BEE

Physica A 185 (1992) 181-186
North-Holland p"YSIBA m

T ——
]

Resonant excitations and nonlinear optics of
fractals

Vladimir M. Shalaev®!, Mark I. Stockman® and R. Botet®

*Physikalisches Institut der Universitit Heidelberg. Philosophenweg 12, W-6900 Heidelberg.
Germany

“State University of New York at Buffalo, Amherst, NY 14260, USA

“Université Paris-Sud, 91405 Orsay, France

A scale-invariant theory of nonlinear light scattering by fractal clusters is developed. Due to
the presence of very high and strongly fluctuated local fields the scattering is hugely enhanced.
The enhancement factor for coherent anti-Stokes Raman scattering (CARS) and optical
phase conjugation (OPC) is found. Scaling properties of nonlinear light scattering by
collective excitations of fractals are obtained. The corresponding exponent describing a
dependence of the scattering enhancement factor on spectral variable is 2d, + 6, where d,, is
the optical spectral dimension. Computer simulations dealing with cluster~cluster aggregates
are presented. The numerical results fully confirm the theoretical predictions of the mag-
nitude of the enhanced nonlinear scattering and its scaling behavior as well. The results
obtained are in agreement with experimental data on four-wave light scattering by silver
fractal clusters.

1. Scale self-similar objects - fractals, introduced by Mandelbrot [1] and
their physical counterparts — like fractal clusters have recently been an area of
active research. Such clusters possess very interesting physical and, in particu-
lar, unique optical properties, different from those of gases and *‘conventional”
condensed media {2,3]. This is due to the unusual combination of fractal
properties: asymptotically zero integral density and together with this, strong
correlation of particle locations. These properties, being mutually contradic-
tory for a nonfractal medium, are a consequence of the power-law drop of the
pair-correlation function (density-density) g(r) with the intermonomer dis-
tance r and of the scaling dependence of the number of monomers in a fractal
on its radius R, '
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where R, is the length dimension parameter denoting the typical distance
between neighbor monomers. The exponent D is the fractal (Hausdorff)
dimension. A fractal is called nontrivial, when D <3. If this is the case, the
integral density *xR”7 is asymptotically zero (at R.—x). This feature, to-
gether with strong pair correlation (1), is the reason for the great role that
fluctuations play in a nontrivial fractal. _

If monomers possess a high quality (“sharpness™) of an optical resonance,
for example, metal particles, strongly fluctuating local fields in a fractal can
significantly exceed the external field. Nonlinearities, as usual, increase the
effect fluctuations and related to this are the huge magnitudes of nonlinear
polarizabilities of fractals predicted [4] on the base of simple binary model.
This prediction was then confirmed experimentally [5.6] for degenerated
four-wave mixing processes in fractal silver clusters. It was obtained thar
aggregation of initially isolated silver particles into fractal clusters leads to the
improvement of efficiency of the nonlinear four-wave process in 10° times.

The aim of this paper is to develop a theory of optical nonlinearities of
fractals based on the scaling arguments.

2. Let us consider a cluster, consisting of N polarizable particles (monomers)
located in the points {r,}. Monomers are dipole-polarized (at optical fre-
quencies w) particles with the linear polarizability x,(w) and nonlinear
polarizability . The induced dipoles of different monomers interact via the
dipole~dipole forces. Let us point out that the nonlinear polarizability y "’ may
be either the own polarizability of a monomer or the polarizability of an
impurity bound to the monomer. As an example we deal with anti-Stokes
Raman scattering (CARS) and optical phase conjugation (OPC) - four-wave
parametric processes during which two photons of o, frequency transform into
two photons with w, and o, frequencies. Such processes are described by a
third-order nonlinear polarizability Xt(z:;)ys(_ws; w;, @, —w.), where o, is the
generated frequency, w, and w, are the frequencies of the interacted waves.
For CARS w, =20, — w,. OPC is a completely degenerated process o, = w, =
@s.

