United States Patent

Kildishev et al.

(54) **PLANAR LENS**

(75) Inventors: Alexander V. Kildishev, West Lafayette, IN (US); Vladimir M. Shalaev, West Lafayette, IN (US)

(73) Assignee: Purdue Research Foundation, West Lafayette, IN (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 12/605,021

(22) Filed: Oct. 23, 2009

Prior Publication Data

Related U.S. Application Data

Provisional application No. 61/107,742, filed on Oct. 23, 2008.

(51) **Int. Cl.**

G02B 3/00 (2006.01)
G02B 5/00 (2006.01)
G02F 1/00 (2006.01)

(52) **U.S. Cl.** 359/642; 359/321; 250/505.1; 977/701; 977/707; 977/963; 428/910; 428/913

(58) **Field of Classification Search** 359/642, 359/321, 250/505.1, 977/701, 707, 963, 428/910, 913

See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS
6,756,932 B1 6/2004 Barker et al.

6,933,812 B2 8/2005 Sarabandi et al.
7,538,946 B2 5/2009 Smith et al. 359/569

(Continued)

OTHER PUBLICATIONS

(Continued)

Primary Examiner — Evelyn A. Lester
Attorney, Agent, or Firm — Brinks Hofer Gilson & Lione

(57) **ABSTRACT**

A design method, apparatus, and fabrication method for structures for controlling the flow of electromagnetic energy at a sub-wavelength scale is disclosed. Transformational optics principles are used as a starting point for the design of structures that operate as, for example, hyperlenses or concentrators such that evanescent waves at a first surface are radiated in the far field at a second surface. Plane waves incident at a first surface may be focused to a spot size substantially smaller than a wavelength, so as to interact with objects at the focal point, or be re-radiated.

28 Claims, 6 Drawing Sheets

Bollassee, A. et al., "Fabrication of optical negative-index metamaterials: Recent advances and outlook," Elsevier, Metamaterial 2 (available online Mar. 18, 2008), 17 pages.

Leonhardt U 2006 Notes on conformal invisibility devices New Jour. of Physics 8 118.

Ahu A and Engheta N 2007 Cloaking and transparency for collections of particles with metamaterial and plasmonic covers Optic Express 15 7578-90.

Teixeira F L 2007 Differential form approach to the analysis of electromagnetic cloaking and masking Microwave and Optical Technology Letters 49 2051-3.

Jacob Z and Narimanov E E 2008 Semiclassical description of non magnetic cloaking Optics Express 16 4597-604.

Xiao D and Johnson H T 2008 Approximate optical cloaking in an axisymmetric siliconic photonic crystal structure Optics Letters 33 860-2.

Zhai Y, Argyropoulos C and Hao Y 2008 Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures Optics Express 16 6717-30.

Cummer S A and Schurig D 2007 One path to acoustic cloaking New Journal of Physics 9 45.

Wood J 2008 New metamaterials may lead to a magnetic cloak Materials Today 11 8.

Zhang P, Sun Y and He S I. 2008 Cloaking an object on a dielectric half-space Optics Express 16 3161-6.

Ala A and Engheta N 2007 Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights Optics Express 15 3318-32.

Ala A and Engheta N 2008 Robustness in design and background variations in metamaterial/plasmonic cloaking Radio Sciences 43 RS4S01.

Jacob, Z., et al., Optical “Hyperlenses” in the far field beyond the diffraction limit, © 2006 Optical Society of America.

* cited by examiner
1

PLANAR LENS

This application claims the benefit of U.S. provisional application Ser. 61/107,742 filed on Oct. 23, 2008, which is incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under Army Research Office—Multidisciplinary University Research Initiative Award No. 50342-PH-MUR. The Government may have certain rights in this invention.

TECHNICAL FIELD

The present application relates an apparatus and method for using metamaterials in structures engineered to guide electromagnetic waves.

BACKGROUND

The resolution of a traditional lens is limited to object dimensions of the order of the wavelength due to the decay of evanescent waves in the radiation electromagnetic far field that carry high-spatial-frequency information. A hyperlens permits sub-diffraction-limited imaging in the electromagnetic far field. Such a device magnifies sub-wavelength objects by transforming the evanescent (near-field) waves into propagating waves in an anisotropic medium and then projects the high-resolution image into the electromagnetic far field.

SUMMARY

An apparatus for controlling the flow of electromagnetic waves is described. The structure may be fabricated from a metamaterial, having a spatial variation of electromagnetic properties. The structure may have a first surface as an input surface and a second surface as an output surface, each surface being disposed on a different face of the structure. The permittivity of the metamaterial is anisotropic in two directions of an orthogonal coordinate system, such that the local wave equation has a hyperbolic form. The metamaterial properties may be spatially varying such that energy is guided from an input surface to an output surface, where the energy paths correspond to contours of the orthogonal coordinate system. The structure may be used, for example, a hyperlens or a light concentrator, where the light is focused into a volume having a dimension less than or equal to a half-wavelength at the design wavelength. The hyperlens is a magnifying lens where features smaller than half a wavelength may be resolved. A method of fabricating a electromagnetic wave control structure for operating at a wavelength is disclosed, including the forming a mold on a surface, depositing layers of a substantially electromagnetically transparent material and a negative permittivity material onto the mold to a thickness such that an upper layer is substantially planar, applying a polymer support layer to the upper layer, and removing the mold.

