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Abstract

A scaling theory of local field fluctuations and optical nonlinearities is developed for random metal-
dielectric composites near a percolation threshold. The theory predicts that in the optical and infrared
spectral ranges the local fields are very inhomogeneous and consist of sharp peaks representing localized
surface plasmons (s.p.). The localization maps the Anderson localization problem described by the random
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Hamiltonian with both on- and off-diagonal disorder. The local fields exceed the applied field by several
orders of magnitudes resulting in giant enhancements of various optical phenomena. A new numerical
method based on the developed theory is suggested. This method is employed to calculate the giant field
fluctuations and enhancement of various optical processes in 2D metal-dielectric composites — semicontinu-
ous metal films. The local field fluctuations appear to be highly correlated in space. These fluctuations result
in dramatically enhanced Rayleigh and Raman light scattering. The scaling analysis is performed to describe
the giant light scattering in a vicinity of the percolation threshold. The developed theory describes
quantitatively enhancement of various nonlinear optical processes in percolation composites. It is shown
that enhancement depends strongly on whether nonlinear multiphoton scattering includes an act of photon
subtraction (annihilation). The magnitudes and spectral dependencies of enhancements in optical processes
with photon subtraction, such as Raman and hyper-Raman scattering, Kerr refraction and four-wave
mixing, are dramatically different from those processes without photon subtraction, such as sum-frequency
and high-harmonic generation. Electromagnetic properties of metal-dielectric crystals and composites
beyond the quasistatic approximation are also studied. Equations of macroscopic electromagnetism are
presented for these systems. Both linear and nonlinear optical responses are considered in the case of a strong
skin effect in metal grains. It is shown that the magnetic field undergoes giant spatial fluctuations. Scaling
properties of the local magnetic field and its high-order moments are analyzed. © 2000 Elsevier Science
B.V. All rights reserved.

PACS: 72.20. —e; 73.20.Mf; 72.15.Gd
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1. Introduction

Local electromagnetic field fluctuations and related enhancement of nonlinear optical phe-
nomena in metal-dielectric composites near percolation threshold (percolation composites) have
recently become an area of active studies, because of many fundamental problems involved and
high potential for various applications. At zero frequency, strong nonlinearity may result in
breaking down conducting elements when the electric current exceeds some critical value [ 1-4]. If
the external electric field exceeds some value known as a critical field, a crack spreads over the
system. The critical field decreases to zero when the concentration of the conducting component
approaches the percolation threshold. This indicates that percolation composites become progress-
ively more responsive to the external field when the percolation threshold is approached. The
simplest fuse model can be applied, e.g., for description of fractures in disordered media and related
problem of weak tensility of materials in comparison with the strength of the atomic bonds [5]. The
tension concentrates around weak points of materials and a crack spreads out starting from these
weak points.

Another example of unusual nonlinear behavior has been observed recently for the AC and DC
conductivities in a percolation mixture of carbon particles embedded in the wax matrix [6]. In
this case, neither carbon particles nor wax matrix have any nonlinearity in their conductivities;
nevertheless, the conductivity of a macroscopic composite sample increases twice when the applied
voltage increases by few volts. Such a strong nonlinear response can be attributed to the quantum
tunneling between conducting (carbon) particles, which is a distinguished feature of the electric
transport in composites near the percolation threshold [7]. The current and electric field are
concentrated in few “hot” junctions and make it possible to change their conductances under
action of the high local fields, whereas the external field is relatively small. In general, percolation
systems are very sensitive to the external electric field since their transport and optical properties
are determined by rather sparse network of conducting channels, and the field concentrates in the
weak points of the channels. Therefore, composite materials should have much larger nonlinear
susceptibilities at zero and finite frequencies than those of its constitutes.

The distinct feature of percolation composites, which amplifies nonlinearities of its components,
has been recognized very early [4,5,8-11], and nonlinear conductivities and susceptibilities have
been intensively studied during the last decade (see, for example, [12-17,140]).

In this review article we consider relatively weak nonlinearities when conductivity ¢(E) can be
expanded in the power series of the applied electric field E, and the leading term, i.e., the linear
conductivity ‘'), is much larger than others. This situation is typical for various nonlinearities in
the optical and infrared spectral ranges considered here. Even weak nonlinearities lead to qualitat-
ively new physical effects. For example, generation of higher harmonics can be strongly enhanced
in percolation composites and bistable behavior of the effective conductivity can occur when the
conductivity switches between two stable values [18]. We note that the “languages” of nonlinear
currents/conductivities and nonlinear polarizations/susceptibilities (or dielectric constants) are
completely equivalent and they will be used here interchangeably.

The local field fluctuations can be strongly enhanced in the optical and infrared spectral ranges
for a composite material containing metal particles that are characterized by the dielectric constant
with negative real and small imaginary parts. Then, the enhancement is due to the surface plasmon
resonance in metallic granules and their clusters [12,14,19,20]. The strong fluctuations of the local
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electric field lead to enhancement of various nonlinear effects. Nonlinear percolation composites
are potentially of great practical importance [21] as media with intensity-dependent dielectric
functions and, in particular, as nonlinear filters and optical bistable elements. The optical response
of nonlinear composites can be tuned, for example, by controlling the volume fraction and
morphology of constitutes.

In Refs. [10,22-24] nonlinear optical properties of fractal aggregates of metal particles have been
studied. The main result is that the aggregation of initially isolated particles into fractals results in
huge enhancements of the nonlinear responses within the spectral range of the cluster plasmon
resonances. Typical size a ~ 10nm of metal particles in fractal clusters is much smaller than the
wavelength A > 300 nm in the optical and infrared spectral ranges. The average density of particles
in fractals is much smaller than in bulk materials and tends to zero with increasing the fractal size.
With this simplifications, it is possible to consider each particle as an elementary dipole and
introduce corresponding interaction operator. Then the problem of the optical response of metal
fractals reduces to diagonalizing the interaction operator for the dipoles induced by light. If the
number of metal particles in a fractal aggregate is not very large the diagonalization of the
interaction operator can be done numerically and thus the local electric field can be calculated.
Local fields fluctuations in metal fractals were studied numerically, for example, in [25-27]. It has
been found that the areas of large field fluctuations are localized in different small parts of a fractal
that change with the wavelength.

The prediction of large enhancements of optical nonlinearities in metal fractals has been verified
experimentally for the example of degenerate four-wave mixing and nonlinear refraction and
absorption [22]. Aggregation of initially isolated silver particles into fractal clusters in these
experiments led to a 10°-fold enhancement of the efficiency of the nonlinear four-wave process and
~ 10° enhanced nonlinear refraction and absorption. The localized and strongly fluctuating local
fields in fractals were imaged by means of the near-field scanning optical microscopy (NSOM) in
[27]. Similar pattern for the field distribution was obtained for self-affine thin films [28] that have
fractal structure of the surface, with different scaling properties in the plane of the film and normal
to it.

Enhanced optical processes in composites with layered and other structures were studied by
Sipe, Boyd and their co-workers [29] both theoretically and experimentally. The theoretical
treatment of nonlinear effects in composite with parallel slabs microstructure can be performed
analytically due to the rather simple geometry of the system (see also [18]). Nonlinear susceptibili-
ties of some hierarchical structures and periodic composites with shell structure were considered in
[30] and [31], respectively.

In spite of big efforts and some achievements, outlined above, the local field distribution and
corresponding nonlinearities were, till very recently, poorly known for percolation metal-dielectric
composites, in the most interesting spectral range where the plasmon resonances occur in metal
grains. When a small volume concentration p < 1 of the nonlinear material is embedded in a linear
host the effective nonlinear response of the whole composite can be calculated explicitly [32,33]. As
one could expect the nonlinearities are enhanced at the frequency w, corresponding to the plasmon
resonance of a single metal grain. Numerical calculations [34] for a finite concentration p also give
a considerable enhancement in the narrow frequency range around w,. These calculations
also show that the system sizes tractable for the known numerical methods [35] are not enough to
make quantitative conclusions about the nonlinear properties for the frequencies w close to the
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resonance frequency w,. Thus the system size L equals to L = 10 in calculations of Ref. [34],
whereas the local field fluctuations have typically much larger spatial separation &, for the
frequencies w < w, [15,36-48]. Then the system size L is an artificial damping factor that cuts off
all field fluctuations with &, > L and results in the corresponding decrease of the nonlinearities.

To avoid direct numerical calculations, the effective medium theory [49] that has the virtue
of mathematical and conceptual simplicity, was extended for the nonlinear response of
percolation composites [12,13,50-55] and fractal clusters [56]. For linear problems, predictions
of the effective medium theory are usually sensible physically and offer quick insight into problems
that are difficult to attack by other means [12]. The effective medium theory, however, has
disadvantages typical for all mean-field theories, namely, it diminishes fluctuations in a system.
For example, it assumes that local electric fields are the same in the volume occupied by
each component of a composite. The electric fields in different components are determined
self-consistently.

For the static case the results of the last modification of the nonlinear effective medium theory
[54,55] are in best agreement with comprehensive computer simulations performed for a two-
dimensional (2D) percolation composite [52,54,55]. The original approach that combines the
effective medium theory and spectral representation [ 12,57] has been developed in Refs. [16,140].
In spite of this success, application of any kind nonlinear effective medium theories is rather
questionable for the frequency range corresponding to the plasmon resonances in metal grains. The
first computer [ 15,36-38,40-45,47] and experimental results [39,46,58] for the field distribution in
percolation composites show that the local field distributions contain sharp peaks with distances
between them much larger than the metal grain size. This pattern agrees qualitatively with
numerical calculations and experimental results for metal fractals [25,27,59,60] and self-affine films
[28]. Therefore, the local electric field by no means can be considered as the same in all metal grains
of the composite. Then the main assumption of the effective medium theory fails for the frequency
range corresponding to the plasmon resonance in the films.

A new theory of electromagnetic field distribution and nonlinear optical processes in metal-
dielectric composites has been developed recently [15,36-48]. The new approach is based on
a percolation theory and the fact that the problem of optical excitations in percolation composites
mathematically maps the Anderson transition problem. The theory predicts localization of surface
plasmons (s.p.) in percolation composites and describes in detail the localization pattern. It is
shown that the s.p. eigenstates are localized on the scale much smaller than the wavelength of an
incident light. The s.p. eigenstates with eigenvalues close to zero (resonant modes) are excited most
efficiently by the external field. Since the eigenstates are localized and only a small portion of them
are excited by the incident beam, the overlapping of the eigenstates can typically be neglected and
that significantly simplifies theoretical considerations and allows one to obtain relatively simple
expressions for enhancements of linear and nonlinear optical responses. It is important to stress
that the s.p. localization length is much smaller than the light wavelength; in that sense, the
predicted sub-wavelength localization of the s.p. differs from the well-known localization of light
due to strong scattering in a random homogeneous medium [61].

We also note that the developed scaling theory of optical nonlinearities in percolation com-
posites opens new means to study the classical Anderson problem, taking advantage of unique
characteristics of laser radiation, namely, its coherence and high intensity. For example, the
new theory predicts that at percolation there is a minimum in nonlinear optical responses of
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metal-dielectric composites, the fact that follows from the Anderson localization of s.p. modes and
can be studied and verified in laser experiments.

The rest of the paper is organized as follows. In Section 2, we consider local fields and their
high-order moment distributions in percolation composites. We also show there that the field
distribution maps the Anderson localization problem in quantum mechanics and employ this fact
to describe in detail a localization pattern of s.p. modes. The mapping and scaling arguments are
used to obtain the field high-order moments and their dependencies on the frequency of an incident
wave and metal concentration, for arbitrary optical nonlinearity. Our numerical approach and
computer results for the local fields are described in Section 3. In Section 4 we consider light
scattering (Rayleigh scattering) from two-dimensional (2D) metal-dielectric composites also
known as semicontinuous metal films. It is generally accepted that fluctuations are especially
strong in 2D systems. Therefore, we speculate that enhancement of different optical effects
due to the local field fluctuations are especially large in semicontinuous metal films. In Section 5
we present self-consistent, general theory of Raman scattering in inhomogeneous media.
The results of this theory are used to find surface-enhanced Raman scattering in semicontinuous
metal films. Hyper-Raman scattering is also discussed in this section. In Section 6, we calculate
enhancement factors for a number of nonlinear optical processes, including Kerr-type nonlinear
refraction and absorption and nth harmonic generation. We show that most of the enhancement
originates from strongly localized nanometer-scale areas, where the local electric field has its
maxima. Enhancements in these “hot zones” are giant and exceed a “background” nonlinear
signal by many orders of magnitude. In Section 7 we generalize our approach for the case
when the local electromagnetic field cannot be considered as a potential field (even on a “micro-
scopical” scale), i.e., when the skin effect is strong. Two different classes of metal-dielectric
systems will be analyzed, percolation composites and artificial electromagnetic crystals —
three-dimensional periodic metal structures [62,63]. We show that the electromagnetic
properties of the composites and electromagnetic crystals can be understood in terms of
effective dielectric constant and magnetic permeability as soon as the wavelength of the
incident wave is much larger than an intrinsic spatial scale of the system. The most interesting
effects we expect in the limit of wavelength vanishing inside the metal, that is in the limit
of the strong skin effect. Thus effective dielectric constant becomes negative in some metal-
dielectric crystals.

2. Scaling theory of field fluctuations and high-order field moments

In metal-dielectric percolation composites the effective DC conductivity o, decreases with
decreasing the volume concentration of metal component p and vanishes when the concentration
p approaches concentration p, known as a percolation threshold [12,20,64]. In the vicinity of the
percolation threshold p., the effective conductivity ¢. is determined by an infinite cluster of
percolating (conducting) channels. For concentration p smaller than the percolation threshold p.,
the effective DC conductivity o, =0, that is the system is a dielectric like. Therefore,
metal-insulator transition takes place at p = p.. Since the metal-insulator transition associated
with percolation represents a geometric phase transition one can anticipate that the current and
field fluctuations are scale invariant and large.
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In percolation composites, however, the fluctuation pattern appears to be quite different from
that for a second-order transition, where fluctuations are characterized by the long-range correla-
tion, and their relative magnitudes are of the order of unity, at any point of a system [65,66]. In
contrast, for a DC percolation, local electric fields are concentrated at the edges of large metal
clusters so that the field maxima (large fluctuations) are separated by distances of an order of the
percolation correlation length &,, which diverges when the metal volume concentration p ap-
proaches the percolation threshold p. [34,64,67].

We show below that the difference in fluctuations becomes even more striking in the optical
spectral range, where the local field peaks have the resonance nature and, therefore, their relative
magnitudes can be up to 10>, for the linear response, and 10?° and more, for nonlinear responses,
with distances between the peaks much larger than the percolation correlation length &,,.

In the optical and infrared spectral ranges, the surface plasmon resonances play a crucial role in
metal-dielectric composites. To get an insight into the high-frequency properties of metals, we first
consider a simple model known as a Drude metal that reproduces semi-quantitatively the basic
optical properties of a metal. In this approach, the dielectric constant of metal grains can be
approximated by the Drude formula

em(w) =&, — (cup/w)z/[l +iw. /o], (2.1)

where ¢, is the contribution to ¢, due to the inter-band transitions, @, is the plasma frequency, and
w, = 1/t < w, is the relaxation rate. In the high-frequency range considered here, losses in metal
grains are relatively small, w, <€ . Therefore, the real part ¢, of the metal dielectric function ¢, is
much larger (in modulus) than the imaginary part e, (Jen,|/em =~ w/w, > 1), and &, is negative for the
frequencies w less than the renormalized plasma frequency,

By = p// b - (2.2)
Thus, the metal conductivity o, = — iwey,/4n= (e, @ /Anw)[i(1 — w?/®}) + w./w] is character-

ized by the dominant imaginary part for @, > @ > w,, 1.e., it is of inductive character. Therefore,
the metal grains can be thought of as inductances L, while the dielectric gaps can be represented
by capacitances C. Then, the percolation composite represents a set of randomly distributed L and
C elements. The collective surface plasmons excited by the external field, can be thought of as
resonances in different L-C circuits, and the excited surface plasmon eigenstates are seen as giant
fluctuations of the local field. The discussion below of the giant field fluctuations is based on the
recent works [46—48].

2.1. Local field distribution in percolation composites with ¢4 = — &,

We suppose that a percolation composite is illuminated by light and consider local optical field
distributions. A typical metal grain size a in the percolation nanocomposites is about few
nanometers [14] and that is much smaller than the wavelength A of the light in the visible and
infrared spectral ranges. When wavelength / is much larger than the particle size a we can
introduce potential ¢(r) for the local electric field. Then the local current density j can be written as
Jj(r) = a(r)(— Vo(r) + Ey), where E, is the applied field and a(r) is the local conductivity. In the
considered quasistatic case the field distribution problem reduces to solution of the Poisson
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equation, representing the current conservation law divj = 0, namely
V(o[ — Vo(r) + Eg]) =0, (2.3)

where the local conductivity a(r) takes either o, or 4 values, for metal and dielectric components,
respectively. It is convenient to rewrite Eq. (2.3) in terms of the local dielectric constant
&(r) = 4mio(r)/w as follows:

V- [eVo(r)] =&, (2.4)

where & = V- [&(r)E, ]. The external field E, can be chosen real, while the local potential ¢(r) takes
complex values since the metal dielectric constant &, is complex &, = &, + igy, in the optical and
infrared spectral ranges. Because of difficulties in finding solution to the Poisson Eq. (2.3) or (2.4),
a great deal of use has been made of the tight binding model in which metal and dielectric particles
are represented by metal and dielectric bonds of a cubic lattice. After such discretization, Eq. (2.4)
acquires the form of Kirchhoff’s equations defined on a cubic lattice [ 12]. We write the Kirchhoff’s
equations in terms of the local dielectric constant and assume that the external electric field E, is

({3 L)

directed along “z” axis. Thus we obtain the following set of equations:
Z &ij(Q; — i) = Z &ijEij (2:5)
J J

where ¢; and ¢; are the electric potentials determined at the sites of the cubic lattice and the
summation is over the nearest neighbors of the site i. The electromotive force (EMF) E;; takes value
Eqay, for the bond {ij) in the positive z direction (where a, is the spatial period of the cubic lattice)
and — Eqao, for the bond <ij) in the — z direction; E;; = 0 for the other four bonds at the site i.
Thus the composite is modeled by a resistor-capacitor-inductor network represented by Kir-
chhoff’s equations (2.5). The EMF forces E;; represent the external electric field applied to the
system.

In transition from the continuous medium described by Eq. (2.3) to the random network
described by Eq. (2.5) we suppose, as usual [12,20,64], that bond permittivities ¢;; are statistically
independent and set ao, equal to the metal grain size, a, = a. In the considered case of two
component metal-dielectric random composite, the permittivities ¢;; take values ¢, and &, with
probabilities p and 1 — p, respectively. Assuming that the bond permittivities ¢;; in Eq. (2.5) are
statistically independent, we considerably simplify computer simulations as well as analytical
consideration of local optical fields in the composite. We note that important critical properties are
universal, i.e. they are independent of details of a model, e.g., of possible correlations of permittivi-
ties ¢;; in different bonds.

