pwa= g can be approximately considered as a
real quantity, in agreement with (34)]; then for |X|> 6, we
obtain .
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FIG. 6. The enhancement of the Kerr optical susceptibility in
CCA’s: (a) the real part, G, and (b) the imaginary part, G .

x4
G}fv-CKEg Ima(X). (65)

In Fig. 6, we present plots of G (a) and G (b) for X<0
(the calculations for X>0 give similar results). The solid
line in Fig. 6(a) represents the calculations based on Eq. (65),
with the Cg chosen so that |Ggé’|=1 in its maxima at
X~ —4. From the figure, we can conclude that Eq. (65) ap-
proximates the exact results well. Also, as follows from the
figure, both real and imaginary parts of the enhancement are
approximately proportional to the third power of the quality
factor, q3(~5'3), and the following estimates are valid in
the maxima: G;8°~1 and G%8°~1 (actually, G is several
times larger than G, in accordance with the above assump-
tion). For metal particles, in particular, the decay parameter
varies from 6=0.01 to 6=0.1 in the infrared and visible
parts of the spectrum; accordingly, the enhancement ranges
from |G g|~10® to |Gg|~10° in this spectral range. Such a
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giant enhancement indicates that optical materials based on
composites including smail-particle clusters possess a high
potential for various applications.

It also follows from the figures that, in accordance with
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stood and roughly estimated using the following simple ar-
guments. Consider the enhancement for an arbitrary nonlin-
ear optical process xE”". According to Egs. (2) and (3), for
the resonant dipolar eigenmodes, the local fields, E;, exceed

(34) and (64), the real part G is negative for most of the
resonant modes, and |G| statistically dominates |GY|. For
G }<< 0, the nonlinear correction to the refractive index,
An, is negative, if 89)>0, and positive, if BC9<0 (lead-
ing to seif-defocusing and self-focusing of the light beam,
respectively). Interestingly, the imaginary part G%, changes
its sign as a function of X very rapidly. Thus, a nonlinear
correction to the absorption coefficient (given by GY% for real
BC9) is a very strong function of the laser frequency and
can be both positive and negative. The fact that the nonlinear
contribution to the absorption can have a different sign is not
surprising: there are nonlinear optical processes (associated
with the Kerr-type nonlinearity) leading to both positive and
negative nonlinear contributions to absorption. In particular,
processes, such as the saturation effect or the Rayleigh reso-
nance, lead to negative corrections to absorption, whereas
two-photon absorption, for example, results in a positive
correction.”® Clearly, the light excites simultaneously many
resonant and quasiresonant modes in a cluster, leading to a
competition between the contributions associated with vari-
ous optical processes; this probably results in the strong de-
pendence of G on X.

IV. CONCLUDING REMARKS

As shown above, the clustering of small particles embed-
ded in a host material may result in a giant enhancement of
both linear (e.g., Raman scattering) and nonlinear (four-wave
mixing, harmonic generation, and nonlinear reflection and
absorption) optical effects. The enhancement occurs because
of strongly fluctuating local fields that can have very large
values in particle aggregates (see Fig. 1). Nonlinearities em-
phasize these fluctuations leading to giant enhancements.

If particles aggregate into fractal clusters, fluctuations of
the local fields are especially large. This is because the dipole
interactions in fractals are not long range (as they are in
conventional three-dimensional media) and many of the col-
lective eigenmodes are strongly localized in different parts of
a cluster with various random structures. This ultimately
leads to strong spatial fluctuations of the fields. In contrast,
in compact three-dimensional clusters of particles, the long-
range dipolar interaction involves all particles into the exci-
tation, thereby suppressing fluctuations (see Fig. 1).

Enhancements in small-particle clusters can be under-

the external field, E®, by the factor ~|ag!/d|
=|X+id|/6, ie., ~|X|/& for |X|> 6. However, the fraction
of the monomers involved in the resonant optical excitation
is small, ~ dIma(X).

For a nonlinear optical process, «|E|", one can estimate
the ensemble average of the enhancement, {|E;/E®|"), as
the resonant value, |E;/E@|” | multiplied by the fraction of
the resonant modes (in other words, the fraction of particles
involved in the resonant excitation). This gives, for the en-
hancement the following estimate,

(|EJJEOM~|X|"67"X 8 Ima(X) ~|X|"8' " "Tma(X),
(66)

which is 21 for n>1. Since this is only a rough estimation,
an adjustable constant, C, should be, in general, added as a
prefactor.

The nonlinear dipole amplitude can be enhanced along
with the linear local fields provided the generated frequency
lies within the spectral region of the cluster eigenmodes. For
enhancements of incoherent processes, such as Raman scat-
tering and nonlinear refraction and absorption in Kerr media,
we obtain from Eq. (66): G~CX*6 3Ima(X) [cf. (59) and
(65)]. For coherent processes, the resultant enhancement
~|(|E;/E®|")|?%; accordingly, the enhancement factor
~CX%6 *[Ima(X)]? for the third-harmonic generation [cf.
Eq. (43)], and ~CX®6 S[Ima(X)]* for degenerate four-
wave mixing [cf. (36)]. (The latter enhancement is larger
because of the ‘“‘additional” enhancement of the generated
nonlinear amplitudes oscillating at the same frequency as the
applied field.)

There are other optical phenomena (not considered here)
that can be also enhanced in small-particle composites. For
example, Rayleigh scattering is enhanced by the factor
Gr~{|E;/E@|*)c 712! Another example is fluorescence
from molecules adsorbed on a small-particle aggregate. The
fluorescence following two-photon absorption by the aggre-
gate is enhanced by the factor Gp~{|E,/E®*
~Je] Tty o< 573,
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