In another aspect, a method of fabricating an electromagnetic-wave-control structure for operating at a wavelength is disclosed, including defining an etch mask for a first component material of a metamaterial; etching the first component material; and, filling the regions removed by etching with a second component material. One of the first or the second components is substantially electromagnetically transparent and at least one component of the permittivity tensor of the other material is negative, and the permittivity tensor varies in value with position within the structure.

In still another aspect, a method of designing a light guiding structure includes the steps of: selecting a wavelength of operation; identifying a first surface of the structure as an input surface for electromagnetic energy; identifying a second surface of the structure as an output surface for electromagnetic energy. An orthogonal coordinate system is selected such that a first surface of the coordinate system surfaces substantially coincides with the first surface of the structure. The spatial variation of a metamaterial of the structure is computed such that electromagnetic energy is guided from the first surface to the second surface approximately along iso-surfaces of the selected coordinate system. The permittivity of at least two of the tensor components are of different signs.

In yet another aspect, a computer program product, stored on a machine readable media, includes instructions for configuring a computer to perform the steps of: accepting a selected wavelength value; accepting a configuration data defining a structure having at least an input surface and an output surface; selecting an orthogonal coordinate system such that a first surface of the coordinate system surfaces substantially coincides with the first surface; and computing a spatial variation of a metamaterial of the structure such that electromagnetic energy is guided from the first surface to the second surface. The permittivity of at least two of the tensor components are of different signs.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a transformation of concentric cylindrical domains: (a) one-quarter xy-map generated by equation (4) with $x_r=1$ μm, $0 \leq \phi \leq \pi/2$, and $0 \leq n \leq 3$; and, (b) mapping of virtual domain (hatched quarter-ring) onto the physical domain (solid shaded region), where the shared boundary is at $\rho=\gamma=2$; points A and B from the curvilinear boundary at $\gamma=1.5$ are mapped onto the points A' and B' of the external boundary of the lens at $\rho=0$;

FIG. 2 is a comparison of the magnetic field intensity of a sub-wavelength-dimensioned source (a) generated by two coherent test sources in air (no hyperlens); (b) generated by the two coherent test sources disposed just outside the curvilinear (input) surface of the hyperlens, where the shaded areas indicate the lens cross-section in (b); (c) is the H-field magnitude generated by the sources of (a) along the curvilinear (input) surface of the lens, $\rho=2$; and, (d) is the H-field magnitude at the flat (output) surface $\rho=0$ by the sources of (b);

FIG. 3 shows a magnetic field magnetic field map (a) inside a ¼-body lens; (b) inside a ½-body lens: shaded areas indicate the lens cross-section in (a) and (b); and, (c) magnetic field generated by the sources computed along the flat output surface of the closed and open lens designs;

FIG. 4 is a magnetic field map for a hyperlens having five directional magnetic sources positioned at the input surface, where the design provides an impedance match to the exterior environment;

FIG. 5 Comparison of light-concentrators with (a) full-body design; (b) an open ¾-body design; (c) an open ½-body design; and, (d) a ¼-body design: each concentrator is illuminated by a 750 nm TM-polarized plane incident on the right hand face; and

FIG. 6 shows (a) a cross-section of a silicon structure of an ideal infrared concentrator; (b) an approximation to the ideal design which may be fabricated by deposition lamellar mate-
DESCRIPTION

Exemplary embodiments may be better understood with reference to the drawings, but these examples are not intended to be of a limiting nature. Like numbered or labeled elements in the same or different drawings perform equivalent functions. When a specific feature, structure, or characteristic is described in connection with an example, it will be understood that one skilled in the art may effect such feature, structure, or characteristic in connection with other examples, whether or not explicitly stated herein.

It will of course be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made to achieve specific development goals, such as compliance with system and business related constraints, and that these goals will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.

Where specific wavelengths are described, or the term "optical" is used herein, it will be understood that the terms are being used for convenience in this written description, and not to limit the wavelength of operation of the apparatus or the methods to wavelengths corresponding to those of visible light, infrared light, or ultraviolet light. Lenses, concentrators, or other structures for controlling the propagation of electromagnetic waves, are equally possible at microwave or other wavelengths, being designed in accordance with Maxwell's equations and the methods disclosed herein. The terms "wavelength" and "frequency" are used in the sense of being inversely proportional to each other.

A "metamaterial" (MM) would be understood by a person of skill in the art to be a composite of two or more physical materials where at least one dimension of the one of the materials in the composite material is small compared with the wavelength at which the material is intended to be effective. "Effective" means that the electromagnetic properties of the composite material are in accordance with the design for the use intended. Different component materials may be selected for use at specific wavelength regimes, so as to use the wavelength-dependent properties of the component materials in the design and fabrication of the metamaterials.

The designs and apparatus herein use a design method known as "transformational optics" (TO). Aspects of the method have been described in U.S. Ser. No. 12/573,610, filed on Oct. 5, 2009 and U.S. Ser. No. 11/983,228, filed on Nov. 7, 2007, which are commonly assigned, and are incorporated herein by reference. Further aspects of the TO concept and method of design are disclosed herein.