For further consideration we assume that the cubic lattice has a very large but finite number of
sites N' and rewrite Eq. (2.5) in matrix form with the “Hamiltonian” H [46-48] defined in terms of
the local dielectric constants,

Hp =6, (2.6)

where ¢ is a vector of the local potentials ¢ = {};,¢s,..., ¢y} determined in all N sites of the
lattice, vector & equals to &; =Y ;&;;E;j, as it follows from Eq. (2.5). The Hamiltonian H isan N x N
matrix that has off-diagonal elements H;; = — ¢;; and diagonal elements defined as H; =) ¢,
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where j refers to the nearest neighbors of site i. The off-diagonal elements H;; take values ¢4 > 0 and
&m = (— 1 + ix)|er, | with probability p and 1 — p, respectively. The loss factor k = ¢, /|e,| is small,
k < 1. The diagonal elements H;; are distributed between 2de,, and 2dey, where d is the dimen-
sionality of the space (2d is the number of the nearest neighbors in d dimensional cubic lattice).

It is convenient to represent the Hamiltonian H as a sum of two Hermitian Hamiltonians
H = H' + ixH", where the term ixH” (x < 1) represents losses in the system. The Hamiltonian A’
formally coincides with the Hamiltonian of the problem of metal-insulator transition (Anderson
transition) in quantum systems [68-71]. More specifically, the Hamiltonian A’ maps the quan-
tum-mechanical Hamiltonian for the Anderson transition problem with both on- and off-diagonal
correlated disorder. Since the off-diagonal matrix elements in A’ have different signs, the Hamil-
tonian is similar to the so-called gauge-invariant model. This model, in turn, is a simple version
of the random flux model, which represents a quantum system with random magnetic field [68]
(see also recent numerical studies [72-74]). Hereafter, we refer to operator H' as to Kirchhoff’s
Hamiltonian (KH).

Thus, the problem of the field distribution in the system, i.e., the problem of finding solution to
Kirchhoff’s Egs. (2.5) or (2.6), becomes the eigenfunction problem for the KH, H'Y, = A4, ¥,,
whereas the losses can be treated as perturbation.

Since the real part ¢, of metal dielectric function ¢, is negative, ¢,, < 0, and the permittivity of
dielectric host is positive, &g > 0, the manifold of the KH eigenvalues A, contains eigenvalues
which have the real parts equal (or close) to zero. Then eigenstates ¥, that correspond to
eigenvalues |4,| < |eq|,|eq] are strongly excited by the external field and seen as giant field
fluctuations, representing the resonant s.p. modes. If we assume that the eigenstates excited by the
external field are localized, they should look like local field peaks. The average distance between
the field peaks can be estimated as a(N/n)'/?, where n is the number of the KH eigenstates excited by
the external field and N is the total number of the eigenstates.

Now we consider in more detail the behavior of the eigenfunctions ¥, of the HK H’, in the
special case when ¢, = — &4, corresponding to the plasmon resonance of individual particles in
a 2D system. Since a solution to Eq. (2.5) does not change when multiplying ¢,, and &4 by the same
factor, we can normalize the system and set ¢4 = — &, = 1. We also suppose for simplicity that the
metal concentration p = 0.5.

According to the one-parameter scaling theory the eigenstates ¥, are all localized for the 2D
case (see, however, discussion in [ 71,75]). On the other hand, it was shown in computer simulations
[76] that there is a transition from chaotic [77,78] to localized eigenstates for the 2D Anderson
problem [76], with an intermediate crossover region. We consider first the case when metal
concentration p is equal to the percolation threshold p. = 1/2 for the 2D bond percolation
problem. Then the on-diagonal disorder in the KH H’ is characterized by (H;> =0, (H;;2> = 4
that corresponds to the chaos-localization transition [76]. The KH has also strong off-diagonal
disorder, (H};» = 0 (i # j), which favors localization [72,73]. Our conjecture is that eigenstates
¥, are localized for all A, in the 2D system. (We cannot rule out a possibility of inhomogeneous
localization, similar to that obtained for fractals [25], or the power-law localization [68,79]; note,
however, that these possibilities are in strong disagreement with the one-parameter scaling theory.)

In the considered case of &g = — &, = 1 and p = 1/2, all parameters in the KH H’ are of the
order of unity and its properties do not change under the transformation ¢4 <> ¢,,. Therefore, the
real eigenvalues A, are distributed symmetrically with respect to zero, in an interval of the order of
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one. The eigenstates with A4, ~ 0 are effectively excited by the external field and represent the giant
local field fluctuations. When metal concentration p decreases (increases), the eigenstates with
A, =~ 0 are shifted from the center of the distribution toward its lower (upper) edge, which typically
favors localization. Because of this, we assume that the eigenstates, or at least those with 4, ~ 0,
are localized, for all metal concentrations p in the 2D case.

Despite the great effort and all the progress made, the Anderson transition is not yet fully
understood in the 3D case and very little is known about the eigenfunctions of the Anderson
Hamiltonian, even in the case of a diagonal disorder only [68-71,80]. We mention here recent
computer simulations [ 74] for a 3D system similar to our system withgg = — ¢, = 1,p = 1/2. The
authors of [74] investigate the Anderson problem with diagonal matrix elements w;; distributed
uniformly around zero — wy/2 < w;; < wy/2 and off-diagonal elements ¢;; = exp (i¢;;), with phases
¢;; also distributed uniformly 0 < ¢;; < 2r. It was found that in the center of the band, the states
are localized for the disorder w, > w, = 18.8. In our 3D HK H’ Hamiltonian, the diagonal
elements are distributed as — 6 < H;; < 6 and, therefore, the diagonal disorder is smaller than the
above critical disorder w,. On the other hand, our off-diagonal disorder is stronger than in
calculations [74]. It is shown [72,73] that even small off-diagonal disorder strongly enforces
localization. We conjecture here that the eigenstates corresponding to the eigenvalues A4, ~ 0 in the
3D case are also localized for all p.

Suppose we found all eigenvalues A, and eigenfunctions ¥, of H'. Then we can express the
potential ¢ in Eq. (2.6) in terms of the eigenfunctions as ¢ =), A4, ¥, and substitute it in Eq. (2.6).
Thus we obtain the following equation for coefficients A4,,:

(ikb, + A)A, +ix Y (P H P, A, = &, (2.7)

m#n

where b, = (¥,|H"|¥,), and &, = (¥,|&) is a projection of the external field on eigenstate ¥,. (The
product of two vectors, e.g., ¥, and & is defined here in a usual way, as &, = (V,|8) =, V.6,
where the sum is over all lattice sites.) Since all parameters in the real Hamiltonian H’ are of the
order of unity, the matrix elements b, are also of the order of unity. We approximate them by some
constant b, which is about unity. We suggest that eigenstates ¥, are localized within spatial
domains &, (A), where £4(A) is the Anderson localization length, which depends on the eigenvalue
A. Then, the sum in Eq. (2.7) converges and it can be treated as a small perturbation. In the zeroth
approximation,

AO = &, (A, + ixb) . (2.8)

The first-order correction to 4, is equal to

AV = — ik Y (P H'|Y)Em /(A + iKb) . (2.9)

m¥*n

For k¥ — 0, most important eigenstates in this sum are those with |4,,| < bx. Since the eigen-
states A, are distributed in the interval of the order of unity the spatial density of the
eigenmodes with |4,,| < bx vanishes as a %%k -0 at x — 0. Therefore A" is exponentially
small [AL] ~ |Ysen(Pul H'|P )6 m/b| oc exp{ — [a/éx(0)]x 14} and can be neglected when
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Kk < [a/éA(0)]% Then, the local potential ¢ is equal to ¢(r) =Y, ALY, =Y,E, Va(r)/(A, + ixb)
[see Eq. (2.8)] and the fluctuating part of the local field E; = — V¢(r) is given by

E(r)= — ) 6,VP.(0/A, +ixb) , (2.10)

where the nabla operator V is understood as a lattice operator. The average field intensity is as
follows:

CEP*) = C|E; + Eol*) = |Eo|* + <Z (2.11)

n,m

5né’$(V?’n(r)'VY’rﬁ(r))>
(A, + ixb)(A,, —ixb) /

where we took into account that {E;> = {Ef) = 0. We consider now the eigenstates ¥, with
eigenvalues A, within a small interval |4, — A] < AA < k centered at A. These states are denoted
as ¥,(A,r). Recall that the eigenstates are assumed to be localized so that eigenfunctions ¥ ,(A,r)
are well separated in space. The average distance between them, [, can be estimated as
I(AA) ~ a(p(A)AA)~ Y4 where

p(A) = a'y, oA — A,)/V (2.12)

is the dimensionless density of states for the KH H’ and V is the volume of the system. We assume
here that the metal concentration p is about one-half so that all quantities in the KH H’ are about
unity and, therefore, the density of states p(A) is also about unity at the center of the spectrum, i.e.,
at A = 0. Then the distance [(AA) can be arbitrary large for A4 — 0; we assume, of course, that
I(AA) is still much smaller than the system size, and the total number of eigenstates ¥,(A,r) is
macroscopically large. When the interstate distance /(AA) is much larger than the localization
length &4 (A) the localized eigenfunctions ¥,(A, r) can be characterized by spacial positions of their
“centers” r, so that ¥,(A,r) = ¥Y(A,r —r,) and Eq. (2.11) acquires the following form:

<Zn mgng:‘:l(vqj(/llvr_rn)'vq,*(/l27r_rm))>
EZ = |E 2 s
B> =IEol* + 2, A, + ixb)( A, —ixb) :

(2.13)

where the first sum is over positions of the intervals |4, — A,| and |4,, — A,| in the A space,
whereas the sum in the numerator is over spatial positions r, and r,, of the eigenfunctions. For each
realization of a macroscopically homogeneous random film, the positions r, of eigenfunctions
Y(A,r —r,) take new values that do not correlate with the value of A. Therefore, we can
independently average the numerator in the second term of Eq. (2.13) over positions r, and r,, of
eigenstates ¥, and ¥,,. Taking into account that {V¥,(r)> = 0, we obtain

(EnEHNVP(Ar,r — 1) VI Ay r — 1)) = EPIVE (A1, 1 — 1)1 04,1, Oum (2.14)

where we neglected possible correlations of eigenfunctions from different intervals A; and A, since
the spatial density of the eigenfunctions excited effectively by the external field is estimated as
a”?p(A)x, i.e. it vanishes for x — 0. Substitution of Eq. (2.14) in Eq. (2.11) results in

o V(A1)
A% + (br)?

W&
{|EI*> = |Eo|> + ZZ | (2.15)
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The localized eigenstates are not in general degenerate, so that the eigenfunctions ¥, can be chosen
as real, ie., ¥, = ¥# Then we can estimate |§,|> = (¥, |&)* =X~ V... &:* in Eq. (2.15) by
replacing the sum over all N sites of the system with integration over the system volume V/, which
gives |&,1> ~ a”?|[¥,& dr?>. Using Egs. (2.5) and (2.4), we find

2

2

|Eul® ~ a*™ 2 , (2.16)

JTH(EO Ve)dr —2d fa(E()'V‘I’n)dr

where to obtain the last relation we integrated by parts and took into account that the eigenstates

¥, are localized within the localization length &, (A). Since the local dielectric constants |¢| are

of the order of unity, |¢] ~ 1, and the spatial derivative V¥, is estimated as ¥,/£,(A) in Eq. (2.16),
|E0 |2a4 2 |E0 2.4

we find
P (A) J P dr) ~"= g

where we returned to summation over sites of the tight binding model. Because the eigenfunctions
¥, are normalized to unity, i.e., (¥, |¥,> =Y~ |¥,.:|* = 1 and localized within &, (A1) we estimate
them as ¥, ; ~ [Ea(A4)/a]™%? in the localization domain. Substituting this estimate in Eq. (2.17) we
obtain

|6al? ~ |Eo|*a’[Ea(A)/a]’ ™2 . (2.18)

N

Z anl

i=1

|Eal? ~ ; (2.17)

In a similar way we can estimate the average spatial derivative in the numerator of Eq. (2.15),
N
VI PP ~ EXAAPAANPD ~ EXHANTE Y [WPoil® ~ EXHA)N (2.19)
i=1

where N = V/a“ is the total number of sites. Now we use the estimates (2.18) and (2.19) and rewrite
the numerator of Eq. (2.15) as

LISV ~ %Z |Eo|*[éa(A)/al"™* ~ |EoP[a(A)/al’™ *p(A)AA (2.20)

where we took into account the fact that the total number of the eigenstates within interval A4 is
equal to Np(A)AA. By substituting (2.20) in Eq. (2.15) and replacing the summation by integration
over A, we obtain the following estimate for the field intensity:

/1 4—d
CEPY ~ |Eof* + |EoP f”( A)‘“/f(gc;) aA. (221)

Since all matrix elements in KH H' are of the order of unity (in fact, the off-diagonal elements are

+ 1), the density of states p(A) and localization length &, (A) change significantly within an interval
of an order of one. In contrast, the denominator in Eq. (2.15) has an essential singularity at
A = +ibk. Then the second moment of the local electric field M, = M, o = {|E|*}/|Eo|* is
estimated as

1
M3~ 1+ P(a/fA)‘Ldjm dA ~ pla/E)* k™ > 1, (2.22)
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provided that k < p(a/éx)* ™9 (we set Ex(A = 0) = &4, p(A = 0) = p and approximated b by unity).
Thus the field distribution, in this case, can be described as a set of the KH eigenstates localized
within &£, , with the field peaks having the amplitudes

Ex ~ Eoi ™ Y(a/és)? , (2.23)
which are separated in distance by the field correlation length
& ~ alpch) =1 ~ alpi) ", (2.24)

where again we used that b ~ 1. All the above speculations leading to Egs. (2.22)-(2.24) hold when
the field correlation length &¥ is much larger than the Anderson localization length, i.e., £¥ > 4.
This condition is fulfilled in the limit of small losses when x — 0.

Note that hereafter by the superscript * we mark the fields and spatial scales that are given for
the special case — ¢, = &4 = 1 considered here (this sign *, of course, should not be confused with
the complex conjugation, denoted by *). Using the scale renormalization described in Section 2.3,
we will see how these quantities are transformed when |e,, /e4| > 1, i.e., in the long wavelength part
of the spectrum. Note also that, for ¢, and p we omit the * sign in order to avoid complicated
notations; it is implied that their values are always taken at — ¢, = ¢4 = 1, even if the case of
lem/eq] > 1 is considered.

In the above estimates we supposed that the localization length &, is proportional to the
eigenstate “size”. This assumption might not be exact for the Anderson system, in general (e.g.,
see discussion in [68]), but it is confirmed well by numerical calculations (see Figs. 1 and 2) for the
case of 2D percolation composites.

Above we assumed that metal concentration p is about one-half, which corresponds to the
percolation threshold for d = 2. The derivation of Egs. (2.21) and (2.22) was based on the
assumption that the density of states p(A) is finite and about unity for A = 0. This assumption,
however, is violated for small metal concentration p, when the eigenvalue distribution
shifts to the positive side of A so that the eigenstates with A ~ 0 are shifted to the lower edge
of the distribution. Then, the density of states p in Eq. (2.22) becomes a function of the
metal concentration p. In the limit of p — 0, the number of states effectively excited by the external
field is proportional to the number of metal particles. Then the function p(p) can be estimated as
p(p) ~ p, for p —» 0. The same consideration holds in the other limit, when a small portion of holes
in otherwise continuous film resonate with the external field and the density of states can be
estimated as p(p) ~ 1 — p, for p —» 1. When the density of states decreases, localization becomes
stronger and we estimate the localization length &, as EA(A =0, p > 0) ~ (A =0, p—>1) ~a.
This behavior of the field fluctuations is best illustrated in Fig. la-g where the results of our
computer simulation are shown for 2D composites — semicontinuous metal films. When the metal
concentration p — 0 or p — 1 the number of the field maxima decreases while the peaks become
progressively sharper. It is seen from Fig. 1 and also follows then from Eq. (2.22) that strong
field fluctuations (M, > 1) exist in a metal-diclectric composite with &g = — ¢, in the wide
concentration range

k<p<l—x, k<Il. (2.25)
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Fig. 1. Distribution of the local field intensities |E(x,)|?/|Eo|*> on a metal (silver) semicontinuous film for
&m =& = — 2.2 (A~ 365nm) at different metal concentrations, p. (a) p = 0.001, (b) p =0.01, (c) p =0.1, (d) p = 0.5,
(e) p=0.9, (f) p =0.99, and (g) p = 0.999.
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Fig. 2. Distribution of the local field intensities |E(x, )|?/|Eo|* in a semicontinuous film at the percolation threshold for
different wavelengths; (a): 1 = 0.5um, (b): A = 1.5um, (c): A = 10 um, and (d): 2 = 20 pm.

Although we estimated the above local fields for the special case of ¢4 = — ¢, all the above
speculations, which are based on the assumption that the eigenstates of KH are localized, hold in
a more general case, when the real part of the metal dielectric constant ¢, is negative and its
absolute value is of the order of ¢4. The important case of the large contrast when |e,,| > &4 will be
considered in Section 2.3.

Note that the above speculations leading to prediction of giant field fluctuations described by
Egs. (2.21) and (2.22), do not require long-range spatial correlations (such, for example, as in fractal
structures) in particle positions. The large field fluctuations have been seen in computer simula-
tions, in particular, for the so-called random gas of metal particle [26,24], i.e., for metal particles
randomly distributed in space. This, however, is not true when the contrast is large |e,| > &4; We
show below that in this case the internal structure of a composite becomes crucial.

2.2. High-order moments of local electric fields

Now we consider arbitrary high-order field moments defined as

1

Mym = e
" VEGIE,|

ﬁE(r)I"E’"(r) dr (2.26)
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where, as above, E, = E® (both notations are used interchangeably) is the amplitude of the
external field and E(r) (which is defined so that E*(r) = E(r)- E(r)) is the amplitude of the local field;
the integration is over the total volume V of a system. The moments M, , we will denote, for
simplicity, as

1 n
Mn = Mn,O =WﬁE(}‘)| dr . (227)

It is assumed that the volume average in Egs. (2.26) and (2.27) is equivalent to the ensemble average,
., My = (EI"E"Y/ES|Eo|"

The high-order field moment M, ,, oc (E¥"™E**) represents a nonlinear optical process in
which in one elementary act k + m photons are added and k photons are subtracted (annihilated)
[81,82]. This is because the complex conjugated field in the general expression for the nonlinear
polarization implies photon subtraction, so that the corresponding frequency enters the
nonlinear susceptibility with the sign minus. Enhancement of the Kerr optical nonlinearity Gk is
proportional to M, ,, third-harmonic generation (THG) enhancement is given by |M, 3|2,
and surface-enhanced Raman scattering (SERS) is represented by M, (see Sections 4-6).
The integrands in Eq. (2.26) for M,, and M, 3, ie., the local nonlinear field sources
g3z = (E(r))*E(r)/Eo(Eo)* (THG) and gx = |E(r)]*E*(r)/E3|Eo|* (Kerr optical effect) are shown in
Figs. 3 and 4.