The main quantity that we are going to calculate below is the enhancement
factor G’ for the 3rd-order nonlinear process such as CARS and OPC. G is
defined as the ratio of the radiation intensity generated at the monomers in a
cluster to the analogous intensity for the free (isolated) particles. The enhance-
ment coefficient G for the CARS (or OPC) process has the form
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where e, e’V ¢ are the polarization unit vectors of the incident waves,

’

Xffy)ﬁ is the polarizability of the cluster (per monomer), and the angle brackets
(...) denote averaging"over an ensemble of clusters. We seek to calculate the
ensemble averages of the nonlinear polarizability x°°. When the monomers
are the constituents of a cluster, the field acting upon them is the local field E; -
rather than the external field E‘*’. Also the dipole interaction of the monomers
at the generated frequency w, should be included. Taking these arguments into
account, we can. write the following system of the equations for nonlinear

light-induced dipole moments (R, < w/c):

1:3%:]
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where r;=r,~—r;, n’ = r;/r;. Local fields E; can be found from the system of
equations for linear dipole momenta d,,

N
Xo'dio=EY = 2 (ialW]jB)d,, - (5)
j=t »
Let us introduce eigenvectors |n) of the W-operator and corresponding eigen-

values w,: (n|W|m)=w,8,,,. Solving (5) in terms of eigenvectors of W, we
find [3]
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follows the expression for nonlinear polarizability of a fractal:
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Substituting (6) into (7) and expanding the product of factors A in simpleb;—
factors,

‘AM‘Anv‘/“\'l‘/l'zf = le[AuAmAl - RmkAnAm + RnkR:k(An - At)] s (8)
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for high-quality resonances (R;8 < 1) and identical linear wave polarizations in
(2), we find after averaging over the orientations
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3 w : XS 3
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The function @ (11) coincides with the corresponding function @ determining
Raman scattering of light by clusters and has for collective excitations of the
fractal the following scaling form [7]:

P(Ry, X) ~ Ry[Ro X[, (12)

where the exponent d, is the optical spectral dimension [3]. Note that the
absorption, resonant Rayleigh scattering and the density of eigenstates of the
fractal in the spectral region corresponding to the collective fractal excitations.
are described by the same power-law dependence [3. 8, 9] (12). It follows from
(10) and (12) that
{R;X 2dy+6

|RG tm x,'|*

G~ (13)

According to (13) G** has the scaling dependence on | X| with the exponent
2d, + 6 and is proportional to the huge factor: sixth power of the quality of
resonance Q° (Q ~ |R0 Im x;'|™"). The external field excites eigenmodes of
the fractal with eigenvalues w, = X(w). Local fields E, of the resonant modes
significantly exceed the external one E": E/E°~ Q> 1. Since G ~ [( x®F/

x“E ~I(E/E®Y), we find that G« O® in agreement with (13).

3. To complement the theory we carried out a numerical simulation of the
enhancement factor G'*’ on the base of the general expressions (2), (7). We
used a model of a diluted fractal [3] for cluster—cluster aggregation with fractal
dimension D =1.78. In fig. 1 the plot of the G'*’-factor multiplied by §°
(R, =1) as a function of X for § =—Im y,' =0.005 is presented. The scaling
behavior is observed in our simulations with the slope 6.7 + 0.2 (the slope 6.78
is shown in the figure). This is in a good agreement with the theory giving for
the exponent value 2d, + 6 (d,=0.3 for the cluster—cluster aggregation [8]).
The enhancement factor G increases with increasing X in accordance with
theory reaching at X ~1 the maximum value G ~ (25)7° also in agreement
with theoretically predicted value.
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Fig. 1. In-In plot of the enhancement factor G multiplied by §° as a function of X,

In the case of fractal clusters consisting of small metallic balls, the mono-
mer’s polarizability is x,= R} (e —1)/(e +2) (where R_ is the radius of
monomer and e =¢’ +ie€” is a permeability of metal) and the corresponding
quality of resonance Q =R_’6 7' =R ’|lm x;'| ' = (¢’ ~ 1)7/3€"> 1 for the
visible and infrared regions of the spectrum. Using the value of permeability e
for silver at the wavelength of the field A =540 nm used in our experiment
[5, 6] and substituting the corresponding values for X and 8 to the theoretical
formula (13), we find G®~10° in agreement with experimental results
obtained.

Thus. due to the aggregation of initially isolated particles into fractal clusters
the efficiency of nonlinear optical processes of the third order such as CARS
and OPC are greatly enhanced (proportionally to the sixth power of the quality
of resonance). The corresponding enhancement factor has the scaling depen-
dence on the spectral variable X with the exponent 2d, + 6.
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