TO theory, is based on fundamental variation principles (such as the Fermat’s principle) and allows the control of the propagation of electromagnetic waves by providing a general approach specifying complex spatial distributions of anisotropic permittivity and permeability. The principle may be expressed as describing the propagation of an electromagnetic wave as being over a path where the integral of the refractive index over a physical path is minimized. Using spatially varying distributions of the electromagnetic parameters of a medium, a "curvilinear" optical space may be created, resulting in a desired directional flow of electromagnetic energy. Generally, the characteristics of the permittivity and permeability may be expressed as a spatially varying tensor quantity. In practice, the required spatial characteristics are approximated by a manufactured, structured, MM. At optical wavelengths, the structure may be comprised, at least in part, of a composite nano-material.

The MM properties are obtained by composite materials of a sub-wavelength scale using dispersive and non-dispersive materials. Such sub-wavelength components may be distributed within a matrix material. Additional physical phenomena at the interfaces and within the dispersive elements, i.e. size-effects and the effect of surface and structural disorders in highly-anisotropic materials, may need to be incorporated into the computational models for the design of MMs. Tunable and loss-compensated MMs may be used. Loss compensation may be achieved using embedded gain media such as semiconductors, as are found in lasers. Other materials that are known or are being developed to serve as gain media include beads embedded in a polymer matrix (dye laser). The energy to power the gain media may be supplied, for example, electrically, or optically using a pumping wavelength.

Since, in a curvilinear coordinate system, the diagonalized tensor at any location is aligned with the coordinate system axes, the shape of the coordinate system iso-surfaces, as visualized in Cartesian space, is indicative of the type of spatial structure that may be suitable for fabricating a MM with appropriate local spatial variation of material electromagnetic properties. Similarly, when the transformation between an input surface and an output surface of a structure is based on a single coordinate system transformation, such as shown in FIG. 1, the variation of material properties within the structure would be smooth, and this may facilitate design and construction. In particular, when a ray-tracing approximation is used, the correspondence between a full-wave solution and the simple ray-tracing estimation would be improved.

The shape of the physical structure of the MM to realize a hyperlens, a concentrator, or other guiding structure may bear a relationship to the coordinate system, as may be seen by comparing the structure of FIGS. 6a and c with the coordinate system of FIG. 1a.

The design methods may be provided, at least in part, as a computer program product that may include a machine-readable medium having stored thereon instructions which may be used to cause a computer (or other electronic devices) to perform the methods. For the purposes of this specification, the terms “machine-readable medium” shall be taken to include any medium that is capable of storing or encoding a sequence of instructions or data for execution by a computing machine or special-purpose hardware and that may cause the machine or special purpose hardware to perform any one of the methodologies or functions of the present invention. The term “machine-readable medium” shall accordingly be taken include, but not be limited to, solid-state memories, optical and magnetic disks, magnetic memories, optical memories, and the like. The description of a method as being performed by a computer should not preclude the same method being performed, in the whole or in part, by a person.

For example, but not by way of limitation, a machine readable medium may include read-only memory (ROM); random access memory (RAM) of all types (e.g., S-RAM, D-RAM, P-RAM); programmable read only memory (PROM); electronically alterable read only memory (EPROM); magnetic random access memory; magnetic disk storage media; flash memory; or an electrical, optical, or acoustical data storage medium, or the like.

The examples shown herein have used analytic profiles for the MM material properties so as to illustrate certain of the
principles which may influence design of the hyperlens or concentrator structures. However, since electromagnetic simulations using finite-element methods or ray tracing, for example, are commonly used in design of complex shapes, and have been shown to yield plausible results, the use of such simulations are envisaged as useful in apparatus design. Ray tracing programs may be effectively used in situations where the spatial components of the material properties, and of the geometry, are slowly varying with respect to a wavelength at the operating wavelength. In optics, this is termed an adiabatic approximation. In other circumstances full-wave finite-element calculations may be performed.

A number of commercial software packages that may be used to perform the numerical analysis and design including: COMSOL MULTIPHYSICS, CST MICROWAVE STUDIO, RSoft FULLWAVE. Various ray-tracing programs are available such as FREED (available from Photon Engineering, Tucson, Ariz.).

Herein, the theoretical basis for devices transforming near-field radiation patterns into magnified (beyond the diffraction limit) far-field images that can be detected with conventional optics is described. The theory is used in a method of design of several types of apparatus where metamaterials are used to realize the desired electromagnetic properties. In addition to varieties of hyperlenses, a light concentrator is described, which may be considered to represent a "reversed" magnifying lens.

In an example, the spatial variation of the MM and associated energy guidance connect a near-field pattern at an interior, almost circular cylinder, boundary with a far-field pattern at an exterior planar boundary. Hyperlenses are pertinent to, applications such as optical cloaking, sub-wavelength sensing, super-resolution imaging, and image magnification.

In classical optics, information about the sub-wavelength features of an object is carried by evanescent waves that decay exponentially with distance. This rapid amplitude decay results in the loss of sub-wavelength details in the far-field image and sets a limit on imaging resolution.