We are interested here in the case when M, ,, > 1 which implies that the fluctuating part
of the local electric field E; is much larger than the applied field E,. It is suggested, for
simplicity, that the applied field is real and E, = 1. We substitute in Eq. (2.26) the expression for
E; given by Eq. (2.10) and obtain for the moment M,,,, (p and q are integers) the following
equation:

M = i gnl gnz (lenl ’ VlP;lkz ) e g"prl @p"Zp (VT"ZP*1 ) Vq,rtp)
22 Ryols iy s My M,y (Am + lbk)(/lnz - lbk) o (Anzﬂ,, + ibk)(/lnzv B lbk)

(goml gmz (Vl[lml ’ VTmz) o ngqfl ngq (ngmzrl ’ ngmzq)> (2 28)

(A, + bk Ay, + 1bK) - (Am, . + ibK)(A,,,, + iDK)

where < --- > denotes as above the ensemble average, which is equivalent to the volume average
and the sums are over all eigenstates of KH H'. As a next step, we average Eq. (2.28) over spatial
positions of eigenstates ¥, (r) = ¥(r — r,) as done in transition from Eq. (2.13) to Eq. (2.15). This
results in the following estimate:

Eul?PER (VT - VHP(VY, - VT
(A% + (bk)*)P(A + ibk)* ’

My ~ z ZI/L, —aj<aa | (2.29)
A

where the summation in the numerator is over eigenfunctions ¥, = ¥(A,r — r,) with eigenvalues
within the interval |4, — 4] < AA < k, while the external sum is over positions A of the intervals
that cover the whole range of eigenvalues A,. The average in the numerator of Eq. (2.29) can be
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Fig. 3. Distribution of the x component of the local “third harmonic field” (real part) g5 = Re[ E*(r)E,(r)] in semicon-
tinuous silver films at wavelength A = 1.5 um, for different metal concentration p. (al and a2): p = 0.3; (bl and b2):
p =p. =0.5; (cl and c2): p = 0.7. The positive (al,bl,cl) and negative (a2, b2, c2) values of the local nonlinear fields are
shown in different figures. The applied field E, = 1.

estimated as follows [see derivation of Eq. (2.19)]:

1 N
e Y|P, PP
Nfi(erq)(A)i;l | "’ll n,i

1 a |de+a—1) 5
~ _Néi(p+q)(/1)|:a:| 5 ( 30)

<(len ’ V'P;’f)p(Van len)q> ~
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Fig. 4. Distribution of the local “Kerr field” (real part) gk = Re[ E*(r)|E(r)|*] in semicontinuous silver films at wavelength
A = 1.5um, for different metal concentration p. (al and a2): p = 0.3; (bl and b2): p = p. = 0.5; (cl and c2): p =0.7. The
positive (al, b1, c1) and negative (a2, b2, c2) values of the local fields are shown in different figures. The applied field Eq = 1.

where, as above, £4(A) is the localization length, a is the period of the square lattice in the tight
binding model [see discussion after Eq. (2.5)], and N is the total number of cites in the lattice. We
substitute this equation and expression for &, given by Eq. (2.18) in Eq. (2.29). Then the sum in the
numerator of Eq. (2.29) takes the following form

Y. G PPPEFK(VE, VIV, -V, ~ p(A)[afEn(A)]*PT97AA (2.31)

|4, —A] <AA
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where p(A) is the dimensionless density of states [see Eq. (2.12)]. By replacing the first sum in
Eq. (2.29) by integration over the spectrum we obtain

Mp 24 ~ f[ p(Ma/és(A)]HPro—4

A? + (br)*]2(A + ibxc)* 232)
Note that to obtain the above expression we neglected all cross-terms in the product of eigenstates,
when averaging Eq. (2.28) over the spatial positions of the eigenfunctions ¥, = ¥(A,r — r,). It can
be shown that after integrating over A, these cross-terms result in negligible [in comparison with
the leading term given by Eq. (2.32)] contribution to M, ,,, for x — 0.

Assuming that the density of states p(A) and the localization length £,(A) are both smooth
functions of A in the vicinity of zero and taking into account that all parameters of the KH A’ for

the case ¢4 = — ¢, = 1 are of the order of one, we obtain the following estimate for the local field
moments:
My ~ p(p)ajéa(p)?®tm = dcmnmmet, (2.33)

for n + m > 1 and m > 0, where we set for simplicity b = 1. Note that the same estimate can be
obtained by considering the local fields as a set of peaks (stretched over the distance &, ), with the
magnitude EX and the average distance £¥ between the peaks given by Egs. (2.23) and (2.24). Recall
that the superscript * denotes physical quantities defined in the system with ¢ = — ¢, = 1. In
Eq. (2.23) we indicated explicitly the dependence of the density of states p(p) and localization length
Ea(p) on the metal concentration p (as mentioned above p(p) and &(p) are always given at
eq = — &m = 1 and the sign * for them is omitted). The notations p(p) and &4(p) should be
understood as p(p) = p(p, 4 = 0) and &Eo(p) = Ea(p, 4 = 0), i.e., they are given at the eigenvalue
A=0.

The Anderson localization length £, (A) has typically its maximum at the center of the distribu-
tion of the eigenvalues A [74]. When p departs from 1/2, the value A = 0 moves from the center of
the A-distribution toward its wings, where the localization is typically stronger (i.e., £, is less).
Therefore, it is plausible to suggest that £, (p) reaches its maximum at p = 1/2 and decreases toward
p =0 and p = 1, so that the absolute value of the local field moments may have a minimum at
p = 1/2, according to Eq. (2.23). In 2D composites the percolation threshold p. is typically close to
p. ~ 0.5. Therefore, the moments M, ,, in 2D composites have a local minimum at the percolation
threshold as a function of the metal concentration p. In accordance with this, the amplitudes of
various nonlinear processes, while much enhanced, have a characteristic minimum at the percola-
tion threshold. This localization minimum becomes more and more profound for higher optical
processes.

It is important to note that the moment magnitudes in Eq. (2.33) do not depend on the number of
“subtracted” (annihilated) photons in one elementary act of the nonlinear scattering. If there is
at least one such photon, then the poles in Eq. (2.32) are in different complex semi-planes and the
result of the integration is estimated by Eq. (2.33).

However, for the case when all photons are added (in other words, all frequencies enter the
nonlinear susceptibility with the sign plus), i.e., when n = 0, we cannot estimate the moments
Mo = Eq™V "' [E™(r)dr by Eq. (2.33) since the integral in Eq. (2.32) is not further determined
by the poles at 4 = =+ ibx. Yet all the functions of the integrand are about unity and the moment
M, ,, must be of the order of unity M, ,, ~ O(1) for m > 1. Note that the moment M, ,, describes,
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in particular, enhancement G,uc of n-order harmonic generation, through the relation
G = |Mo.|? (see below).

2.3. Field fluctuations for the frequencies much below the resonance (|ey| > 1)

Above we assumed that |¢,,|/e4 & 1 correspond to the plasmon resonance in the metal grains. To
estimate the local field fluctuations in percolation composites for the large contrast, |e,|/eq > 1, we
follow the scaling approach developed in Refs. [15,38,48]. Here we recapitulate briefly the main
points of the scaling renormalization. Consider first a percolation composite where the metal
concentration p is equal to the percolation threshold, p = p.. We divide a system into cubes of size
[ and consider each cube as a new renormalized element. All such cubes can be classified into two
types. A cube that contains a continuous path of metallic particles is considered as a “conducting”
element. A cube without such an “infinite” cluster is considered as a nonconducting, “dielectric”,
element [83]. The effective dielectric constant of the “conducting” cube &,(/) decreases with
increasing its size [ as ey, () ~ (I/a)~""¢,,, whereas the effective dielectric constant of the “dielectric”
cube &4(I) increases with [ as g4(I) ~ (I/a)*“eq4 (t, s and v are the percolation critical exponents for the
static conductivity, dielectric constant, and percolation correlation length, respectively; for 2D case,
t~s>~vy=>~4/3 in 3D, the exponents are equal to t ~ 2.0, s ~ 0.7, and v ~ 0.88 [12,64]). We set now
the cube size [ to be equal to

I=1 = allenl/eq) " . (2.34)

Then, in the renormalized system, where each cube of size I, is considered as a single element, the
dielectric constant of these new elements takes either value e,,(l;) = {9 |em | " 9(em/|em]), for the
element renormalized from the conducting cube, or gq(l;) = " 9|e,|¥* ¥, for the element renor-
malized from the dielectric cube. The ratio of the dielectric constants of these new elements is equal
to en(l;)/eq(ly) = em/lem|= — 1 + ik, where the loss-factor k = ¢, /|en| € 1 is the same as in the
original system. According to the basic ideas of the renormalization group transformation [64,83],
the concentration of conducting and dielectric elements does not change under the above trans-
formation, provided that p = p.. The field distribution in a two component system depends on the
ratio of the dielectric permittivities of the components. Thus after the renormalization, the problem
becomes equivalent to the above considered field distribution for the case ¢4 = — ¢, = 1. Taking
into account that the electric field renormalizes as E§ = E(l,/a), we obtain from Eq. (2.23) that the
field peaks in the renormalized system are

5 . 5 |5m| v/(t+s) |&m|

En = Eo(a/Ex)X(-/a)c ™" = Eo(a/Es) (8—> (8,, ) , (2.35)
where &, = &4 (p.) is the localization length in the renormalized system. In the original system, each
field maximum of the renormalized system locates in a dielectric gap in the “dielectric” cube of the
I, size or in-between two “conducting” cubes of the size [, that are not necessarily connected to each
other [83]. There is no characteristic length in the original system which is smaller than ;, except
the microscopical length in the problem, which is grain size a. Therefore, it is plausible to suggest
that the width of a local field peak in the original system is about a. Then the values of the field
maxima E,; do not change when returning from the renormalized system to the original one.
Therefore, Eq. (2.35) gives the values of the field maxima in the original system. Note that the value
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E., of the field maxima is different from previously obtained estimate (2.23) due to the renormaliz-
ation of the applied field E,.

Eq. (2.35) gives the estimate for the local field extrema when the real part ¢, of the metal
dielectric constant becomes negative. For metals ¢, increases in absolute value with the
wavelength, when the frequency w is smaller than @, [see discussion below Eq. (2.1)]. Therefore,
the field peaks E,,(w) increase strongly with the wavelength (see, for example, Fig. 2 taken from
[15]). For a Drude metal the steep growth of the peaks E,,(w) occurs for the frequencies w <®,,
when the dielectric constant &, can be approximated as

em(@ < B,) 220 — @) + o (2.36)
Wp Wy
By substituting this expansion in Eq. (2.35), we obtain
2 A (v+t+s)/(t+s) ~
En(0S,) ~ Eda/@){%) e (2.37)
p

Since losses in a typical metal are small, o, < @,, the field peak amplitudes first increase steeply
and then saturate (see below) at the magnitude E, =~ Eo(a/&x)*(ev/6a)"" TN @p/w;) ~ Eq®, ),
when o =~ 0.5, Therefore, the intensity maxima I,,, exceed the intensity of the incident wave I, by
the factor I, /Iy ~ (®,/w.)* > 1. For a silver-glass percolation composite we obtained I,,,/I, ~ 10°
(see also the field distribution in Figs. 1 and 2).

Now we consider the case of small frequencies w < w, when the dielectric constant &, for
a Drude metal [see Eq. (2.1)] takes the form

el < @) — <wﬁ>2<1 _ %) : (2.38)

where we again assume that o > .. By substituting this expression in Eq. (2.35), we obtain

a2 2/t+9) /()
=2 (22) " (2).

For the 2D case, the critical exponents are equal to v;t:s~4/3 and Eq. (2.39) gives
E. ~ Eq(a/é)? p/(\/7cu = Eo(a/Ea)*(0p/w )/ Eb/ea ~ Eo(®y/w) and that coincides with the
estimate obtained from Eq. (2.37) for @ = 0.5,. This means that the local field peaks increase
steeply when the real part of the metal dielectric constant &, becomes negative ¢, < 0 and then
remains almost the same in the wide frequency range @, > w > w,, for 2D composites.

For 3D percolation composites, the critical exponents are equal to v=~0.88, t~2.0, s=~0.7 [12].
To simplify estimations we put below v=(t + s)/3 for d = 3. Then Eq. (2.39) takes the following
form E, ~ Eo(&v/64)' P03 /o, that is the local field peaks increase up to En/Eq ~ &, /o,
when ¢, becomes negative and then the peaks decrease as E,/Eq ~ (@, /o, )(w/d,)'?, with further
decrease of frequency. For silver composites, we estimate that the maximum value of the peaks is
achieved at w=~0.5@, that corresponds to A=0.6 pm.

Since we know the peak amplitudes for the local electric field we can estimate the moments
M, of the local field. To obtain M, ,, we consider first the spatial distribution of the field maxima
for |e,| > &4. The average distance between the field maxima in the renormalized system is equal to
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&¥ given by Eq. (2.24). Then the average distance &, between the field maxima in the original system
(provided that p ~ 1) is equal to

o (lJa)Er ~ a<|z_m|> K (’”)<IST|> e (2.40)

d €m

Note that in the 2D case this ascribes a simple form

C e #

where the critical exponents for 2D percolating composites, t =~s=>~v=>~4/3 are used. In the renor-
malized system a typical “area” of a field peak corresponds to d power of the Anderson localization
length &,. Therefore, in the original system each field maximum is stretched over (&, /a)? clusters of
size [,. In each of these clusters the field maximum splits into n(l;) peaks of the E,,, amplitude located
along a dielectric gap in the “dielectric” square of the [, size. The gap “area” scales as the
capacitance of the dielectric squares, so does the number of peaks

n(l;) oc (I fa)! =2 (2.42)

Multiplying the amplitude of the field peaks E,, raised to the proper power by the number of the
peaks in one group (¢, /a)'n(l,) and normalizing to the distance between the groups £, we obtain the
following estimate for the local-field moments:

(2.41)

E,\""™ n(l,) _ P
MnmN Cld m r ~ ad 2(n+m) lr an+m+s/v 2K1 n—m
s (éA/ )<E0> (ée/a)d p(éA/ ) ( / )
|8 | [(n+m—2)v+s5]/(t+s) |8 I n+tm—1
~ p(fA/a)“<"*'"><—8‘“ ) (82‘ ) (243)
d m

that holds for n + m > 1 and n > 0. Since |e,| > €4 and |ey,|/em, > 1 the moments of the local field
are very large, M, ,, > 1, in the visible and infrared spectral ranges. Note that the first moment
M, ~ 1 that corresponds to the equation {E(r)) = E,. We stress again that the localization
length £, in Eq. (2.43) corresponds to the renormalized system with ¢g = — ¢, = 1. The localiza-
tion length in the original system, i.e., a typical size of the eigenfunction is estimated as (I,/a)é, > a.
In other words, the eigenstates become macroscopically large in the limit of large contrast
leml/€a > 1 and consist of sharp peaks separated in space by distances much larger than a. The
eigenstates of HK H cover the volume (¢4, /a)! ~ (é4@y /)" > a for two-dimensional Drude metal
composites and @ < w,.

We consider now the moments M, ,,, for n = 0 that correspond to the volume average of the mth
power of the complex amplitude E(r), namely, M, ,, = {E™(r))>/|Eo|™. In the renormalized system,
where |eq,(l;)| = leqa(lr)] and ey (l)/eq(l;)= — 1 + ik, the field distribution coincides with the field
distribution in the system with ¢4 ~ — &, ~ 1. In the system with ¢4 ~ — &, ~ 1 the field peaks
E}, are different in phase and because of the destructive interference, the moment M3 ,, ~ O(1) [as
follows from Eq. (2.32)]. In transition to the original system the peaks increase by the factor [, /a,
leading to the corresponding increase of the moment M, ,. We suppose that within a single
“dielectric” cube the field peaks are in phase, i.e., the field maxima form chains of aligned peaks
which are stretched out in a dielectric cube. This assumption is confirmed by results of numerical



298 A.K. Sarychev, V.M. Shalaev | Physics Reports 335 (2000) 275-371

simulation shown in Fig. 3, where the field maxima with different signs are concentrated in different
places of a percolation composite. Then we obtain the following equation for the moment:

n(l,) _ e \[em|\ "2 TSMVIETS)
Mo ~ M3 " ~ m=2+sfv [ Zm | 1om] 2.44
o Bimll:/2) (& /a) (ke /a) <|8m|>< > ’ (2.44)

&d

which holds when M, , given by this equation is larger than one.
Using the critical exponents for 2D percolating composites, t ~s=~v=4/3 [12], we can simplify
Eqgs. (2.43) and (2.44) as follows:

|8 |3/2 nt+m—1

(fA/G)Z\/ €a€m

forn + m>1and n > 0, and

A Ll

Mo m ~ =172

d=2), (2.46)
form > 1, n = 0and (|en|/eq)™ % > |em|/em (the last inequality corresponds to the condition that
the moment given by Eq. (2.46) is larger than one).

The moments M, ,, (n # 0) are strongly enhanced in 2D Drude metal-dielectric composites. The
moments reach the maximum value

M ( o >n+m_1 (d=2) (2.47)
"\ oealEafa) ’
when frequency w decreases so that the condition w < w, is fulfilled. The spatial moments of the
local electric in a 2D percolation composite are independent of frequency, for w < w,,. For metals
it typically takes place in the red and infrared spectral ranges. For a silver semicontinuous film
on a glass substrate, the moment M, ,, can be estimated as M, ~ [(a/¢s)* 3 x 10*]"*™ 1 for
O <K 0.

It follows from Eq. (2.43) that for 3D metal-dielectric percolation composites, where the dielectric
constant of metal component can be estimated by the Drude formula (2.1), the moments
M, ,, (n # 0) achieve the maximum value at frequency wy,, = 0.5®,. To estimate the maximum
value, we note that the following relations v/(t + s) &~ 1/3, s ~ v are valid for the 3D case, where
t=~2.0, s=~0.7 and v=0.88 [12]. Then the maximum value of the moments is estimated as

Mn,m(w = a)max) ~ p(éA/a)[(a/éA)Z(Sb/gd)1/3d)p/wr]n+m_1 (d = 3) . (248)

For small frequencies @ < w,,, the moments of the local field decrease with the wavelength as

WWWWTWIM

edPw,

M,y m(w < @) ~ p(éA/a)[ =3). (2.49)

In Fig. 5 we compare results of numerical and theoretical calculations for the field moments in
2D silver semicontinuous films on glass. We see that there is excellent agreement between the
scaling theory [formulas (2.45) and (2.46)] and numerical simulations. To fit the data we used
&a ~ 2a. [Results of numerical simulations for M, 4 are not shown in Fig. 5 since it was not
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Fig. 5. High-order field moments of local electric field in semicontinuous silver films as a function of the wavelength /4 at
p = p.. (a) Results of numerical calculations of the moments M, = M, o = <{|E{(#)]")/I[CE; )|" for n = 2,3,4,5 and 6 are
represented by +, O, *, x, and #, respectively. The solid lines describe M, found from the scaling formula (2.43). (b)
Comparison of the moment M, o = {|E{(r)|*>/|<E;|* [upper solid line - scaling formula (2.43) , * - numerical
simulations] and moment M, 4 = [<E}(r)>|/|<E;>|* [upper dashed line - scaling formula (2.44)]. The moment
M, = E (r))*>/|KELD|* [lower solid line - scaling formula (2.43), + - numerical simulations] vs. moment
M., = [KE{(P)*>|/|{E1>|* [lower dashed line - scaling formula (2.44), O - numerical simulations]. In all presented
analytical calculations we set £, = 2a and p = 1 in Egs. (2.43) and (2.44).

possible to achieve reliable results in the simulations because of large fluctuations in values of this
moment.] A small value of £, indicates strong localization of surface plasmons in percolation
composites, at least for the 2D case. As seen in Fig. 5b the spectral dependence of enhancement
M, ., differs strongly for processes with (n # 0) and without (n = 0) subtraction of photons.