A hyperlens comprises an anisotropic metamaterial with different signs of the permittivity $\varepsilon(r)$ and magnetic permeability $\mu(r)$, one can "curve" the propagation space in a desired way and control the flow of electromagnetic energy. The dielectric permittivity and magnetic permeability are generally tensor quantities having a spatial variation within the apparatus. The signs of the quantities may be any combination of positive and negative values that may be realized by natural and composite materials. Materials having dissimilar signs for the permittivity and permeability in at least one axis are known as indefinite materials. In general, the materials may be inhomogeneous and anisotropic.

Generally, the transformations between the input boundary and the output boundary are made using orthogonal coordinate systems, at least as an approximation. Such coordinate systems tend to have iso-surfaces that coincide with component material structures, as represented by the local tensor of the permittivity and permeability. A single coordinate transformation between the input and output surfaces may be useful in reducing the structural complexity and internal matching problems.

The computational complexity is reduced if a cylindrical coordinate system is used to gain insight into the method and apparatus. However, any orthogonal coordinate system may be used to develop a suitable basic structure appropriate for the application.

In a general cylindrical coordinate system (CCS), $\rho, \phi,$ and $z,$ can be arranged by translating a xy-plane map $[x=x(\rho, \phi), y=y(\rho, \phi)]$ perpendicular to itself, and the resulting coordinate system forms families of concentric cylindrical surfaces. Given that $\mathbf{r} = \hat{x}x + \hat{y}y$, the scaling factors of a given CCS are equal to $s_\rho = \mathbf{r}'(\rho'), s_\phi = \mathbf{r}'(\phi'),$ and $s_z = 1$, where $\mathbf{r}' = \partial(., \rho, \phi, z).$ It is convenient to choose a CCS $\mathbf{s}_\rho = \mathbf{s}_\phi = \mathbf{s}_z = 1.$
For the TM case, the curl of the magnetic field intensity, \(\vec{H} = J_z \), is \(\vec{H} \times \vec{z} = -i(\omega) \vec{E} \times \vec{B} \) or \(-i \omega \vec{E}_\phi \vec{\phi} - i \omega \vec{E}_\theta \vec{\theta} \); so the components of the electric displacement vector, \(\vec{d}_\theta \) and \(\vec{d}_\phi \), are equal to \(\vec{d}_\theta = -i(\omega) \vec{H}_\theta \) and \(\vec{d}_\phi = i(\omega) \vec{H}_\phi \), respectively. Transition to \(\vec{H} \) is given by \((\mathcal{E})^{-1} (\mathcal{D}) \vec{H} = (\mathcal{E})^{-1} (\mathcal{D}) \vec{E} \), and the wave equation is defined by:

\[
(\alpha^2 - \frac{\omega^2}{c^2}) \vec{E} + (\alpha^2 - \frac{\omega^2}{c^2}) \vec{H} = 0.
\]

(1)

In a virtual free-space (\(\eta, \phi, z \)),

\[
(\alpha^2 - \frac{\omega^2}{c^2}) \vec{E} + (\alpha^2 - \frac{\omega^2}{c^2}) \vec{H} = 0.
\]

(2)

The simplest approach to transforming concentric cylindrical domains uses a scaling transformation, \(\rho = \rho(\eta) \), where the parameter \(\eta \) of an initial virtual domain is mapped onto a corresponding parameter \(\rho \) in the physical world, keeping the other coordinate \(\phi \) of the xy-plane intact. Then, equation (1) can be rearranged in the following manner using \(\rho = \rho(\eta) \) and \(\rho^2 = \rho(\eta)^2 \):

\[
\left\{ \begin{array}{l}
\left(\frac{\rho}{\rho^2} \right)^2 \frac{1}{\rho^2} \frac{\partial}{\partial \rho} \left[\frac{1}{\rho^2} \frac{\partial}{\partial \rho} \right] \frac{\rho^2}{\rho^2} \frac{\partial}{\partial \rho} \rho^2 = 0.
\end{array} \right.
\]

An exact solution of the above equation, where the field inside the MM matches that of free-space, exists when the terms in the parentheses of equation (2) are equal to unity. Where the field inside the MM matches the field in the adjacent free space (for the case where the adjacent space is air or a vacuum), there is no reflection at the boundary, and the interface may be said to be impedance matched. In practice, the exact matching of the impedance at the boundaries and the spatial variation of the material properties within the structure may be fabricated by the techniques being used in a specific product.

This lack of exact replication of the theoretical design may be manifested as reflections at the boundary or distortions in the transformed fields. The amount of such mismatch that may be tolerated will depend on the application, the losses in the metamaterial itself, and any compensating gain that may be incorporated into the structure. As a consequence, the situation may be described as substantially impedance matched. The theoretical values are a useful starting point for design purposes.

The MM of the lens would then have the following local properties:

\[
\mathcal{E}_\rho = \mathcal{E}_\theta = \mathcal{E}_\phi = \mathcal{E}(\rho)^2 \mathcal{E}_0 = \mathcal{E}_0.
\]

(3)

These design principles would apply, for example, to a device using a concentric mapping of cylindrical domains with either a linear or high-order scaling transform, \(\rho(\eta) \), while preserving the common orthogonal parameter \(\phi \). For example, consider a CCS generated by the following xy-map:

\[
\begin{align*}
\rho &= \sqrt{x^2 + y^2}, \\
y &= \frac{y}{\sqrt{x^2 + y^2}} \\
\end{align*}
\]

(4)

with \(s = \alpha \sqrt{x^2 + y^2} \) for \(0 \leq \rho < \infty \), and \(-\pi/2 < \phi < \pi/2 \); where \(\alpha = 2\pi/n \) and \(\frac{n}{\epsilon_0 \eta^2} \cos \frac{\pi}{2} = \cos \frac{\pi}{2} \).

For the ideal hyperlens, a straightforward linear transform \(\rho(\eta) = \rho(\eta - b) \) with \(\tau = a(b - a)^{-1} \) gives \(\eta = \tau^{-1} \rho + b \), and \(\eta^0 = \tau^{-1} \).

Thus,

\[
\mathcal{E}_\rho = \mathcal{E}_\theta = \mathcal{E}_\phi = \mathcal{E}_0.
\]

(5)

where \(\kappa = \frac{\pi}{\sqrt{\eta_0}} \), \(\eta_0 = \frac{\cos \frac{\pi}{2}}{\cos 2\eta} \).

FIG. 1a depicts a quarter of the xy-map generated by equation (4) with \(\eta_0 = 1 \mu \), \(\frac{\pi}{2} \leq \phi \leq \pi/2 \), and \(\frac{\pi}{2} \leq \rho \leq \frac{\pi}{3} \). FIG. 1b shows the mapping of a virtual domain (the quartered ring) onto a physical domain (solid shaded region) with the shared boundary at \(\rho = \tau^{-1} \). Thus, points A and B from the virtual external boundary at \(\eta = 1.5 \) are mapped onto the points A' and B' of the physical external boundary of the lens at \(\rho = 0 \).

Calculation of the material properties requires the inverse transforms, which in this case are given by

\[
\rho = \frac{1}{2} \left(\frac{\cosh \eta + \cos \phi}{\sinh \eta + \sin \phi} \right), \quad \phi = \tan^{-1} \left(\frac{\sinh \eta}{\cosh \eta} \right).
\]

(6)

where the scaled coordinates \((x, y) \) are defined as \(x = x/\alpha \) and \(y = y/\alpha \).

Finally, the anisotropic permittivity, \(\mathcal{E}_\rho \), is equal to:

\[
\mathcal{E}_\rho = \frac{\alpha}{2} \left(\frac{\cosh \eta + \cos \phi}{\sinh \eta + \sin \phi} \right).
\]

(7)

where \(\alpha \) is a 2x2 idem factor; the components of the 2x2 symmetric matrix \(u_{ij} = u_{j} = u_{i} \), \(u_{ij} = -u_{j} \), with \(u_{i} = \sin \frac{\pi}{2} \), \(u_{j} = 1 - \cos \frac{\pi}{2} \).

The ring region of FIG. 1 may be used to facilitate impedance matching, where the evanescent fields of a source outside the boundary are permitted to decay somewhat into a region of the same dielectric properties as that of the source region. At the output surface, impedance matching may be performed using, for example, a matching medium.

FIG. 2a compares the free-space far-field performance of two coherent radiating sources with that of the same two sources positioned at an input surface of a hyperlens with smoothly changing local MM properties (FIG. 2b) in accordance with equation (5). The radiating sources in FIG. 2a are two cylindrical segments excited as magnetic line sources at a wavelength \(\lambda = 1.55 \mu \) and placed at the surface of a fictive cylinder excited perpendicular to the plane of the figure, with a radius of 152 nm; the angular dimensions of the sources range from 10 to 40 degrees. For clarity, all of the material in FIG. 2a is air, two different regimes are shown. In the left-hand portion, the two sources are positioned at locations on the surface of the fictive cylinder, so as to facilitate comparison with the performance of a hyperlens lens having the same geometry. The right-hand side of FIG. 2a is shown as being darker, for the purposes of defining an image plane which corresponds to the location at which the magnetic field intensity is computed for the hyperlens of FIG. 2b, to be shown in FIG. 2d.

The examples described herein are shown in a cross-sectional view except where specifically indicated, with the cross-section plane being oriented orthogonal to the axis of the cylinder.

FIG. 2b shows the same two magnetic line sources disposed on the surface of a cylinder of the same dimensions and orientation as in FIG. 2a. However, here, the cylinder forms a boundary disposed at the input of a hyperlens fabricated with MM having electromagnetic characteristics in accordance with equation (5). The magnetic line sources are disposed on the boundary of the input cylinder, and a planar outer boundary is formed between the hyperlens and a surrounding region, which is air in this example. The intensity of the electromagnetic energy inside the hyperlens is shown,
where the lighter shading indicates a greater magnetic field intensity. The magnetic field intensity at the interface between the hyperlens lens and the air is computed, and the result is as shown in FIG. 2d.

The intensity diagram of FIG. 2a is substantially symmetrical about the fictive input surface and decays with distance from the input surface such that the intensity is minimal at the vertical interface positioned at the same distance as the MM-air interface of the hyperlens of FIG. 2b. Hence, at the position of the interface, there is no observable structure of the magnetic intensity. In contrast, in FIG. 2b the intensity within the hyperlens body is seen to be concentrated in two separate regions, corresponding to the radiation patterns of the two magnetic line sources, showing that the energy is being guided from the sources to the planar boundary of the hyperlens.