As discussed in the introduction, nonlinear optical processes, in general, are phase dependent
and proportional to a factor |E|"E™, i.e., they depend on the phase through the term E™ and their
enhancement is estimated as M, , = {|E/Eo|"(E/Eo)"). According to the above consideration,
Mymw~M,imo=M,:,, for n>1. For example, enhancement of the Kerr-type nonlinearity
Gx = M, , is similar to the enhancement of the Raman scattering Ggs ~ M, (see Sections 5
and 6). For nearly degenerate four-wave mixing (FWM), the enhancement is given by
Grwm ~ |Gk|* ~ IM, »|* and can reach giant values up to ~ 102

Above, for the sake of simplicity, we assumed that p = p. when considering the case of ¢, < 0.
Now we estimate the concentration range Ap = p — p., where the above estimates for the local field
moments are valid [37,38]. We note that the above expressions for the local field and average field
moments M, ,, hold in almost all concentration range given by Eq. (2.25) when ¢,, >~ — &;. The
metal concentration range Ap, where the local electric field is strongly enhanced, shrinks, however,
when ¢, < 0. The above speculations are based on the finite size scaling arguments, which hold
provided the scale I, of the renormalized cubes is smaller than the percolation correlation length
&oxallp — pel/pe) . At the percolation threshold, where the correlation length £, diverges, our
estimates are valid in the wide frequency range w, < w < @, which includes the visible, infrared,
and far-infrared spectral ranges for a typical metal. For any particular frequency from this interval,
we estimate the concentration range Ap (where the giant field fluctuations occur) by equating the
values of [, and &,, which results in the inequality |Ap| < (e4/]em|)*/“ **). Therefore, the local electric
field fluctuates strongly for these concentrations and its moments M, ,, are strongly enhanced.
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Fig. 6. Fourth-order field moments M,,, (m + n = 4) of the local electric field in 2d metal-dielectric composite with
&4 = 1 and metal permittivity ¢, = — 100 (1 — ix), as functions of k: M4, - @, M3, - A, M, , - L

In Fig. 6 we show the moments M, o, M3 ; and M, , as a function of k for 2D percolating
system with &, = 100( — 1 + ix), g = 1 and metal concentration p =0.7 > p. = 0.5. All the
moments are close in magnitude and increase with decreasing losses k according to a power-law
dependence with the same exponent, as it is predicted by Eq. (2.45).

3. Numerical and experimental studies of field distributions in two-dimensional percolation
composites

The optical properties of metal-insulator thin films have been intensively studied both experi-
mentally and theoretically. Semicontinuous metal films with a two-dimensional (2D) morphology
are usually produced by thermal evaporation or spattering of metal onto an insulating substrate. In
the growing process, first, small metallic grains are formed on the substrate. As the film grows, the
metal filling factor increases and coalescences occur, so that irregularly shaped clusters are formed
on the substrate resulting in 2D fractal structures. The sizes of these structures diverge in a vicinity
of the percolation threshold. A percolating cluster of metal is eventually formed, when a continuous
conducting path appears between the ends of the sample. The metal-insulator transition (the
percolation threshold) is very close to this point, even in the presence of quantum tunneling.
At higher surface coverage, the film is mostly metallic, with voids of irregular shapes. As further
coverage increase, the film becomes uniform.

The optical properties of metal-dielectric films show anomalous phenomena that are absent
for bulk metal and dielectric components. For example, the anomalous absorption in the near-
infrared spectral range leads to unusual behavior of transmittance and reflectance. Typically, the
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transmittance is much higher than that of continuous metal films, whereas the reflectance is much
lower (see Refs. [12,19,20,64,84-86] and references therein). Near and well-below the conductivity
threshold, the anomalous absorptance can be as high as 50% [85,88-91]. A number of the
effective-medium theories were proposed for calculation of the optical properties of semicontinu-
ous random films, including the Maxwell-Garnett [92] and Bruggeman [49] approaches and their
various modifications [12,85-87]. The renormalization group method is also widely used to
calculate effective dielectric response of 2D percolation films near the percolation threshold (see
[93,94] and references therein). However, none of these theories allows one to calculate the field
fluctuations and the effects resulting from these fluctuations.

Because semicontinuous metal films are of great interest in terms of their fundamental physical
properties and various applications, it is important to study statistical properties of the electro-
magnetic fields in the near-zone of these films. To simplify theoretical considerations, we assume
below that the electric field is homogeneous in the direction perpendicular to the film plane. This
assumption means that the skin depth for the metal grains, § =~ c/(w/|en|), is much larger than the
grain size, a, so that the quasistatic approximation holds. Note that the role of the skin effect can be
very important resulting, in many cases, in strong alterations of the electromagnetic response found
in the quasistatic approximation [39,95-97]. These effects will be discussed in Section 7. Yet, the
quasistatic approximation significantly simplifies theoretical considerations of the field fluctu-
ations and describes well the optical properties of semicontinuous films providing qualitative
(and in some cases, quantitative) agreement with experimental data [12,20,98,99].

Below, we neglect the skin effect so that a semicontinuous film can be considered as a 2D object.
In the optical frequency range, when the frequency, w, is much larger than the relaxation rate t ~ ! of
the metallic component, a semicontinuous metal film can be thought of as a 2D L-R-C lattice
[12,20,98,99]. As above, the capacitance C stands for the gaps between metal grains that are filled
by dielectric material (substrate), with the dielectric constant &g. The inductive elements, L-R,
represent the metallic grains that for the Drude metal have the dielectric function ¢,(w) given by
Eq. (2.1). In the high-frequency range considered here, the losses in metal grains are small, v > w,.
Therefore, the real part of the metal dielectric function is much larger (in modulus) than the
imaginary part and it is negative for the frequencies w below the renormalized plasma frequency,
W, = wp/\/g. Thus, the metal conductivity is almost purely imaginary and metal grains can be
modeled as the L-R elements, with the active component much smaller than the reactive one.

If the skin effect cannot be neglected, i.e., the skin depth ¢ is smaller than the metal grain size
a the simple quasistatic presentation of a semicontinuous film as a 2D array of the L-R and
C elements is not valid. Still, we can use the L—-R-C model in the other limiting case, when the skin
effect is very strong, § < a [95,96]. In this case, the losses in metal grains are small, regardless of the
ratio w/w,, whereas the effective inductance for a metal grain depends on the grain size and shape
rather than on the material constants for the metal. Properties of metal-dielectric composites
beyond the quasistatic approximation will be discussed in detail in Section 7.

The effective properties of the 2D L-R-C lattices have been intensively studied during the last
decade [12,20,98,99]. However, there was not much attention paid to the fact that the spatial
distributions of the local fields in such systems can exhibit rich nontrivial behavior.

It is instructive to consider first the film properties at the percolation threshold, p = p., where the
exact result for the effective dielectric constant ¢, holds in the quasistatic case [ 100]: &, = \/€gém. If
we neglect the metal losses and put w, =0, the metal dielectric constant ¢, is negative for
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frequencies smaller than the renormalized plasma frequency, @,. We also neglect possible small
losses in a dielectric substrate, assuming that &4 is real and positive. Then, ¢, is purely imaginary for
o < @,. Therefore, a film consisting of loss-free metal and dielectric grains is absorptive for
o < @,. The effective absorption in a loss-free film means that the electromagnetic energy is stored
in the system and thus the local fields could increase unlimitedly. In reality, the local fields in
a metal film are, of course, finite because of the losses. If the losses are small, one anticipates very
strong field fluctuations. To calculate Rayleigh, Raman scattering and various nonlinear effects in
a semicontinuous metal film, one needs to know the field and current distributions in the film.

3.1. Numerical model

There exist now very efficient numerical methods for calculating the effective conductivity of
composite materials (see [ 12,20]), but they typically do not allow calculations of the field distribu-
tions. Here we describe a new computer approach [36-38] based on the real space renormalization
group (RSRG) method suggested by Reynolds et al. [83] and extended to study the conductivity
[101] and permeability of oil reservoirs [ 102]. The method [36-38] follows the approach used by
Aharony [102].

This approach can be adopted for finding the field distributions in the following way. First, we
generate a square lattice of the L-R (metal) and C (dielectric) bonds, using a random number
generator. As seen in Fig. 7, such lattice can be considered as a set of the “corner” elements. One
of such element is labeled as (ABCDEFGH), in Fig. 7a. In the first stage of the RSRG procedure,
each of these elements is replaced by the two Wheatstone bridges, as shown in Fig. 7b. After this
transformation, the initial square lattice is converted to another square lattice, with the distance
between the sites twice larger and with each bond between the two nearest neighboring sites being
the Wheatstone bridge. Note that there is a one-to-one correspondence between the “x” bonds in
the initial lattice and the “x” bonds in the “x” directed bridges of the transformed lattice, as seen in
Fig. 7. The same one-to-one correspondence exists also between the “y” bonds. The transformed
lattice is also a square lattice, and we can again apply to it the RSRG transformation. We continue
this procedure until the size [ of the system is reached. As a result, instead of the initial lattice, we
have two large Wheatstone bridges in the “x” and “y” directions. Each of them has a hierarchical
structure consisting of bridges with the sizes from 2 to [. Because the one-to-one correspondence is
preserved at each step of the transformation, the correspondence also exists between the elemen-
tary bonds of the transformed lattice and the bonds of the initial lattice.

Fig. 7. The real space renormalization scheme.
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After using the RSRG transformation, we apply an external field to the system and solve the
Kirchhoff equations to determine the fields and the currents in all the bonds of the transformed
lattice. Due to the hierarchical structure of the transformed lattice, these equations can be solved
exactly. Then, we use the one-to-one correspondence between the elementary bonds of the
transformed lattice and the bonds of the initial square lattice to find the field distributions in the
initial lattice as well as its effective conductivity. The number of operations to get the full
distributions of the local fields is proportional to [ (to be compared with [7 operations needed in
the transform-matrix method [12] and I° operations needed in the Frank-Lobb algorithm [103];
none of these methods give the local field distributions). With our method, it takes only a few
minutes to calculate the effective conductivity and field distributions in a system 1000 x 1000 using
a PC.

The RSRG procedure is certainly not exact since the effective connectivity of the transformed
system does not repeat exactly the connectivity of the initial square lattice. To check the accuracy of
the RSRG, we solved the 2D percolation problem using this method. Namely, we calculated the
effective parameters of a two-component composite with the real metallic conductivity, ¢,,,, much
larger than the real conductivity, a4, of the dielectric component, ¢, > 64. We obtained the
percolation threshold p. = 0.5 and the effective conductivity at the percolation threshold that is

very close to a(p.) = \/om04. These results coincide with the exact ones for 2D composites [100].
This is not surprising since the RSRG procedure preserves the self-duality of the initial system. The
critical exponents obtained by the RSRG are also close to the known values of the exponents from
the percolation theory [12]. Therefore, we believe that the local fields we obtain here are close to
the actual ones.

All numerical results for the local field distribution and various linear and nonlinear optical
effects for semicontinuous metal films, presented in this paper, have been obtained by the above
method. The Drude formula 2.1 for metal dielectric functions was used and the optical constants
for metals were taken from [104]. For silver, the following parameters were used in Eq. (2.1): the
interband-transition contribution &, = 5, the plasma frequency w, = 9.1eV, and the relaxation
frequency w, = 0.021eV; for gold: the interband-transition contribution ¢, = 6.5, the plasma
frequency w, = 9.3eV, and the relaxation frequency w, = 0.03eV. The films were supposed to be
deposited on a glass substrate with the dielectric constant &g = 2.2 for all numerical simulations
discussed in this paper.

3.2. Field distributions on semicontinuous metal films

As mentioned, we model a film by a square lattice consisting of metallic bonds with conductivity
om = —ienw/4n (L-R bonds) and concentration p, and dielectric bonds with conductivity
04 = —iggw/4m and concentration 1 — p (C bonds). The applied field E, is set to be equal unity
Ey = 1, whereas the local fields inside the system are complex quantities. The dielectric constant of
silver grains has the form of Eq. (2.1) with parameters discussed in last subsection. Below, we still
use gq = 2.2 typical for a glass. In Fig. 1 we show the field distributions |E(r)/E,|* for the plasmon
resonance frequency w = w, that corresponds to the condition Re(e,(w,)) = — &4. The value of the
frequency w, is slightly below the renormalized plasma frequency @, defined above in Eq. (2.2). For
silver particles the resonance condition fulfilled at wavelength A &~ 0.4 um. The frequency w, gives
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the resonance of an isolated metal particle. (For a 2D, i.e., z-independent problem, particles can be
thought of as infinite in the z-direction cylinders that resonate, in the quasistatic approximation, at
the frequency w = w, corresponding to the condition ¢, (w,) = — &4, for the field polarized in the
x, y-plane). The results are presented for various metal fractions p. For p = 0.001 metal grains
practically do not interact so that all the peaks are almost of the same height and indicate the
locations of metal particles. Note that similar distribution is obtained for p = 0.999 when the role of
metal particles is played by the dielectric voids. For p = 0.1 and, especially, for p = 0.5, metal grains
form clusters of strongly interacting particles. These clusters resonate at different frequencies (than
that for an isolated particle), therefore, for the chosen frequency the field peaks are smaller, on
average, than those for the isolated particles, and the height distribution is very inhomogeneous.
Note that spatial scale for the local field distribution is much larger than the metal grain size a that
is chosen to be unity for all the figures. Therefore, the main assumption of the effective medium
theory [13,50-55] that the local fields are the same for all metal grains fails for the frequencies of
the plasmon resonance and nonvanishing concentrations p. We emphasize a strong resemblance in
the field distributions for p and 1 — p (cf. Fig. 1a and g, b and f, ¢ and e).

For larger wavelengths, a single metal grain is off the plasmon resonance. Nevertheless, as one
can see from Fig. 2a-d, the local field fluctuations are even larger than those at the plasmon
resonance frequency. At these wavelengths, clusters of the conducting particles (rather than
individual particles) resonate with the external field oscillations. Therefore, it is not surprising that
the local field distributions are quite different from those in Fig. 1. In Fig. 2, we show the field
distributions at the percolation threshold p = p. = 0.5 for different wavelengths, namely, (2a):
A=0.5um, (2b): 2 = 1.5 um, (2¢c): A = 10 um, and (2d): A = 20 um. Note that the field intensities in
peaks increase with A, reaching very high values, ~ 10°E,; the peak spatial separations increase
with /4 as well. These results are also in contradiction with the effective medium theory that predicts
strong field fluctuations [34] in the vicinity of plasmon resonance frequency w, only. In the
previous section, we have presented a scaling theory for the field distributions that explains, at least
qualitatively, all peculiarities of the above results.

The first experiment on the field distribution in the semicontinuous metal films [39] had been
done in the microwave range and will be discussed in Section 7. For the visible spectral range the
local field distribution qualitatively similar to the calculated (see Figs. 1 and 2) has been experi-
mentally obtained using scanning near-field optical microscope (SNOM) providing subwavelength
resolution [46,58]. An SNOM was operating in the tapping mode, so that the detected local signals
were averaged over the tip-surface separations ranging between 0 and 100 nm. Because of this and
the finite size of the tip, the detected field intensities were by two to three orders of magnitude less
than the actual field right on the film surface (that can be probed, for example, by surface-adsorbed
molecules). Aside this, the detected field distribution shown in Fig. 8 is similar to that predicted by
theory (Figs. 1 and 2). When the SNOM averaging effect is taken into account in simulations there
is very good agreement between the calculations and experiments as seen in Fig. 8.

The near-field spectroscopy of percolation films was also performed in [46,58], by parking
an SNOM tip at different points of the surface and varying the wavelength. This local nano-
spectroscopy allows one to determine the local resonances of nm-size areas right underneath the
tip; the nano-structures at different points resonate at different 4 leading to different local near-field
spectra. The spectra characterize A-dependence of the field hot spots associated with the localized
s.p. modes.
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Fig. 8. Experimental (a) and calculated (b) SNOM images of the localized optical excitations in a percolation
gold-on-glass film for different wavelengths A.
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In Fig. 9 we show the measured and calculated near-field spectra taken at different points of the
film. Again, there is qualitative agreement between theory and experiment. The spectra consist of
several peaks ~ 10nm in width, and they depend markedly on spatial location of the point where
the near-field tip is parked. Even as small shift in space as 100 nm results in different spectra, which
is a strong evidence of the s.p.-mode localization. We note that for continuous metal (or dielectric)
films neither sub-4 hot spots nor their local spectra can be observed, because, in this case, optical
excitations are delocalized.

In conclusion, the near-field imaging and spectroscopy of random metal-dielectric films near
percolation suggests localization of optical excitations in small nm-scale hot spots. The observed
pattern of the localized modes and their spectral dependences are in agreement with theoretical
predictions and numerical simulations. The hot spots of a percolation film represent very large
local fields (fluctuations); spatial positions of the spots strongly depend on the light frequency.
Near-field spectra observed and calculated at various points of the surface consist of several
spectral resonances whose spectral locations depend on the probed site of the sample. All these
features are only observable in the near zone. In the far zone, one observes images and spectra in
which the hot spots and the spectral resonances are averaged out. The local field enhancement is
large, which is especially important for nonlinear processes of the nth order proportional to the
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Fig. 9. Experimental (a) and calculated (b) near-field spectra at different spatial locations (100 nm apart) of the film.
(Arbitrary intensity units are used.)

enhanced local fields to the nth power. This opens a fascinating possibility for nonlinear near-field
spectroscopy of single nanoparticles and molecules.

4. Anomalous light scattering from semicontinuous metal films

In this section we consider quantitatively the spatial distribution of the local field fluctuations
and light scattering induced by these fluctuations. Numerical as well as analytical results are
presented for 2D semicontinuous metal films that, as above (see Section 3), are modeled as a 2D
L-C lattice where capacitors C stand for the dielectric grains that have dielectric constant ¢4 while
the inductances L represent the metallic grains that have dielectric constant ¢,. The resonance
frequency w,, corresponding to the condition ¢, (w,) = — &4 is considered first. For a Drude metal,
when metal dielectric constant ¢, is given by Eq. (2.1), this condition is fulfilled at the frequency

W, = wp\/l/(gb + &4) — (0 Jw,)? ~ 0,/ en + €4 » (4.1)

where it is taken into account that the relaxation rate w, = 1/t < w, for a typical metal. Then
metal dielectric function takes value ¢, (w,) = e4( — 1 + ix), where the loss factor x is equal to
K~ (1 + &,/eq)0. /o, < 1. Remind that for silver or gold the ratio w,/w, ~ 10~ 2. Since distribution
of the local field does not change when bond conductances are multiplied by the same factor it is
convenient to consider the lattice where a bond conductance takes value X, = — 1 + ix with
probability p (L bonds) and X4 = 1 with probability 1 — p (C bonds). Since the absolute values of
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2y and X, are very close, the standard method, using the percolation theory scaling
approach [12,20,24,64] and based on the assumption of large difference between the two
components conductivities, cannot be used, even to estimate the spatial distribution of the
field in the system. This is the reason why computer simulation has been used in the works
[36,37,44].

For numerical calculations, the RSRG method described in Section 3 is applied to a system of
size 1024 x 1024. The concentrations of C and L elements are equal to p = p. = 0.5 and frequency
o is equal to the resonance frequency o = ®,. The electric field was calculated in all the bonds for
the loss parameters x from 10~ ! to 10~ %, The external field is assumed to be one (E, = 1) while the
local fields inside the system are complex quantities.