The field strengths of FIGS. 2c and 2d have a similar amplitude and form, showing that the hyperlens has little apparent distortion when the signal is propagated from the input cylinder to the output interface between the MM and air. A comparison of the distance scales of FIGS. 2c and 2d shows that the image has been magnified by a factor of about 5 when a hyperlens lens is disposed between the sources and the image plane.

The input surface of the hyperlens in FIG. 2b is completely surrounded by the hyperlens structure in the plane perpendicular to the cylindrical axis. For some uses, a more convenient access to the input surface (the inner cylinder in this example) is desired. In order to provide better physical access to the input surface, a part of the lens may be removed.

FIG. 3 shows the effect of two different symmetric truncations of the lens body. In FIGS. 3a and b, the rectangular cross-section of FIG. 2b is modified so that a wedge of MM is removed. The removed wedge is defined by two lines joining adjacent corners of the hyperlens body with the central cylinder. In FIG. 3a, adjacent corners are selected so as not to correspond to the hyperlens output surface. In FIG. 3b, the adjacent corners are selected to correspond to the output surface. In each example, the region comprising the remaining MM is labeled as the “lens”.

FIG. 3a depicts the H-field intensity map inside a ½-body lens, while FIG. 3b shows the intensity map for a ¼-body lens. The terms ½-body lens and ¼-body lens are understood to describe situations where a portion of the lens body has been removed. Other geometries may be used for removing portions of the lens. In particular, a ½-body lens would be understood to be intermediate between the examples shown in FIGS. 3a and b, and be described by a line parallel to the air-lens interface and passing through the cylinder where the sources are disposed.

The H-field magnitudes generated by the sources at the cylinder boundary as measured along the flat (output) boundary of the ½-body lens and ¼-body lens, are compared with that of the “full” body lens of FIG. 2b in FIG. 3c. The H-field at the image plane (the interface between the MM and the air) of the ½-body lens (dashed line) and the full-body lens design (grey solid line) effectively overlap. This quality of match is almost preserved in ½-body lens (not shown), but the performance of the lens decreases with further truncation such as in the ¼-body lens. FIG. 3c shows additional structure and a decreased amplitude at the image periphery for the ¼-body lens.

In another example, FIG. 4 shows the magnetic field pattern inside a ½-body lens structure where five sub-wavelength-size cross section magnetic line sources are spaced apart at the input surface and radiate into the lens. The design of this lens is such that the fields are matched at the boundary, as was the case with the previous examples. The emitted energy is seen to be guided in distinct paths from the input surface towards the output surface, rather than decaying to an amorphous radiation field as would be the case with conventional optics for features below the conventional resolution limit.

Other shapes may be used. The examples herein are presented primarily to guide designers in the selection of initial parameters for numerical analysis.

A similar approach may be taken to make a light-concentrating device where, for the ideal case, another common boundary, $p=\eta=0$, is used along with the simple transformation $p=\eta=\frac{1}{b}$, which results in mapping a virtual boundary $\eta=\frac{1}{b}$ onto a physical boundary inside the lens ($p=1$). The transform gives the same formal properties as (5). This may also be considered to be a consequence of reciprocity. Often, the principles of reciprocity may be used to simplify a computational problem, similar to the approach used to compute a transmitting pattern of an antenna as representing the receiving pattern of the same antenna.

FIG. 5 compares the performance of various designs of light-concentrating devices, shown in FIGS. 5a, c, and d with respect to the full-body concentrator shown in FIG. 5a. Each of FIGS. 5a-d show the time-averaged energy density within the lens using a logarithmic scale, (shown to the right-hand side of the figure), encompassing about 7 orders of magnitude of dynamic range. The external air-dielectric region is shown in light grey so as to define the boundaries of the concentrator. Each concentrator is illuminated by a 750-nm plane wave propagating from right to left. The geometrical and transform parameters of all the devices shown in FIG. 4 are $\lambda=1 \mu m$, $l=200$, and $b=0.01$.

The ½-body concentrator (FIG. 5a) and ¼-body concentrator (FIG. 4d) have the same physical geometry as in FIGS. 3a and b, respectively. The ½-body concentrator is formed by removing two wedge shaped pieces defined by lines connecting opposing corners of the lens body. In this instance the ½-body concentrator comprises two opposing-apex ¼-body concentrators. FIGS. 5a and b show that the ½-body concentrator and the full-body concentrator have essentially identical performance in a region between a vertical line passing through the central cylinder and the right-hand air/MM interface. The intensity of the light in the central cylinder illustrates the intensity enhancement that may be achieved. FIG. 5a also shows that, in a region between the vertical line and the left-hand air interface, the intensity is a mirror image of the other half of the concentrator. That is, after being concentrated in the central cylinder, the energy is again transformed into a propagating wave at the left-hand interface, being a plane wave similar to that which was originally incident at the right-hand interface.

The situation is different in FIG. 5b where, after being concentrated at the cylinder, the light is radiated into the left-hand region as from a point source. A small amount of the light may be seen to be contained in the portion of the lens to the left-hand side of the cylinder, and presumably subsequently radiated, at least in part. This would be observed as a slight distortion of the radiation pattern of the point source.

In the case of FIG. 5c, which may be thought of as two ¼-body structures meeting at the cylinder, since the illumination of the planar input surface was illuminated by a plane wave, the areas of enhanced energy density near the back and side surfaces of the structure are indicative of distortion of the signal and a less effective concentration of light. Structures intermediate in form between the ¼-body and a ½-body forms of construction, similar to those of the lens of FIG. 3 would be expected to show less distortion while still provid-
ing access to the cylindrical region. A $\frac{1}{2}$-body concentrator comparable to the $\frac{1}{2}$-body lens, where the concentrator is comprised of the full-body design to the right-hand side of a vertical line passing through the cylinder would be expected to behave similarly to that of the $\frac{1}{2}$-body concentrator.

Concentrators may be used to illuminate materials placed at the central cylinder with high-intensity electromagnetic energy. Such energy may be converted to electrical signals using semiconductor or other materials, be used in non-linear optical materials, and the like.

In another aspect a material sample, which may be a biological sample or other substance having structural features smaller than the wavelength of the observation may be placed between a structure acting as a concentrator and a structure acting as a magnifying lens. Energy illuminating the sample is enhanced as the energy incident on the flat input surface of the concentrator is focused onto the sample, and the resolution of the observation is enhanced and sub-wavelength features of the sample are observable at the hyperlens planar output surface.

In yet another aspect, a concentrator may permit the “collection” of electromagnetic energy from directions in space and highly localizing that light in nanometer-scale volumes. Both the light concentrator and the hyperlens may have other geometries such as being a spherical structure, for example in an oblate spherical coordinate system, and the structure may be similar to the $\frac{1}{2}$-lens structure previously described.

The manufacturing of small-scale structures is known, for use in semiconductor devices, micro-machined devices and other nanotechnology applications. Here, specific materials and geometries are chosen to achieve the hyperlens or concentrator performance.

One of the possible ways of creating such structures for the MIR employs a deep etch of SiC. For example, structural SiC elements where high aspect ratio (AR>5), deep (>100 μm) trenches may be etched in 6H—SiC. It is likely that deeper etches with high directionality are possible, such as may be used in micro-machined electromechanical structures. One possible fabrication method may use a time-multiplexed etch-passivate (TMEP) process, which alternates etching with polymer passivation of the etch sidewalls. For designing MMbs based on binary or multi-component composites, additional passive elements made of mid-infra-red (MIR)-transparent materials may also be used. Since traditional polymers and dielectrics usually exhibit high absorption at MIR wavelengths; low-loss MIR materials (e.g., ZnSe or ZnS) may need to be embedded into the SiC structure.

A technique of fabricating such concentrating structures may use deep silicon etching combined with electroless deposition of metal. The silicon is the dielectric host material and, for example, silver or gold would fill the trenches.

Another possible technique would include patterning an etch mask (for example a layer of SiO2) on Si by EBL (electron beam lithography) and an etch process A deep Si etch may then be used for creating ultra-high AR structures. A deep, highly directional silicon etch may use, for example, high-density, inductively-coupled plasmas (ICP) and fluoro-based non-corrosive chemistry. This technology has been used for etching deep, anisotropic (100 μm deep) with a high aspect ratio (AR) (depth/width = 20-50), high etch rates (5 μm/min) and a high selectivity Si/mask (SiO2) of >500.

In the visible (0.4-0.7 μm) and near-infrared (NIR) wavelength ranges (1.5 μm), MMbs may be based on, for example, anisotropic lamellar metal-dielectric composites with nanos-structured plasmonic elements (Ag or Au) combined with dielectric materials (e.g., alumina or silica for the visible, or Si for the NIR). For the MIR wavelength range (~10 μm), MMbs may be based on SiC exhibiting a strong phonon-polarization resonance with a high quality factor.

A structure suitable for a flat-top hyperlens is shown in FIG. 6. A structure such as shown in cross-section in FIG. 6a has been designed in accordance with the method described herein. FIG. 6b shows a perspective view of such a structure where the fabrication technique would include etching of a bulk material. The etched structure would then be filled with one or more different materials so as to achieve the desired spatial variation of permittivity.

Another fabrication approach may be based on a multi-layer, metal-dielectric, lamellar structure deposited on top of a hill-shaped ridge. The ridge may be prefabricated by lithographic and etching techniques and the ridge may be removed after the lamellar layers have been deposited, yielding the hyperlens multilayer film. FIG. 6b. The resultant spatial properties may not correspond exactly to the theoretical design, since the details would depend on the details of the process used.

One of the possible ways of achieving a hill-shaped silicon ridge after a standard lithographic patterning step is to make a “tapered wedge” either via wet etch or via a combination of isotropic and anisotropic reactive ion etching and then smoothing the shape by thermal oxidation. The ridge parameters can be changed by fine-tuning the etching and oxidation processes to match the designed values. Multiple layers of metal (Ag) and dielectric (for example, Al2O3) can then be deposited by e-beam deposition. Fine control over layer parameters like thickness and roughness may be achievable through careful optimization of the deposition process (including pressure in the deposition chamber, deposition rate, and the like, as is known in the art). In order to separate the multi-layered film from the substrate, a layer of polymer may be applied on the top of the multilayer-film and hardened, followed by the silicon substrate removal.