The distribution function of the field intensity I(r) = | E(r)|? is close to the well-known log-normal
distribution and the field intensity is distributed over many orders of magnitude, even for a loss
parameter k = 10~ !. For the parameter x = 10~ *, the intensity I is almost uniformly distributed
from zero up to 10*. The average intensity I,, = |Eq|*M, increases as I,, oc k' when the loss
parameter x is decreased, which is in agreement with scaling Eq. (2.33). Note that the same result
I,, oc k! have been conjecture for fractals consisting of small metal particles (see, for example,
Ref. [25]).

It is clear that the field fluctuations, shown in Figs. 1, 2 and 10 can lead to the enhanced
light scattering from the film. The Rayleigh scattering from metal fractals was studied in
Ref. [105].

It is worth noting that the fluctuations considered here and the corresponding light scattering
are not linked to the fractal nature of metal clusters but to the distribution of local resonances in
a disordered metal-dielectric film, which is homogeneous on a macroscopical scale. It appears that
the local intensity of the electric field is strongly correlated in space and that the distribution
is dominated by the field correlation length &, introduced by Egs. (2.24) and (2.40). The field
correlation length may be defined as the length scale at which the field fluctuations become small.
One can then define a critical exponent related to the divergence of this correlation length as the
L (metallic) component becomes loss-free

ook, 4.2)

where v, is a critical exponent. This exponent has been calculated using several numerical
methods [36,37] based on RSRG method described in Section 3. The values obtained for v,
are in the range 0.45 + 0.05. The scaling theory presented in Section 2 gives v, = 1/d [see Egs. (2.24)
and (2.40)], where d is the space dimension. The result v, = 1/d has been conjectured for the first
time by Stinchcombe and Hesselbo [106]. Note that the dimension D connected to the Wheatstone
bridge transformation in the RSRG method is given by D =log5/log2, which gives here
1/D = 0.43, very close to the numerical result v, = 0.45 + 0.05. For small loses at resonance, the
correlation length &, is the only relevant characteristic length of the system at percolation threshold
since the contrast |ey|/eq 1s close to one. In this case, the percolation dynamic correlation length
defined by Eqgs. (2.34) as I, = a(jem|/e4)”" " [20] reduces to the size of a single bond and is
irrelevant for the problem.

As the frequency is varied from its resonant value w, a crossover between the region character-
ized by &, and [ is observed clearly at lengths smaller than the percolation correlation length

¢ [37].
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Fig. 10. Intensity of the electric field I(r) = |E(r)|* in gold semicontinuous metal films at wavelength 4 = 1.5um, p = p..
The amplitude of the incident wave |E,|? is set equal to one.

4.1. Rayleigh scattering

To calculate theoretically and numerically the anomalous scattering resulting from the spatial
correlations of the local field fluctuations, the values of the dielectric constant for gold were used to
estimate semiquantitatively enhancement of the scattering. Fig. 10 shows the intensity of the local
electric field I(r) = |E(r)|* (where r = {x,y} is a radius vector in the film plane) obtained by the
RSRG method, presented in Section 3, for a gold semicontinuous film consisting of small particles
at p=p. for A =1.5um. One can see the intensity fluctuations of more than four orders of
magnitude over the film.

We consider now Rayleigh scattering induced by the giant field fluctuations [44]. The usual
procedure leading to expressions for the critical opalescence [65] can be implemented to find the
anomalous scattering from the metal-dielectric films. Suppose a semicontinuous film is illuminated
by a wave normal to the film plane. The gaps between metal grains are filled by dielectric material
of the substrate. Therefore, the film can be considered as a two-dimensional array of metal and
dielectric grains that are distributed over the plane. The incident electromagnetic wave excites the
surface currents j in the film. Let us consider the electromagnetic field induced by these currents at
some distant point R. The coordinate origin is chosen somewhere in the film. Then a contribution
to the vector potential A(R) of the scattered field {magnetic field H(R) = [V x A(R)]} arising from
the surface current j(r) is equal to

J(r) exp(ik|R — r)

AR, r)dr = . R — 1] dr, 4.3)

where k = w/c is a wave vector. The vector potential A(R) of the total scattered field is equal to
A(R) = [A(R,r)dr, where the integration is over the entire film area. In experiments, the dimensions
of the film are typically small compared to the distance R (r < R). Therefore, the term in the
exponent of Eq. (4.3) can be expanded in series of the ratio r/R; this gives ik|R — r|~ikR — ik(n - r),
where n is the unit vector in the direction of R. The distance r is also neglected in comparison with
R in the denominator of Eq. (4.3). Thus the equations for the magnetic H and electric E fields at
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a distant point R take the following form:

H(R) = [V X ARR)] ;% J [n xj(r)] exp[ — ik(n-r)] dr ,
ER) = %[V x H(R)] ;Wﬁn x [n xj(r)]]exp[ — ik(n-r)]dr, (4.4)

where the integrations are over the film area. It follows from Eqgs. (4.4) that the magnetic field H(R)
is perpendicular to the electric field E(R) and their absolute values are equal to each other
|E(R)| = |H(R)|, which means that the scattered field can be considered locally as a plane wave,
when the distance from the film is large. The total intensity S, of the light scattered in the direction
n = R/R is equal to

1
S.() = - RS ReCTE(R) < HR)])
— CRACER) EXR)) = 5 R*CHR) H¥(R))
k2
= é?Jk[n X j(ry)] - [n xj*(r,)]> explikn - (ry — ry)]dry dr, , 4.5)

[Tt}
*

where denotes, as above, complex conjugation and the angular brackets stand for the ensemble
averaging. Note that the semicontinuous metal films considered here are much larger than any
characteristic intrinsic spatial scale, such as the field correlation length &.. Therefore, the ensemble
average can be included in the integrations over the film area in Egs. (4.5) without changing
the result. It is assumed, for simplicity, that the incident light is natural (unpolarized) and
that its direction is perpendicular to the film plane. Then the product {[n xj(r,)]-[n xj*(r,)]> in
Egs. (4.5) should be averaged over the polarizations of the incident wave, which gives
(jry) - j*(r2)>(1 — sin? 0/2), where 0 is the angle between the direction » and normal to the film
plane.

The replacing of the local currents j(r) by their averaged values {j(r)) in Eq. (4.5) gives the
specular scattering S,. The scattering in all other directions is obtained as

S(Q) = St - Ss

_ik_z 1_sin29
- 8nc? 2

>J[<j(r1)-j*(r2)> — [>T explikn - (ry — r;)]dry dr, (4.6)

There is a natural correlation length &. [see Eqgs. (2.24), (2.40), and (4.2)] for the local field
fluctuations and, therefore, for the current—current correlations. If this correlation length is much
smaller than the wavelength of the incident light &, < 4 = 2n/k, Eq. (4.6) is simplified by replacing
the exponent by unity (exp(ikn-(r; — r,)) ~ 1). This gives

_ck sin® 0 .o (] <lra) 74(r2))
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Since the macroscopically homogeneous and isotropic films are considered the current—current
correlations {j(r{) j*(r,)> depend only on the distance r = |r, — r{| between the currents. It is
convenient to introduce the correlation function

) JHra)y  _ ReCj0) 7))
DI [<KPDI?

Substituting this correlation function in Eq. (4.7) and replacing the integrations over coordinates
r; and r, by integrations over r = r, — r; and ¥ = (r, + ry)/2, the following equation is obtained
for the intensity of the scattered light:

P k2<1 _sm 29

G(r) = ~1. (4.8)

S(0) = o 2 >|<]>|22nJ G(ryrdr , (4.9)
where A is the film area. The intensity of the scattered light is compared with the integral intensity
(power) of the incident light I, = A(c/8w)|E,|?, where E, is the amplitude of the incident wave. For
the normal incident light, the average electric field in the film {(E) is equal to <E) = TE,, where
T is the transmittance of the film (see discussion in Ref. [38]). Note that for semicontinuous
metallic films at p = p. the transmittance |T|* ~ 0.25 in a wide spectral range from the visible
to the far infrared spectral range [85]. The average surface current <{j) is related to the average
electric field <E) through the Ohm’s law; in thin films it takes the following form
{j>=a0.{E) =a0,TE,, where o, = — ie,w/(4mn) is the effective conductivity, and thickness of
the film is approximated by the size a of a metal grain.

By substituting {j» = 6.aTE, in Eq. (4.9), the ratio of the scattering intensity S(0) to the total
intensity of the incident light I, can be obtained. This ratio is independent of a film geometry:

2 0
S0 = 20 _ 2nka) (1 sin 0>|T R J G(ryrdr (4.10)
IO C
which can be rewritten as
s 4 1=
30) z(’;i: <1 sin 9>|T = J G(ryrdr . @.11)
0

It follows from this equation that the portion of the incident light that is not reflected, transmitted
or adsorbed, but is scattered from the film is equal to

(ka)

Sir = 21 f§(0) sin 0 df = e|2 J G(ryrdr . (4.12)

0

Egs. (4.11) and (4.12) have a transparent physical meaning. The anomalous scattering like Rayleigh
scattering is inversely proportional to the fourth power of the wavelength S oc S, oc (ak)* oc (a/A)*,
and it is much enhanced due to spatial current-current (field—field) correlations described by the
correlation function G(r) in Egs. (4.9)-(4.12). The function G(r) can have different behaviors for
different frequencies. The factor |Te.|* in Eq. (4.12) also depends on the frequency and achieves
large values |Te.|? > 1 in the infrared spectral range.
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Fig. 11. Absorptance of gold semicontinuous films at p = p, — continuous line; the same but film is loss free — dash line;
% — § = Sio/41 — average scattering from the film into the unit solid angle (p = p,).

The scattering given by Eq. (4.12) can be compared with the scattering in the case when the metal
grains interact with the electromagnetic field independently. The cross-section gz of Rayleigh
scattering from a single metal grain can be estimated as og = (87/3)(ka)*a® for |e,| > 1 [82]. The
portion of the light which would be scattered if the grains were independent is equal then to
SR, ~ p(8/3)(ka)*. Assuming p = 1/2, the following estimate is obtained for the enhancement g of
the scattering due to the field fluctuations:

Stot |Te. |2
= ~ . 4.1
g K aa® |, G(r)rdr (4.13)

If the integral in this equation is determined by the largest distances where field correlations are
essential, i.e., r ~ &, the scattering is enhanced up to infinity, when the losses vanish and £, — 0.
Itis the case for 2D metal-dielectric films as it is shown below. Certainly, the above formalism holds
if the part of the incident wave being scattered is much less than one, S, < 1. Otherwise, it is
necessary to take into account the feedback effects, i.e., the interaction of the scattered light with
the film.

The function G(r) for 1024 x 1024 L-C system is calculated using the RSRG method, discussed in
the previous section, and scattering function S, (w) is obtained for gold semicontinuous metal film
at the percolation threshold p = p. = 1/2. The results are shown in Figs. 11 and 13. One can see in
Fig. 11 that the scattering dramatically increases for w below @, when real part of the metal
dielectric function ¢, becomes negative. The scattering has a broad double peak maximum and
finally drops down in the infrared spectral range, where w, < o < @,. To understand this result let
us investigate the behavior of the correlation function G(r) in more detail, using numerical
calculations as well as the scaling arguments discussed in Section 2.

4.2. Scaling properties of correlation function

The correlation function G(r) was calculated for the resonance frequency w, [see Eq. (4.12)] so
that ¢,(w,) = — &4, and for different values of loss parameters xk = ¢, /e, | [44]. The concentration
of metal grains represented by L-R elements is equal to p = p. = 1/2. The system size is equal to
1024 x 1024 and results are averaged over 100 different realizations of the system for each value
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Fig. 12. Correlation function G(r) for the —g, =¢4 and different loss parameters k = e /lenl: # - k=101,
x —k=10"2 O -x=10"3, * — k = 10~ * The same for H = 100.0 and x = 1073 - +.

of k. The obtained function G(r) is shown in Fig. 12 (the distance r is measured in units of the metal
grain size a). It follows from Fig. 12 that for the scales a < r < &, the correlation function decays as

G*(r) ~ M3(r/a)" 1" ~ ™ Yrja)~ AT (4.14)

where M3, given by Eq. (2.22), is the second moment of the local field in the system with ¢, = — &g,
and the critical exponent # = 0.8 + 0.1 is a new critical exponent that determines the spatial
correlation of the local electric field. Substitution of the correlation function G from Eq. (4.14) in
expressions (4.11) and (4.12) for the scattering gives that the integrals diverge at the upper limit.
Therefore, the scattering is determined by the values of the function G(r) at large distances, where
Eq. (4.14) still holds, i.e., ¥ ~ .. This suggests that the field fluctuations with spatial distances of the
field correlation length &, > 1 are responsible for the anomalous scattering from semicontinuous
films.

Now the dependence of scattering on the frequency of an incident electromagnetic wave is
considered. First we consider frequencies just below @, when the metal dielectric function can be
estimated for a Drude metal as ¢, = &, + iey, = 28,(0 — @,)/0, + ie 0./, [see Eq. (2.1)], ie.,
em < 0. The contrast |ep,|/eq 1s about unity |ep,|/eq < 1 for these frequencies, while the loss factor
k=~ w,./2(®, — w) decreases rapidly with frequency w decreasing below the renormalized plasma
frequency @,. For the contrast |ey|/eq ~ 1, the correlation function G(r) can be estimated by
Eq. (4.14). Substituting Eq. (4.14) in Eq. (4.12) and integrating up to &, ~ ax~ ¢ [see Eq. (2.24)], the
following estimate is obtained:

kay* o (ka)* o
S ~ L Tt it~ C g -0
ka)* ~ O\ 1+ —n)/d 2+(1—n)d
~( ;l) |T|28d8b<&> <1 —ﬁ) , <, , (4.15)
Wy Wy

where the Dykhne’s formula is used for the effective dielectric constant at the percolation threshold:
(P = pc) = «/ €aém for 2D percolation systems [100]. Eq. (4.15) holds for frequencies below @,.

Consider now the other limit w < @,, assuming again that @ > w,. Then the dielectric constant
for a Drude metal can be approximated as &, ~ (w,/w)*( — 1 + iw./w) [see Eq. (2.1)] that gives
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leml/ea = (wp /) /eqg > 1 and k = & /|en| = w/w, < 1. To estimate the behavior of the correlation
function G(r) the usual procedure of dividing the system into squares of size [ and considering each
square as a new element is applied, as it has been discussed in Section 2.3. The square size [ is set
equal to [, given by Eq. (2.34). Then the correlation function G* in the renormalized system has the
form of Eq. (4.14), while in the original system it has the form G(r)=(l./a)' *"G*(r) for r > I,. The
function G(r) follows the usual behavior of the current-current correlatlon function in a percolation
system G(r) oc r =¥ [107], for the distance r < I,. By matching these asymptotic expressions at
r = I, the following anzats for the correlation function is obtained:

l t/v l t/v
G(r) ~ M}‘(i) ~ K_l<7r> , a<r<l.,

l 1+n l 1+yn
G(r) ~ M}'(i) ~ K_1<—r> , lLo<r<é., (4.16)

r

where [, and &, are given by Egs. (2.34) and (2.40), respectively. The correlation function calculated
for the loss parameter k = 10~ 2 and contrast |¢,,|/eq = 102, which corresponds to I, = 10a, is
shown in Fig. 12. It is in reasonable agreement with the scaling of Eq. (4.16).
The scaling given by Eq. (4.16) allows to estimate the second moment of the local electric current
= {|j(r)|*) at the percolation threshold p.. The moment M; is expressed from Eq. (4. 8) in terms
of the current—current correlation function G(r) as M; |E0| lo.|>G(0) = (w/4m)?|Eo|?|e. | G(0),
where E, is the external field, ¢, and ¢, are the effective conductivity and the dielectric constant,
respectively. At the percolation threshold the effective dielectric constant is estimated as e, ~
q(em/€q) "9 [12,20]. To estimate the correlation function G for r ~ a the Eq. (4.16), obtained for
distances r much larger than the grain size a, is extrapolated to » — a. Such an extrapolation gives
G(0) ~ G(a) ~ M3(I./a)""" ~ M%(leml/eq)/®"?. Combining the above estimates for ¢, and G(0) the
following equation is obtained:

|&m]

&

(2s+1)/(s+1)
M; ~ (w/4m)*|Eo|%e 2M*< > ~ (@/A)*|Eo |*ealem| M2 (4.17)
where in transition to the second estimate Egs. (2.22) and (2.43) are used for the local field moments
M% = M%, and M, = M, , correspondingly. This equation holds for arbitrary spatial dimension.
In two dimensional case Eq. (4.17) coincides with exact Eq. (7.138) (see Section 7.3.4), which is held
for self-dual composites at the percolation threshold.

Now we return to the consideration of the light scattering from semicontinuous metal films.
Note that the frequency w < w,, is considered, when metal dielectric constant for a Drude metal
[see Eq. (2.1)] can be approximated as &, ~ — (w,/w)*(1 — iw,/w). By substituting the correlation
function G(r) from Eq. (4.16) in Eq. (4.12) and taking into account that at the percolation threshold
lee]? ~ eqlém| = eq(w,/m)?, the following result is obtained:

(ka)4

Stol ~ |T| | e|2 _lll-H’é

4 4 1+(1=m)/2
(k;l) | T2~ LA |2~01< Ca> <2> , (4.18)

Wy
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where the relation between the 2D percolation exponentst ~ s ~ v ~ 4/3 [12,20] is used as well as
the experimental result |T|* ~ 0.25, which holds for p =p, and o, < ® < w, [85]. Thus, the
scattering first increases as @' ~"/2 with increasing the frequency according to Eq. (4.18) and
then vanishes as (®, — w)>**" ~"/2 when w approaches &, [see Eq. (4.15)] in accordance with the
numerical results shown in Fig. 11.

The enhancement of the scattering due to the field fluctuations can be estimated from Eqgs. (4.13)
and (4.16) as g ~ |T|?eqlem|lZc™ 1~ ""/2/4 which gives for a Drude metal [see Eq. (2.1)] and
» < w, the following equation:

T /6.\ + 141 —y)/2
~u<&> <3> : (4.19)
4 \ w ,

Taking the value |T|*> = 1/4 and ¢4 = 2.2, which is typical for a glass, the enhancement of scattering
shown in Fig. 13 is obtained. The enhancement g becomes as large as g ~ 5 x 10* at wavelength
A = 1.5um and continues to increase towards the far infrared spectral range. At first glance this
continuous increase of the scattering enhancement g seems to contradict to the behavior of the
scattering shown in Fig. 11. It can be explained by noticing that Fig. 11 shows the anomalous
scattering itself, whereas Fig. 13 shows the enhancement of the anomalous scattering with respect
to Rayleigh scattering, assuming that metallic grains are independent. Rayleigh scattering
decreases as w* with decreasing frequency, whereas the anomalous scattering varies as
S ~ @' TA7M2 &~ 1 Then the enhancement increases as g ~ @~ 22 ~ A% in the infrared part of
the spectrum.

In the formalism above it was assumed that the wavelength A is much larger than the grain size
a and that A is much larger than the spatial scale &, of the giant field fluctuations, 4 > &..
Consequently, the calculated Rayleigh scattering contains a small portion of the incident light only.
The size of metal grains in semicontinuous metal films is usually of the order of few nanometers but
it can be increased significantly by using a proper method of preparation [108]. In such a way the
situation can be achieved, when the field correlation length &, in Eq. (2.40) becomes larger than the
wavelength A of the incident wave. In this case, the scattering can be a dominating process in
the light interaction with semicontinuous metal films. Then some kind of critical opalescence,
which is typical for critical phenomena, can be observed for these films. The consideration
presented above holds for the spatial scales a < [ < /; one can speculate that the scattering is still
given by Eq. (4.6), but the exponential term cannot be set as one. Integration in Eq. (4.6) over all
directions of the vector r; — r, gives the factor J,(krsin 0), which means that the scattering is

10° . A(um)

0.1 1 10

Fig. 13. Enhancement of Rayleigh scattering from semicontinuous gold films as a function of the wavelength; p = p,.
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proportional to S oc ¢ G(r)J(krsin O)r dr, where 0 is the angle between the normal to the film
plane and the direction of the scattered wave. Therefore, a thorough study of the conjectured
“critical opalescence” from the films (e.g., the angular distribution of the scattered light) could give
quantitative information on the spatial structure of the correlation function G(r) and on the spatial
structure of the giant field fluctuations in semicontinuous metal films.

After a possible analogy between the anomalous scattering and the critical opalescence is
mentioned, now an important difference should be stressed between these phenomena. Indeed, the
critical opalescence originates from the long-range fluctuations of some physical quantity, e.g.,
density fluctuations near the liquid-vapor critical point or fractal structure of metal clusters
[25,105], etc. In contrast to this, the spatial distribution of metal grains in semicontinuous metal
films is random or correlated on the scales of a grain size a < A. The anomalous light scattering
originates from the long-range field fluctuations. Therefore, the incident electromagnetic wave
plays a two-fold role: it first generates the giant fluctuations of local electric fields which in turn
induce anomalous scattering. Considered anomalous scattering is, in a sense, a new kind of critical
opalescence - the field opalescence.

5. Raman scattering

This section is concerned with surface-enhanced Raman scattering (SERS) — one of the most
intriguing optical effects discovered in the past twenty years (see, for example, Refs. [24,109-112]).
We present a theory of Raman scattering enhanced by strong field fluctuations of the local fields
[38,42]. SERS from rough thin films is commonly associated with excitation of surface plasmon
oscillations (see, e.g., [109,113]). Plasmon oscillations are typically considered in the two limiting
cases: (1) oscillations in independent (noninteracting) roughness features of various shapes and (2)
surface plasmon waves (polaritons) that laterally propagate along the metal surface (see [109,113]
and references therein). In reality, there are strong light-induced interactions between different
features of a rough surface and, therefore, plasmon oscillations should be treated as collective
surface excitations (localized surface plasmons) that depend strongly on the surface morphology as
it has been explained in Section 2. Below, we present a theory that expresses the enhancement of
Raman scattering in terms of the local field fluctuations.

5.1. General formalism

We consider optical properties of a semicontinuous metal film consisting of metal grains
randomly distributed on a dielectric substrate. The gaps between metal grains are usually filled by
dielectric material of the substrate. The local conductivity o(r) of the film takes either the “metallic”
values, o(r) = 0, in the metal grains or the “dielectric” values, o(r) = — iweq/4m, outside the
metal grains. Here w is the frequency of the external field. It is supposed that the wavelength 4 is
much larger than a typical scale of inhomogeneity in the composite including the grain size q,
the gaps between the grains, percolation correlation length &, and the local field correlation length
&, [see Eq. (2.40)]. In this case, the local field E(r) is given by Eq. (2.3). This equation is solved
to find the fluctuating potentials ¢(r) and the local fields E(r) induced in the film by the external
field Eq(r).
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It is instructive to assume first that the external field E(r) is pin-like, Eo(r) = E; d(r — r;), where
the J(r) is the Dirac delta function. The current density at arbitrary point r, is given by the
following linear relation:

Jiry) = 2(r2,r)E; (5.1)

defining the nonlocal conductivity matrix 2(r,, ;). This matrix represents the system’s response at
point r, to the field source located at point r; . If an inhomogeneous external field E (r) is applied to
the system the local current at point r, is equal to

J'("z)=Jf("2,r1)Eo(”1)dr1 > (5.2)

where the integration is over the total area of the system.
The nonlocal conductivity 2 can be expressed in terms of the Green function G of Eq. (2.3):

V- {U(VZ)EVG("2J‘1)]} =0(r; —ry), (5.3)

where the differentiation with respect to the coordinate r, is assumed. Comparing Egs. (2.3) and
(5.3) and using the definition of the nonlocal conductivity given in Eq. (5.1), the following equation
is obtained

0°G(ra, 1)

arz’a arl’ﬂ ’ (54)

2.p(ra,ry) = a(rsy)o(ry)
where the Greek indices take values x and y. As follows from the symmetry of Eq. (5.3), the Green
function is symmetric with respect to the interchange of its arguments: G(r,r,) = G(r,,r;). Then,
Eq. (5.4) implies that the nonlocal conductivity is also symmetric:

Zop(ri,ra) = Zpa(ra,ry) (5.5)

The introduction of the nonlocal conductivity, £, considerably simplifies further calculations of the
local field distributions. The symmetry of £ given by Eq. (5.5) is also important for the following
analysis.

Since the wavelength of the incident em wave is much larger than all spatial scales in a semicon-
tinuous metal film, the external field E, is constant in the film plane. The local fields E(r,) induced
by the external field E, can be obtained by using Eq. (5.2) for the nonlocal conductivity £ as
follows:

Er,) = 1 Jf(rz,rl)Eo dry . (5.6)
a(r)
The local fields E(r,) excite Raman-active molecules that are assumed to be uniformly distributed
in the composite. The Raman-active molecules, in turn, generate the Stokes fields E(r,) =
os(r2)E(r,), oscillating at the shifted frequency w, [o(r,) is the ratio for the Raman and linear
polarizabilities of the Raman-active molecule at the point r, ]. The Stokes fields E(r,) induce in the
composite currents j (r3) that are given by an equation similar to Eq. (5.6):

Js(r3) = Jf("aa"z)Es(i‘z)drz . (5.7)
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Since the Stokes-shifted frequency w, is typically very close to the frequency of the external field
| — w]/w < 1 the nonlocal conductivities 2, appearing in Egs. (5.6) and (5.7), are considered to be
the same.

The intensity of the electromagnetic wave I scattered from any inhomogeneous system is
proportional to the current fluctuations inside the system, as it has been discussed in all details in
Section 4.1, namely

2
> , (5.8)

where the integration is over the entire system and the angular brackets ¢ ... > denote the ensemble
average. For Raman scattering, the mean includes averaging over the fluctuating phases of the
incoherent Stokes fields generated by different Raman-active molecules. Therefore, the averaged
current densities oscillating at w is zero, {(j,» = 0. Then, the intensity of Raman scattering I, from
a semicontinuous metal film acquires the following form:

I oc <‘ fj(r)dr 2>

= J<Z:xﬂ("3:Vz)“s("z)Eﬂ("z)Ziy(rssr4)°<§k("4)E3<("4)> dr, dr; dry drs (5.9)

Ioc <’ f L) — <>1dr

where the summation over repeating Greek indices is implied. All the integrations in Eq. (5.9) are
over the entire film plane. Eq. (5.9) is averaged over the fluctuating phases of the Raman
polarizabilities a,. Since the Raman field sources are incoherent, this average results in

(o) (ra)) = |o20(ry — r4) (5.10)
and Eq. (5.9) takes the following form:

I oc J<2aﬂ(”33"2)2?:«/("5,"2)5au|“s|2Eﬁ(”z)E§k(”2)> dr, dr; drs , (5.11)

where the Kronecker symbol ¢,, is introduced to simplify further considerations. Since a semicon-
tinuous film is macroscopically homogeneous, Raman scattering is independent of the orientation
of the external field E,; therefore, Eq. (5.11) can be averaged over the orientations of the E, without
changing the result. The averaging of the products E;(r;)E¥(r;) and E,,E§, results in the
following expressions:

CEp(ra)Ef(ra)yo = %<|E(’”z)|2>o5ﬁy (5.12)
_ <EO,aEg,u>O
Ouu = ZW s (5.13)

where the sign <... o denotes the orientation averaging. Substituting Eqgs. (5.12) and (5.13) in
Eq. (5.11) and noting that the nonlocal conductivity 2 is independent of the field orientations, the
following result is obtained for the intensity of the Raman signal:

<E0,aE§,u>0

TAE ot |2 |E(r2)|* >0 drry drs drs (5.14)
0

gy oc Jza/}(r?:arz)zjﬁ(rSarZ)
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[For simplicity, the sign for ensemble averaging is omitted here.] Now the symmetry of the
nonlocal conductivity, given by Eq. (5.5), is used to rewrite Eq. (5.14) as

Jors >

W<|E(r2)|2>0 dr2 dr3 dr5 . (515)
0

<Is> oC J<Zﬂa(r2,r3)EO,az,>Bku(r2ar5)E?)<,u>O

Integration over the coordinates r; and rs; and implementation of Eq. (5.2) gives

Jors |

I,> oc
NN

ﬁff("z)|2<|E("2)|2>o<|E(”2)|2>0 dry . (5.16)

It is easy to show that this equation can be rewritten for macroscopically isotropic system in the
following form:

Jors |

I,> oc
NATNE

ﬁﬂ("z)|2|E("2)|4d"2 . (5.17)

If there were no metal grains on the film, the local fields would not fluctuate and one would obtain
the following expression for Raman scattering:

I o ﬁadl2laslzlEo|2dr2 : (5.18)

Therefore, the enhancement of Raman scattering Ggrg due to presence of metal grains on a dielectric
substrate is given by
Ly LaPIEmIY  Llar)PIE@I*)

Gpe = = = . 5.19
I e T AEP G-19)

Note that the derivation of Eq. (5.19) is essentially independent of the dimensionality and
morphology of a system. Therefore, the enhancement of Raman scattering given by Eq. (5.19) holds
for any inhomogeneous system provided the field fluctuations take place inside it. In particular,
Eq. (5.19) gives the enhancement for Raman scattering from a rough metallic surface, provided
the wavelength is much larger than the roughness spatial scales; it can be also used to calculate
enhancements for Raman scattering in a three-dimensional percolation composites. The presented
theory, which was developed in Refs. [38,42], implies that the main sources for the Raman signal
are the currents excited by Raman molecules in metal grains. This explains why a significant
enhancement for Raman scattering is observed even for relatively flat metal surfaces [109,113,114].

5.2. Raman and hyper-Raman scattering in metal-dielectric composites
It has been shown in Section 2 that in percolation composites the local electric field concentrates

mainly in the dielectric gaps between metal clusters. Then the SERS enhancement given by
Eq. (5.19) can be estimated as Ggs ~ M40 = {|E(r)/Eo|*>. Eq. (2.43) for the fourth moment gives

(2v+s)/(t+5) 3
Grs ~ p(p)[éA(p)/aJ“Ci—j') ('Zt:") , (5.20)
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where the dependence of the density of states p(p) and localization length £, (p) on the concentra-
tion p of metal grains is indicated explicitly. Thus the obtained Raman enhancement Ggg depends
strongly on localization length £,. When the states are delocalized, £, — oo and Ggg vanishes very
rapidly.

Now the frequency and concentration dependence of Raman scattering predicted by Eq. (5.20) is
considered. For 2D metal-dielectric composites (semicontinuous metal films) the critical exponents
s &t & v~ 4/3. The Drude metal dielectric function (2.1) can be used for frequency o < w,, and
Eq. (5.20) results in the enhancement Ggs ~ p(p)[a/Ea(p)]%(w,/w.)?/e3/?, which is independent of
frequency.

For silver-on-glass percolation films, the Anderson localization length £, is set £, & 2a (see Figs.
1-4), which gives the best fit for the moments in Fig. 5, and density of state p(p.) ~ 1 [see discussion
after Eq. (2.12)]. Thus the SERS Ggg achieves the values Ggg ~ 10° in silver semicontinuous films at
the percolation threshold. For 3D composite at @ < w,, SERS decreases with decreasing frequency
as Ggs ~ p(p)(éa/a) Pwiw/w? ~ 10°w/w,, where the estimates ¢4 ~ 2a, p ~ 1 are used and 3D
critical exponents are approximated as v s~ (t +s)/3 [12,20]; the data w, =9.1eV and
w, = 0.021 eV for silver dielectric constant [ 104] are substituted.

The localization radius &, of the eigenstates ¥, with eigenvalues 4 ~ 0 decreases when
concentration shifts from p = p. toward p =0 or p = 1 since the eigenvalue A = 0 shifts from
the center of the A-distribution to its tails, where localization of the eigenstates is stronger
[see discussion at Eq. (2.25) in Section 2]. Therefore, according to Eq. (5.20) Raman scattering
has a minimum at the percolation threshold. As a result, the double maximum dependence
Grs(p) takes place as it was observed in experiments and numerical calculations [38,42],
with one maximum below the percolation threshold p, and another above the p, as it is shown
in Fig. 14.

Results of experimental studies of the SERS dependence on the metal filling factor p compared to
theoretical calculations are shown in Fig. 15 taken from [42]. One can see that there is good
qualitative agreement between predictions of theory and experimental observations. In particular,
in accordance with theory, there is a dip near the percolation threshold in the SERS dependence
on p.

The intensity of the local Stokes sources Igg(r) oc |E(r)|* (provided the Stokes shift of frequency is
small) follows the local field distribution. In the peaks (hot spots), Eq. (2.35) gives

4v/(t+s) 4
b o2 0 ~ Ebarep (22! ) () (521

d Em

For a semicontinuous Drude metal film at p = p, and w < w,, the peak intensity is estimated
as Irs.max OC |[E(F)*/EG ~ (Ea/a)”¥(wy/w)* > 1. If the density of Raman-active molecules is
small enough, then each peak of the local field can be due to Raman scattering from a
single molecule. The distribution of the local Raman signal in silver semicontinuous film is shown
in Fig. 16.

Consider now hyper-Raman scattering when n photons of frequency w are converted in one
hyper-Stokes photon of frequency wyrs = now — Q, where Q is the Stokes frequency shift corre-
sponding to the frequency of molecule oscillations (electronic or vibrational). Following the general
approach, described in the beginning of this section (see Ref. [38]), the surface enhancement of
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Fig. 14. The enhancement factor Ggg for Raman scattering from a silver semicontinuous film as a function of the metal

concentration p and the wavelength, 4.
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Fig. 15. Normalized SERS 4 = Ggs(p)/Grs(p = p.) as a function of the metal concentration, Ap = p — p,, on a silver
semicontinuous film. The solid curve represents theoretical calculations; the points are experimental data.

hyper-Raman scattering (SEHRS) Gygs is equal to

_ Llows(®)P|EwsM)IPIEO*") _ <lenrs ()1 Enrs (]| E()*"

G = - . (5.22)
S |6d|2|E0,hRS|2|EO|2 |8d|2|E0,hRS|2|E0|2

b

where Eyrs(r) is the local field excited in the system by the uniform probe field E, yrs oscillating
with wprs; onrs(?) and eyrs(r) are the local conductivity and dielectric constant at the frequency
wprs- At n =1 formula (5.22) describes the conventional SERS.

To estimate Gygs it is taken into account that the spatial scales for the field maxima [, [see
Eq. (2.34)] at the fundamental frequency w and hyper-Stokes frequency wygs are significantly
different. Therefore the average in Eq. (5.19) might be decoupled and approximated as
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Fig. 16. Distribution of the local enhancement of Raman scattering on a silver semicontinuous film at the percolation
threshold for different wavelengths: (a) 4 = 0.36 um, (b) 2 = 0.5pm, (c) A = 1.5pm, (d) A = 10 um, (e) 4 = 20 pm.
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{lenrs ()’ | Enrs(F) | E@)*"> ~ {Jenrs(F)Enrs(P)*>EF)*"> = {|enrs(F)Enrs(F)|*> Mo |Eol*",  where
M, (w), given by Eq. (2.27), is the 2nth moment of the local field E(r). It follows from Eq. (4.17) that
the second moment of the current <|enrs(F)Eprs(r)|*> is estimated as e4|em (wyrs)|M 2| Eo wrs|?, Where
the moment M, (wygs) is the second moment of the field Eygs(r). Substitution of these results in
Eq. (5.19) gives

|&m (nrs)|
€d

Girs ~ M (wprs)M 24(0) , (5.23)
where the moment M, is taken at frequency wurs. Now the expressions for moments M, and
M,, given by Eq. (2.43) are substituted in the above equation and it is taken into account that for
p ~ p. the density of states in Eq. (2.43) is about unity p ~ 1. Thus the following formula for
enhancement of hyper-Raman scattering is obtained:

G (& /a)Zd—4(1 +n)<|8m(thS)| > “r 28)/(t+5)<|8m(a)hRS)| >
hRS ™~ \GA - BV

&4 m(Wnrs)
(2v(n—1)+s)/(t+5) 2n—1
&q 8m(w)

where n > 2. For a Drude metal and frequencies o < @,, wyrs < @, the metal dielectric constant
can be approximated as |en(Wprs)| ~ [em(®)] ~ (0,/®)%, tm(®)/|en(®)] ~ o /0 and Eq. (5.24)
acquires the form

2(2v(n—1)+3s+1t)/(t+s) 2n
Girs ~ (Eafa)®! 720 +")<%> <£> ) (5.25)

Wy

which holds in the vicinity to the percolation threshold. For 2D composites where the critical
exponents are t & s & v &~ 4/3 Eq. (5.24) simplifies to

2(n+1) 2n 2 2n
GhRs~(a/éA)4"<%> (g) ~(a/fA>4"<%> (Z—) , (526)

which for n = 2 in silver semicontinuous films is estimated as Gurs ~ 10'3(a/E4)® A%, where the
wavelength 4 is given in microns. As above for Raman scattering, the local enhancement in the hot
spots can be larger than the average one by many orders of magnitude.

6. Giant enhancements of optical nonlinearities in metal-dielectric composites

In this section, we consider enhancements in percolation composites for different nonlinear
optical processes nonlinearities, such as Kerr optical effect and generation of high harmonics.

6.1. Kerr-type optical nonlinearities

The Kerr-type nonlinearities are third-order optical nonlinearities that result in additional term
in the electric displacement D of the form

DPw) = e53)s( — w3 0,0, — )E4E, Ef | (6.1)
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where
eERo(— 00,0, — w) . (6.2)

is the third-order nonlinear dielectric constant [81,82], and E is an electric field at frequency w;
summation over repeated Greek indices is implied. The Kerr optical nonlinearity results in
nonlinear corrections (proportional to the light intensity) for the refractive index and the absorp-
tion coefficient.

Below macroscopically homogeneous and isotropic composites are considered. Then the third-
order terms in the average electric displacement has, in general, the following form:

(Dr)y = alEo|’Ey + f ESEF , (6.3)

where E, is the amplitude of the external (macroscopic) electric field at frequency w, E3 = (E, - E,),
o and f are some constants [ not to be confused with the tensor components in Eq. (6.1)]. Note that
the second term in Eq. (6.3) for the nonlinear displacement of an isotropic film can result in change
of the polarization of the incident light [81]. Eq. (6.3) simplifies for the case of linear and circular
polarization of the incident light [81]. For the linear polarization the complex vector E, reduces
to a real vector. Then the expressions |[Ey|?E, and E3E, in Eq. (6.3) become the same and the
equation can be rewritten as

(Dr)y = e |Eo|’Ey , (6.4)

where the nonlinear dielectric constant ¢ is a scalar now. For the sake of simplicity, we consider
below the linearly polarized incident wave. Eq. (6.4), being rewritten in terms of the nonlinear
average current {j°)(r)> and the effective Kerr conductivity 6> = — iwe?®/4n, takes the following
form:

GO = oP|EGPE, . (6.5)

This form of the Kerr nonlinearity is used in the discussion below.