Although only a few exemplary embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims.

What is claimed is:
1. An apparatus for controlling the flow of electromagnetic waves, comprising:
 a structure fabricated from a metamaterial, having a spatial variation of electromagnetic properties,
 wherein the structure has a first surface and a second surface disposed on different faces of the structure, and the spatial variation of electromagnetic properties is such that, at least in a portion of the structure, a permittivity of the metamaterial is anisotropic in two directions of an orthogonal coordinate system mapping the input surface to the output surface, and
 an evanescent wave incident at the first surface is radiated as a far-field electromagnetic wave at the second surface.
2. The apparatus of claim 1, wherein that the impedance at least one of the surfaces substantially matches that of a material immediately adjacent to the exterior of the structure, in at least one polarization.
3. The apparatus of claim 1, wherein the metamaterial spatial variation guides a plane wave incident on a flat first surface of the structure to a sub-wavelength focus outside of a second surface of the structure.
4. The apparatus of claim 1, wherein the spatial variation of the metamaterial properties is such that, at least in a portion of the anisotropic portion, the tensor representation of the anisotropic permittivity has different signs in two directions of the coordinate system.

5. The apparatus of claim 1, wherein at least one of the surfaces is a planar surface.

6. The apparatus of claim 1, wherein the metamaterial comprises a multilayer, metal-dielectric, lamellar contoured structure including a valley defining the lamellar contours located on a side opposite a planar surface of the lamellar structure.

7. The apparatus of claim 6, further comprising a polymer support layer contiguous to the planar surface.

8. The apparatus of claim 1, wherein the coordinate system is a cylindrical coordinate system.

9. The apparatus of claim 1, wherein the coordinate system is a spherical coordinate system.

10. The apparatus of claim 1, comprising a first apparatus configured to concentrate a substantially plane-wave light incident on a first surface thereof at a sub-wavelength-focus volume adjacent a second surface thereof, and a second apparatus disposed such that light radiated by an object in the focus volume is directed to a surface of the second apparatus such that light energy is launched from the second apparatus into a far field region as a substantially plane wave.

11. The apparatus of claim 1, wherein the spatial variation of metamaterial properties is determined such that electromagnetic energy incident at one of the first surface or the second surface is controlled so as to flow to a corresponding position of another of the first surface or the second surface.

12. The apparatus of claim 1, where one of the surfaces is a flat surface over a distance corresponding to substantial energy flow between the first and the second surfaces.

13. The apparatus of claim 12, wherein another the surfaces has a substantially cylindrical shape.

14. The apparatus of claim 13, wherein the cylindrical surface is surrounded by the metamaterial.

15. The apparatus of claim 13, wherein the structure is approximately a ½-body shape formed between a plane parallel to the flat surface and bisecting the cylinder, and the flat surface.

16. The apparatus of claim 13, wherein the structure is approximately a ½-body shape.

17. The apparatus of claim 13, wherein the structure is formed by positioning two ¼-body shapes such that the cylindrical surfaces of the two shapes complete a cylinder.

18. The apparatus of claim 1, wherein an evanescent wave is received from an object placed adjacent to the first surface.

19. The apparatus of claim 18, wherein a source of the evanescent wave has a scale size of a feature in at least one dimension that is smaller than half a wavelength at a design wavelength, and the feature is resolvable at the second surface.

20. The apparatus of claim 1, wherein a far-field plane wave incident at the second surface is guided to the first surface, such that a half-power profile of the intensity immediately adjacent to the exterior of the apparatus near the first surface has a dimension of less than half a wavelength at a design wavelength.

21. The apparatus of claim 14, wherein a plane wave incident on a first first surface is directed through the cylindrical surface disposed within the structure, and re-radiated through a second first surface disposed such that the cylindrical surface is disposed between the first first surface and the second first surface.

22. The apparatus of claim 13, wherein a plane wave incident on a flat surface of a ½-bodily structure is radiated from the region of the cylindrical surface.

23. The apparatus of claim 1, wherein the metamaterial includes a gain medium.

24. The apparatus of claim 23, wherein the gain medium is an optically pumped semiconductor material.

25. The apparatus of claim 23, wherein the gain medium is a dye-doped laser material.

26. The apparatus of claim 23, wherein the energy for the gain medium is supplied electrically.

27. The apparatus of claim 23, wherein an image radiated at the second surface is a magnified representation of an object disposed adjacent to the first surface.

28. The apparatus of claim 27, wherein a feature size of the object is less than half a wavelength at a design wavelength, and the feature is resolvable at the second surface.
UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,094,378 B2
APPLICATION NO. : 12/605021
DATED : January 10, 2012
INVENTOR(S) : Alexander V. Kildishev et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

In column 12, claim 2, lines 60-61, after “wherein that the impedance” replace “at least one” with --at least one--.

Signed and Sealed this
Tenth Day of April, 2012

David J. Kappos
Director of the United States Patent and Trademark Office