First the case when the nonlinearities in metal grains ¢’ and dielectric ¢ are close to each
other 6} ~ ¢’ ~ 6 is considered. For example it can be due to molecules uniformly covering
a semicontinuous film. [The composites, where 6] > |6], are discussed below at Eq. (6.21).]
When ¢ ~ ¢’ ~ ¢*® the current in the composite is given by

Jjir) = VNE(r) + cDNEF)E' (1) , (6.6)

where E'(r) is the local fluctuating field. When current is given by Eq. (6.6) the current conservation
law given by Eq. (2.3) takes the following form:

(3)
V'<a(1)(r)[ —Vo(r) + Ey + O_((Tl—)(r)E’(r)lE’(r)FJ) =0, (6.7)
where E, is the applied electric field, and — V¢(r) + E, = E'(r) is the local field. It is convenient to
consider the last two terms in the square brackets in Eq. (6.7) as a renormalized external field

(3)

E.(") = Eo + Ex(r) = Eg + ——E#E @), (68)
a'(r)



324 A.K. Sarychev, V.M. Shalaev | Physics Reports 335 (2000) 275-371

where the field

E) ,

Ei(r) = a‘l—)(r)E (FIE'(r)| (6.9)
may change over the film but its averaged value {E;(r)> is collinear to E,. Then the average current
density {j(r)) is also collinear to E, in macroscopically isotropic films considered here. Therefore,
the average current can be written as

. _Eo . E, 1 .
= E—%(Eo )= B ZJEO Jlr)dr, (6.10)
where A is the total area of the film, the integration is over the film area and Ej = (E, - E,).
Expressing the current j(r) in Eq. (6.10) in terms of the nonlocal conductivity matrix defined by
Eq. (5.1) gives

. 1 o

> =77~ |[Eo2(r,r)E(ri)]drdr, (6.11)
Eg5 A

where the integrations are over the entire film. Now this equation is integrated over the coordinates

r and the symmetry of the matrix of nonlocal conductivity given by Eq. (5.5) is used. This results in

the expression

W Eg [,

D=5 Juo(r) En)dr, (6.12)
where jo(r) is the current induced at the coordinate r by the constant external field E,. Now we can
substitute in Eq. (6.12) the renormalized external field E.(r) from Eq. (6.8) and integrate over the

coordinate which gives for the average current

(aNEr) E'(n)E'")*)
E§ ’

Gy = Eo[ag“ + (6.13)
where (" and E(r) are the effective conductivity and local fluctuating field, respectively, obtained in
the linear approximation, i.e., for ¢* = 0. Comparison of Egs. (6.13) and (6.5), allows to find the
equation for the effective Kerr conductivity

o _ SeVEW) EW)E @)
© E3|E,| '

(6.14)

Let us stress out that this result does not depend on the “weakness” of the nonlinearity, it holds
even for strong nonlinear case |6 E?| > ¢{". For the case of weak nonlinearities the local field E'(r)
in Eq. (6.14) can be replaced by the linear local field E(r) resulting in the following equation for the
Kerr conductivity

o _ COVEMIER)
e B3EP

(6.15)

which gives the effective nonlinear conductivity in terms of the linear local field.
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In the absence of metal grains the effective nonlinear Kerr conductivity ¢{* coincides with the
Kerr conductivity ¢*® of the dielectric. Therefore the enhancement of the Kerr nonlinearity G is
given by the following equation:

_ E*(n)|EW)*>

= =M 1
GK E%|E0|2 2,2 » (6 6)

where M, , is the fourth moment of the local field [see Eq. (2.26)]. Therefore, the enhancement
of the Kerr nonlinearity Gk is expressed in terms of the local field E(r) found in the linear
approximation.

Above it has been assumed that the nonlinear Kerr conductivity ¢® is the same in metal and
dielectric. When ¢ # ¢ the above derivations can be repeated and the following result emerges
for the effective Kerr conductivity

3 SEX(NE@)* )m

o (3) <E2(r)|E(r)|2>d
" EG|Eo)?

o = + (1 —po ,
R T A

(6.17)
where the angular brackets ( ... >, and { ... >4 stand for the averaging over the metal and dielectric
grains, respectively. Formula (6.17) for enhancement of the cubic nonlinearity in percolating
composites was previously obtained by Aharony [8], Stroud and Hui [9] and Bergman [11].
Similar formula was independently obtained by Shalaev et al. to describe the Kerr enhancement in
aggregates of metal particles [22-24]. The general equation Eq. (6.13) was derived in Ref. [43].

According to Eq. (6.16) the value of the Kerr enhancement Gg is proportional to the fourth
power of the local field averaged over the sample. This is similar to the case of surface-enhanced
Raman scattering with the enhancement factor Ggg given by Eq. (5.19). Note, however, that Gk is
complex, whereas Ggg is a real positive quantity. Because the enhancement for Raman scattering
is determined by the average of |E|*, which is phase insensitive, the upper limit for the enhancement
is realized in this case.

The enhancement of the Kerr nonlinearity can be estimated analytically using the methods
developed in Section 2. We consider first the case when ¢®)(r) in the dielectric component is of the
same order of magnitude or larger than in the metal component. (The opposite case of almost linear
dielectric 6§ < |6$Y| will be considered below.) Then the Kerr enhancement G is estimated as

Gy ~ 109/<aDm)] = |69/ mD] ~ M|
B Sm (2v+s)/(t+5) 8m 3
~ plEn/a)’ (Q> <' ,/'> , (6.18)
gd 8m

where Eq. (2.43) is used for the moment M, , of the local field. For w < w,, the Kerr enhancement
for 2D composites (semicontinuous metal films) is estimated as Gx ~ p(&a/a)’™ ¥(w,/w,)?, where
the Drude formula (2.1) is used for the metal dielectric constant ¢,,. For silver-on-glass semicon-
tinuous films, Anderson localization length £, =~ 2a and density of states p ~ 1, the Kerr enhance-
ment is estimated as Gg ~ 105-10°.

In Fig. 17 the results of numerical simulations for Gk are shown as a function of the metal filling
factor p, for d = 2. The plot has a two-peak structure, as in the case of Raman scattering. However,
in contrast to Ggg, the dip at p = p, is much stronger and at p = p, is proportional (as simulations
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Fig. 17. Average enhancement of the Kerr optical nonlinearity Gx = [M, ,| in silver semicontinuous films as a function
of the metal concentration p for three different wavelengths. The nonlinear Kerr permittivity &* is the same for metal and
dielectric components.

show) to the loss factor x. This implies that at p = p., the enhancement is actually given by
Gx ~ kM, ,, where M, , was found as above. This result might be a consequence of the special
symmetry of a self-dual system at p = p.. Formally, it could happen if the leading term in the power
expansion of M, , over 1/x cancels out because of the symmetry [see the discussion following
Eq. (2.32)]. When this symmetry is somehow broken, e.g., by slightly moving away from the point
p = Dp., the enhancement Gk increases and becomes Gg ~ |M; ;| ~ Grs ~ M4 o, as seen in Fig. 17.
The fact that the minimum at p = p, is much less for SERS than for the Kerr process is probably
related to the fact that the latter is a phase sensitive effect.

As shown in Section 2, the local field maxima are concentrated in the dielectric gaps when
lem| > €4. Therefore the enhancement estimate in Eq. (6.18) is valid when the Kerr nonlinearity is
located mainly in these gaps (it can be due to the dielectric itself or due to adsorbed molecules).

Consider now the case when the Kerr nonlinearity is due to metal grains as in recent experiment
[16,140]. Provided that e, =~ — ¢4, the local electric field are equally distributed in metal and
dielectric components. Therefore the Kerr enhancement is still given by Eq. (6.18) where one should
set |em|/ea = 1. The situation changes dramatically when |¢,,| > ¢4 since now the local field are
concentrated in the dielectric gaps between the conducting clusters achieving the values E,, given
by Eq. (2.35). The total current J, of the electric displacement flowing in the dielectric gap between
two resonate metal clusters of size [, can be estimated as J, = aE¢.[¢ ™2, where aE,, is the voltage
drop across the gap, . is the effective dielectric constant of the composite. Because of the current
continuity, the same current should flow in the adjacent metal clusters. In the metal cluster the
current is concentrated in a percolating channel [12,64]. The electric field in the metal channel,
which spans over the cluster, can be estimated as E;, ~ J,/(ema’ ™), where a’~ ' stands for the
cross-section of the channel. Then the nth moment of the local electric field in a metal cluster of size
I, is equal to <(EL)> = EXZLa’" /I, where ZLa’"! is the volume of the conducting channel,
P = alem/e.)l 4" 2 is the effective length of the conducting channel. Now let us take into account
that only the fraction k = ¢, /|en,| < 1 of metal clusters of size I, are excited by the external electric
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Fig. 18. Average enhancement of the Kerr optical nonlinearity GE'*! = |M$%%| in silver semicontinuous films as
a function of the metal concentration p for three different wavelengths. The nonlinear Kerr permittivity ¢ is in the metal
component only.

field. Then the following estimate is obtained for the moments MY = {|E|">net/El = k{El, >/E}
of the electric field in the metal component

|8m| n—1 |5m| [d—1)(n—2)v—t(n—1)]/(t+s)
pmer ~ (Lo > [&m| , (6.19)
Em &a

where the expression (2.34) is used for the size [, of the resonant clusters. The corresponding

met

enhancement G of the Kerr nonlinearity is estimated as

|8 | 3 |6, | [2(d—1)v—3t]/(t +s)
G2t ~ MDet ~ T oml . (6.20)
&

m &d

For two-dimensional systems (d =2), where t~s~v=x~4/3, Eq. (6.19) gives G~ M7 ~
(leml/em)*(ea/leml) 2.

Computer simulation results for enhancement of the Kerr nonlinearity Gg¢' for silver semicon-
tinuous film are shown in Fig. 18 as a function of the metal concentration p. From Figs. 17 and 18
it follows that Gg' < Gk as expected. Near the percolation threshold, we can compute the Kerr
enhancements G and Gg quantitatively. For the 2D case, where t ~ s ~ v, Egs. (6.18) and
(6.19) give

Gk _ <@>2 _ (6.21)

met
GK &q

Since in optic and infrared spectral ranges |e,,| > &4, the Kerr nonlinearity enhancement is much
larger when the “seed” nonlinearity is located in the dielectric gaps, where the local fields are much
larger than in metal. It follows from Eq. (6.21) and also from Fig. 18 that the Kerr enhancement
GR° may become less than one. This means that local electric fields in the metal component can be
smaller than the external field on average. For semicontinuous silver films on a glass substrate it
occurs for wavelength 4 > 10 um as one can see in Fig. 18.
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Note also that enhancement for nearly degenerate four-wave mixing Ggwy, such as coherent
anti-Stokes Raman scattering (CARS) and optical phase conjugation (OPC) process, is estimated
as Ggpwwm ~ |Gk |? and can be very large on average and, especially, in the hot spots [15].

6.2. Percolation-enhanced nonlinear scattering from metal-dielectric films

Nonlinear optical processes of the nth order are proportional to E*(r) and, therefore, the strong
spatial fluctuations of the “nonlinear” field source, oc E"(r), can result in giant nonlinear scattering
from a composite material.

In this subsection we consider percolation-enhanced nonlinear scattering (PENS) from a ran-
dom metal-dielectric film (also referred to as a semicontinuous metal film) at the metal filling factor
p close to the percolation threshold, p = p,. Specifically, the enhanced nonlinear scattering, which is
due to local field oscillation at frequency now, is studied; while a percolation metal-dielectric film is
illuminated by an em wave of frequency w.

At the percolation, an infinite metal cluster spans over the entire sample and the metal-dielectric
transition occurs in a semicontinuous metal film [12,64]. Optical excitations of the self-similar
fractal clusters formed by metal particles near p. result in giant, scale-invariant, field fluctuations
that makes the considered here PENS differ from the known phenomena of surface polariton
excitations and harmonic generation from smooth and rough metal surfaces (see [115-119,60,
120-123] and references therein).

It was shown in Section 4 that while Rayleigh scattering is strongly enhanced it is still only
a small correction to the specular reflection and transmission. In contrast, below it will be shown
that PENS with a broad angular distribution can be a leading optical process.

For simplicity, it is assumed that a semicontinuous film is illuminated by the light propagating
normal to the film, with the wavelength A larger than any intrinsic spatial scale in the film. The gaps
between metal grains are filled by the dielectric substrate so that a semicontinuous metal film can
be thought of as a two-dimensional array of metal and dielectric grains that are randomly
distributed over a plane. For an incident wave of frequency w, nth harmonic generation (nHG) is
considered in a semicontinuous metal film.

It is assumed that a semicontinuous metal film is covered by a layer possessing the
nonlinear conductivity ¢ that results in nHG (e.g., it can be a layer of nonlinear organic
molecules, semiconductor quantum dots, or a quantum well on top of a percolation film).
The local electric field E, () induced in the film by the external field E, generates in the layer
the nw current ¢™E,E" ! (This expression, strictly speaking, holds only for the scalar
nonlinear conductivity and odd n (i.e., n = 2k + 1), when E"~ ! = (E- E)*. However, for estimates,
the formula can be used in the general case, for arbitrary n.) We would also point out that
in this subsection the external field, oscillated at frequency w, is still denoted as E, though
the frequency is indicated explicitly for other fields. The nonlinear current ¢™E_ E"" 1, in turn,
interacts with the film and generates the “seed” nw electric field, with the amplitude
E™ = ¢"E'""1E, /oM, where ¢V is the linear conductivity of the nonlinear layer at frequency nw.
The electric field E™ can be thought of as an inhomogeneous external field exciting the film
at nw frequency.

The nHG current j™ induced in the film by the “seed” field E™ can be found in terms
of the nonlocal conductivity matrix 2(r,r) introduced in Section 5.1 by Eq. (5.1). The nonlocal
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conductivity relates the applied (external) field at point # to the current at point r,
) = fzﬁﬁz(r, rESW)dr (6.22)

where X% is the conductivity matrix at frequency nw and the integration is over the entire film area
[15]. The Greek indices take values {x, y} and summation over repeated indices is implied. It is the
current j that eventually generates the nonlinear scattered field at frequency now.

Using the numerical technique described in Section 3.1, the spatial distribution of the local-field
can be calculated. For example, in Fig. 3 it is shown the normalized real part of the 3w local field
Re[ E*(r)E(r)]/|Eo|? in a 2D silver-on-glass film at p = p, and 2 = 1.5 um [104]. As seen in Fig. 3,
the fluctuating 3w fields form a set of sharp peaks, looking up and down, and having the
magnitudes ~ 10*-10°. Such huge fluctuations of the local fields are anticipated to trigger the
PENS at frequency 3w. The larger the number n of the harmonic, the stronger the fluctuation of the
corresponding nw local field. Therefore, PENS becomes progressively more pronounced for higher
harmonics.

By using the standard approach of the scattering theory [65] adopted to semicontinuous metal
films in [44] (see Section 4.1) and assuming that the incident light is unpolarized, the integral
scattering is obtained in all directions but the specular one is

§= (4k2/36)ﬁ<j§”’(r1)j&”’*(rz)> — [Kj"> 1) dry dr, (6.23)

where the integrations is over the entire are a A of the film, k = w/c and the angular brackets stand
for the ensemble average. As in Section 4.1, it is assumed that the integrand vanishes for distances
r < ., where r = r, — rq; therefore, the retardation term ~ exp(ik-r) is omitted [see discussion
below Eq. (4.6)]. Using Eq. (6.22), the current—current correlator can be rewritten in Eq. (6.23) as

4
J<j§c")("1)j§")*("2)> drydr, = J< f,"ﬂ)("b"3)2(5'2*("2,"4)5ya<E(ﬂ")("3)E§<(")("4)>o>1_[ dri , (624
i=1
where ( --- >¢ denotes the averaging over the light polarizations. For further consideration the
spatial uniform “probe” field E) is introduced. This field oscillates at frequency nw and is
supposed to be unpolarized. For the unpolarized light the following equation holds
8,5 = 2{EX) JEQ)% >0 /|EW)|?. This expression is substituted in Eq. (6.24). Then integration over the
coordinates r;, r,, and averaging over independent polarizations of fields E{2), E, gives the
following equation for the current—current correlation function:

f<j§c")("1 ) 'g')*("z)> dry dr,

1
= —f<0nw(”3)Ufw(rét)(Enw(”s)'Efw(’%))(E(")(Vs)'E(n)*(”4))> drydr, , (6.25)

|ES?
where E,,(r) is the local nw field excited in the film by “probe” field E2), 5,.,(r) is the film linear
conductivity at frequency nw.
In macroscopically homogeneous and isotropic films considered here, the current correlator
given by Eq. (6.25) does not depend on direction of the probe field E{2). Therefore the field E) can
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be chosen now to be collinear with external field E,. In macroscopically isotropic films, considered
here, the average nonlinear current {j™ is parallel to the external field E,. If the probe field EL) is
aligned with E, the square of the nonlinear current is equal to [{j™|* = [<EQ) - j™>?/|[EQ)|%. Then
using Eq. (6.22) the second term in the right-hand side of Eq. (6.23) can be rewritten as

2

JEL%,B Zf}"o?(ﬁ g )Egc")("z) dry dr,y| (6.26)

where the integrations are over the entire film area 4. Integration over coordinate r; in Eq. (6.26)
gives for the average nonlinear current the following expression:

|<0nw(Enw ' E(n))>|2

<G = B0 (6.27)
The substitution of Egs. (6.25) and (6.27) in Eq. (6.23) results in
8nk? |o™|? _ ©
= 3AEOE D AL|OE 1 |*|Eo | |Eo " ”>L g"(r)rdr, (6.28)
where g™(r) is the nonlinear correlation function defined as
g"(r) = 0o (r1) 00 (1) [ Eneo (1) - B (r2)JLE™(r1) - E™¥(r2)1) — KO0 (E™ - Epoo))1? (629)

N T A ’

which depends on the distance r = |r; — r,| between points r; and r, for macroscopically
homogeneous and isotropic films.

Thus obtained PENS S is compared with the nw signal I,, from the nonlinear layer on
a dielectric film with no metal grains on it, I,,, = (ce3/2n)A|c™/c V|| EQ)?|EQ)>™~ V. The enhance-
ment factor for PENS, G™ = S/I,, is expressed in terms of the local dielectric constant &, at
frequency nw as

4 E ZE 2E 2(n—1) 2 (foo
(ka) <|8nw nw| | w| | w| >l’l J g(n)(r)rdr ) (630)

G = —
3 alERPIEIE "D a? o

Note that for a homogeneous (p = 0 and p = 1) surface g™(r) = 0 and, therefore, G™ = 0, so that
the scattering occurs in the reflected direction only. Besides the small factor (ka)*, which is similar
to that in the standard linear Rayleigh scattering, the enhancement G® for PENS is proportional
to the 2(n + 1) power of the local field E: G™ ~ (|E|*™* D%, For highly fluctuating local fields,
this factor can be very large (see Fig. 20). To understand the origin of the giant PENS the field
fluctuations are considered below in more detail.

A metal-dielectric transition occurring at the percolation threshold to some extent is similar to
a second-order phase transition [64]. In this case one could anticipate that local field fluctuations
are rather large and have long-range correlations near the percolation threshold p. [8,9,11,12].
What might be more surprising is that the field fluctuations in the optical spectral range discussed
above are quite different from those for a second-order phase transition.

The local electric field fluctuations resulting in PENS are of the resonant character and the local
field variation can be several orders of magnitude. In accordance with this, the field correlation
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Fig. 19. Correlation function g*®(r), for silver on glass semicontinuous film at the percolation threshold p = p,. Different
curves correspond to 4; = 0.34 um (solid line and circles, in the inset), 1, = 0.53 um (dashed line and triangles), and
Az = 0.9 um (point-dashed line and diamonds); the arrows are theoretical estimates for &.(4,) and &.(43). The straight line
illustrates the scaling dependence of g*®(r) in the tail. The units in which a, = 1 are used.

function g®)(r), shown in Fig. 19 for the silver on glass semicontinuous film, drops very rapidly for
r > a, and has a negative minimum, regardless of the magnitude of the local field correlation length
&.; the anticorrelation occurs because the field maxima have different signs, as seen in Fig. 3. The
power-low decrease of g®)(r), which is typical for critical phenomena, occurs in the tail only
(see inset in Fig. 19).

The correlation function g®)(r) deviates from the power-law (the straight line in Fig. 19) for
distances r larger than field correlation length &, introduced in Section 2.3. The value of &, can be
estimated from Eq. (2.41) as &.(4) ~ 5, 20 and 30 (in a units) for 4 =0.34, 0.53 and 0.9 um
respectively, which is in agreement with the calculations shown in the inset of Fig. 19 [45]. For
a typical size of a metal grain in a semicontinuous film a ~ 2-20nm, the intrinsic spatial scale of
the local field inhomogeneity ¢, < 4, as it has been assumed above. (Note that the quasistatic
approximation does not work often in metal semicontinuous films due to the strong skin effect in
metal grains as it is discussed in detail in Section 7). The integral of g*®)(r) in Eq. (6.30) is estimated
as one, for all frequencies. Based on the above consideration the dimensionless integral
a5 g"(r)r dr is supposed to be of the order of one for all n.

From the spatial behavior of g"™(r) and the field distribution shown in Fig. 3, one anticipates that
in contrast to harmonic generation from “conventional” metal surfaces the PENS is characterized
by a broad-angle distribution, with the integral (over all directions) scattering much larger than the
coherent scattering in the reflected direction.

The diffusive scattering of the second harmonic from the metal-dielectric film has been observed
in experiments with Cgo-coated semicontinuous silver films [124]. The diffusely scattered second
harmonic generation was also observed from thin but continuous silver films [125] on which
surface plasmon mode was excited in the Kretschmann geometry. This effect had no proper
theoretical description. We believe that the diffusive scattering of 2w field can be attributed to the
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anomalous fluctuations of local electric fields on the roughness features with spatial scale a
much smaller than wavelength A of the incident light. Then the scattering observed in the
experiment [125] is similar to the considered here PENS from percolation films.

To estimate PENS quantitatively note that the typical size [.(w) ~ a./|em(w)| of the local
field maxima [see discussion at Eq. (2.42)] increases with decreasing frequency. Thus for a Drude
metal [,(w) oc @ ™! when @ < w,. Since the spatial scales for the field E,, and E,, are different the
average {(|¢E,o|*|Eo|*Eo*™ V)*> in Eq. (6.30) might be decoupled and approximated roughly
as <(|8nwEnw|2|Ew|2|Ew|2(n_1))2> ~ <|8nwEnw|2><|Ew|2n> ~ |8nw8d|M2,an2n|E$|(£|2|EO|2n: where
Eq. (4.17) is used for the average {|e,e, Enol*>, M3 n and M5, are the spatial moments of the local
fields E,,, and E, correspondingly. This decoupling is substituted in Eq. (6.30). It is also taken
into account that the integral there is of the order of unity as discussed above. Then Eq. (6.30)
simplifies to

G™ ‘sm (nw)
tar = e,

MZ,na)MZn 5 (631)

where C is an adjustable pre-factor. Finally, using Eq. (2.45) for the moments M, ,,, and M,, and
assuming that in this equation the localization length £, ~ a and the density of states p ~ 1 the
PENS factor G™ for the nth harmonic is estimated as follows:

G" |em (100)* e (00) >~ 12
(ka)* — " eq" lemnoen (@)t

(6.32)

where C is an adjustable pre-factor. In transition to the second relation in Eq. (6.32) the generated
frequency no is assumed as nw < w, so that &, (nw) is negative; otherwise, G™ ~ C(ka)*M$™ since
the local nw fields are not enhanced for &,(nw) > 0. For the Drude metal and o, nw < w,,
Eq. (6.32) can be simplified as

1 (o, \ "0, ?
(o) (5) o

i.e., PENS increases with increasing the order of a nonlinear process and decreases toward the
infrared part of the spectrum as G™ oc 4”2, in contrast to the well known law A~* for Rayleigh
scattering. It is interesting to note that PENS is inversely proportional to the wavelength squared
for high-harmonic scattering, independent of the order of optical nonlinearity.

In Fig. 20 the numerical results for the PENS factors G™ are compared with predictions of the
scaling formula (6.32), where the pre-factor C ~ 10~ 2 is used (note that C is small because the
above used decoupling is, of course, the upper estimate). For a very large spectral interval, there is
good agreement between the developed scaling theory and numerical calculations. The PENS
effect appears to be really huge, e.g., the enhancement for the fifth harmonic generation is
G /(ka)* ~10%1, for A = 1.5 um.

To summarize, large field fluctuations in random metal-dielectric composites near percolation
result in a new physical phenomenon, percolation-enhanced nonlinear scattering (PENS), which is
characterized by giant enhancement and a broad-angle distribution.

G ~ C(ka)*
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Fig. 20. The PENS factor G™ for n-harmonic generation in a silver semicontinuous film at p = p.. Numerical
calculations for n = 2,3,4 and n = 5 are represented by @, A, B, and + , respectively.

7. Electromagnetic properties of metal-dielectric crystals and composites:
beyond the quasistatic approximation

We consider now electromagnetic properties of metal-dielectric materials irradiated by a high-
frequency electromagnetic field under conditions when the skin effect in metal grains is strong. Two
different classes of metal-dielectric systems will be analyzed, percolation composites [12,102] and
artificial electromagnetic crystals [62,63]. The electromagnetic crystals are three-dimensional
periodic structures of metal inclusions in a dielectric host. They are similar to the well known
photonic crystals composed of periodic structures of dielectric particles. At high frequencies, when
metal periodic stuctures can sustain plasmon excitations, they can also be referred to as plasmonic
crystals.

Since metals have nonzero losses at the optical frequencies, most studies on photonic crystals are
focused on dielectric structures. Nevertheless, metallic 3D structures, can find applications in the
microwave range and, under some conditions, in the optical spectral range as well. Below the
interaction of a cubic metal lattice with an electromagnetic field is considered.

Metal-dielectric percolation composites and 3D electromagnetic crystals are quite
different objects at first glance. Still it is shown in this section that electromagnetic
properties of random composites and electromagnetic crystals can be understood in terms
of the effective dielectric constant and magnetic permeability, provided that the wavelength
of an incident wave is much larger than an intrinsic spatial scale of the system. The wavelength
inside a metal component can be very small. Most interesting effects are expected in the limit
of the strong skin effect. Thus the consideration goes beyond the quasistatic approximation
employed in the previous sections. It is important that methods for calculating the effective
dielectric constant and magnetic permeability are essentially the same for composites and
electromagnetic crystals. Moreover, the results for the effective parameters are also, to a large
extent, similar.
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7.1. Metal-dielectric composites

The propagation of electromagnetic waves in percolation composites with wavelength A less
than the percolation length ¢,,, may be accompanied by strong scattering [see discussion in Section
6]. On the other hand, the wave propagation at A > &, can be described by Maxwell’s equations
with effective dielectric constant ¢, and effective magnetic permeability pu.. It will be discussed
below (a) what sense have the effective parameters ¢, and p, when the skin effect is strong and (b)
how to express ¢ and p, in terms of dielectric constants ¢,, and ¢4, magnetic permeabilities u,,, and
Ug, and size a of metal grains in a composite.

In order to calculate the effective parameters the approach suggested in Refs. [107,126,127] is
developed further.

When we are interested in the effective dielectric constant ¢, and effective magnetic permeability
. the consideration can be restricted to the optically thin systems of size ¥ < 1/./|e. |, Which are
still homogeneous from the percolation point of view (& > £,). Suppose that a percolation
composite is placed inside of a resonator, where electromagnetic waves are excited. The effective
parameters can be determined from the condition that the composite in the resonator results in
the field change exactly like a geometrically equivalent homogeneous system with parameters
g and p..

Let the electric or magnetic dipole mode be excited in the resonator. The effective dielectric
(magnetic) constant &.(u.) can then be determined from a change in the characteristic frequency of
the electric (magnetic) dipole oscillations. In the case of the electric dipole mode the system
interacts with the electric component of an electromagnetic field, while in the magnetic dipole mode
it interacts with the magnetic field. Note that in real experiments the effective parameters ¢, and
1. are measured using the same procedure [82, Section 90]. It is assumed, for simplicity, that the
shape of the composite placed in a resonator is spherical. Then the electric and magnetic fields
excited in the geometrically equivalent homogeneous system with the effective parameters ¢, and
1. are uniform and will be denoted as E, and H,. It will be shown in this section how to obtain
self-consistent equations for the parameters ¢, p. and fields E, and H,.

The change in the field when a composite is placed inside of the resonator, is determined by
superposition of the fields scattered from individual metal and dielectric particles that have
dielectric constants ¢, and &4 respectively. The interaction between the particles is taken into
account in the self-consistent approximation known as the effective medium theory [12,49].
In this theory, the interaction of a given metal or dielectric particle with the rest of the system is
found by replacing the latter by a homogeneous medium with the effective parameters ¢, and ..
Assuming that the composite grains are spherical in shape, the electric fields E;, ,, and E y m,
excited by electric field E,, are calculated inside and outside of a metal grain of size a. Thus the
following equation (see [82, Section 59; 107,127]) is obtained for the electric field inside the
metal grain:

Ein,m(r) = Ein,mO + 4TCL(I’) 5 (71)
where
3
Ein,mO = 89 EO ) (72)

2e, + &y
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gm 18 the renormalized dielectric constant of metal defined as

~ 2F (kya) 1 cotx
gm - £m 1 _ F(kma): F(X) - xz X s (73)

where k = w/c is the wave vector in a free space, k,, = k\/émttm, and a is the radius of a metal grain.
The skin (penetration) depth J is equal to 6 = 1/Imk,. When metal conductivity o, is a real
quantity (microwave and radio frequency) the skin depth ¢ = ¢//2nunon®. In the Cartesian
coordinate system with the “z” axis directed along the field E, the local electric field L in Eq. (7.1) is
determined by the equation
1 ik
curl L(r) = —curl E;,, ,,(r) = —Bg , (7.4)
4m ’ 4m

where the loop field

B, = — 3iE, (7.5)

b
r r

akey e, sin(ky, 1) F (k1) y x 0
(¢ + &) sin(kma)(Flkma) — 1) |17 r°

is a rotational magnetic induction arising in a metal particle from the skin effect. Therefore the
inside electric field consists of curl-free part E;, o and the rotational part L(r) that depends on the
coordinate. The field outside the metal particle equals

£, — & Ey-r
Eypm=E 3Ze om g2 2 ) 7.6
ut, 0+a28e+5m < 7'3 > ( )
i.e., it also depends on the renormalized dielectric function &,. The local wavelength inside

a dielectric grain A4 = /1/\/; is assumed to be much larger than the grain size: A4 > a. Then
the electric fields inside and outside a dielectric particle are given by the well known equations
(see [82, Section 8])

3¢
E. . = i 7.7
in,d 028e I € ( )
and
e — & E,r
E,..=E 3 e °o " . .
out,d 0 +a 2£e + £q V< 7"3 > (7 8)

Similar equations can be obtained for the magnetic field excited by uniform magnetic field
H, inside and outside a metal (dielectric) particle:

Hin,m = in,mO + 4TEM s (79)
where
3
Hipmo = ——H, , (7.10)

2pe +
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and the renormalized metal magnetic permeability fi,, equals

2F(ky,a)

HUm = Mmm 5 (7.11)

where the function F is defined in Eq. (7.3). Note that the renormalized metal magnetic permeabil-
ity [i, is not equal to one, even if metal is nonmagnetic and the seed magnetic permeability p,, = 1.
The local magnetic field M in Eq. (7.9) satisfies equations that are similar to Egs. (7.4) and (7.5),
namely

curlM = icurlHinm = —in , (7.12)
4r ’ 41
. akp, pe sin(ky, #)F(ky,r) y X
D, = 3iH y_x 1
n = o ) stk Elkma) — D1~ 7 0f " (7-13)

where D is the electric displacement induced in the metal particle by high-frequency magnetic field
H,. The displacement D can be written as D = i(4rn/w)j, where the eddy electric currents j are
known as Foucault currents. The field H;, .o 1s a potential part, while M is a rotational (solenoidal)
part of the local magnetic field. The magnetic field outside the metal particle is irrotational
(curl-free) and equals

He — .am HO r
H,, . =H, 3 —V . 7.14

b °+a2ue+um<r3> (8
It is supposed, for simplicity, that the dielectric component of the composite is nonmagnetic, i.e.,
the dielectric magnetic permeability py = 1. Then the magnetic fields inside and outside a dielectric
particle are equal to

RJTR
Hipo = Hoz 0 (7.15)
and
e—1 _(Hyr
Hyua = Ho + a32’2 : 1v< % > (7.16)

respectively. The effective parameters ¢, and p. are determined by the self-consistent condition that
the scattered fields should vanish, when averaged over all inclusions, i.e., {Eqy) = pEoum +
(1 —p)Euqa = Eo and (Hyy ) = pHyum + (1 — p)Hou.a = Ho, where { --- ) stands for the volume
averaging. Substituting here the scattered electric and magnetic fields from Egs. (7.6), (7.8) and
(7.14), (7.16) results in the following system:

Ee — &m
P vz

Ee — &g
1—p)—=0 717

:ue_l

Ue _ﬁm —
2u, + 1

o1 -
p2ue+um =n

(7.18)
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that gives the effective dielectric constant ¢, and magnetic permeability p. in terms of metal
concentration p and &, &4, fin. Eqgs. (7.17) and (7.18) are similar to equations of the traditional
effective medium theory [12]. The skin effect results in renormalization of the dielectric con-
stant and magnetic permeability of the conducting component; specifically, the metal dielectric
constant &, and magnetic permeability u, are replaced by &, and [, given by Egs. (7.3)
and (7.11), respectively. This fact has a substantial effect on the frequency dependence of
the effective parameters. For example, it is commonly accepted that the effective conductivity
6. = — lwe./(4m) of a composite is dispersion-free, when the conductivity of metal component
o 18 frequency independent and large in comparison with frequency, o, > @ (which is typical
for the microwave and far-infrared ranges). Thus the traditional effective medium theory
predicts that o. = o,(3p — 1)/2 for the metal concentration p sufficiently above the per-
colation threshold. Eq. (7.17) gives the same result for the effective conductivity g, but the
metal conductivity is renormalized according to Eq. (7.3), which results in the following formula
. = o F(kna)3p — 1)/(1 — F(kya)). It follows from this expression that the effective conductivity
has a dispersive behavior, provided that the skin effect in metal grains becomes important
[107,127]. In the limit of very strong skin effect 6 < a the effective conductivity decreases with

frequency as o, ~ g,(d/a) ~ am/\/;. Another interesting result is that percolation composites
exhibit magnetic properties, even if they are absent in each component, i.e., if u,, = uq = 1 (see also
discussion in Refs. [126,128,129]). In this case the real part p of the effective magnetic permeability
U. 1s less than one and it decreases with frequency. The imaginary part p; of the effective
permeability has its maximum at frequencies such that § ~ a.

It will be shown now that the effective parameters ¢, and pu. determine propagation of an
electromagnetic wave in the metal-dielectric composites. In the effective medium approximation,
used here, the field is supposed to be the same in particular type of the grains. Therefore, the
average electric field is equal to

<E> = pEin,m + (1 - p)Ein,d = pEin,mO + 4TC<L> + (1 - p)Ein,d 5 (719)

where Eq. (7.1) is used in transition to the second equality. When Egs. (7.2) and (7.7) are substituted
in Eq. (7.19), and Eq. (7.17) is taken into account, Eq. (7.19) simplifies to

KE) =E, +4n{L) , (7.20)

where { --- ) denotes, as above, the volume average. Therefore, the irrotational part of the local
field, being averaged over the volume, gives the field E,, while the second term in Eq. (7.20) results
from the skin effect in metal grains. The above consideration being repeated for the average
magnetic field <H) [see Egs. (7.9), (7.10) and (7.15)] results in

<H> = pHin,m + (1 - p)Hin,d = HO + 4TC<M> s (721)

where the rotational field M in metal grains is given by Eq. (7.12); the field M equals zero in
dielectric grains. Again the average irrotational part of the local magnetic field gives H,, while the
term 4n{M) represents the average rotational (curl) magnetic field.

Consider now the average electric displacement (D) induced in the system by electrical field E.
The displacement can be written as

<D> = E‘:mpE‘in,mO + 4'Ttem <L> + (1 - p)ngin,d . (722)
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It follows from Eq. (7.2) for E;, mo and Eq. (7.4) for L that the sum &,pE;, mo + 4me, (L) in
Eq. (7.22) can be written as

3e 4
E; 4ren (L = = FEo+—|L
EmP: in,m0 + n8m< > 8mp<28e + Em 0 + VJ dV>

3¢ k REN:
= " E — B =p—°"T F 7.2
8mp<28e + Em 0 + 12VJ~[r X E] dV) nge I Em 0 » ( 3)

where the integration is over volume V = 4na®/3 of a metal particle, and the field By is given by
Eq. (7.5). Substituting Egs. (7.23) and (7.7) in Eq. (7.22) gives

(D> =¢.E, , (7.24)

where Eq. (7.17) has been used. Therefore, the average electric displacement is proportional to the
irrotational part of the local field averaged over the system and the coefficient is exactly equal to the
effective dielectric constant. When the above consideration is repeated for the magnetic field it
results in an equation for the average magnetic induction {B), namely:

{B) = p.H, . (7.25)

Egs. (7.20) and (7.21) can be considered as definitions for fields E, and H,,. Indeed, if the local fields
were known in the composite the fields E, and H, would be found from Egs. (7.20) and (7.21). Then
Egs. (7.24) and (7.25) can be used to find the effective dielectric constant ¢, and effective magnetic
permeability p. of a composite. Egs. (7.24) and (7.25) replace the usual constitutive equations
(D) =¢.{E) and (B) = u.<{H), which hold in the quasistatic case only.

We now proceed with derivation of equations for the macroscopic electromagnetism in metal-
dielectric composites. Eq. (7.24) gives the average electric displacement excited by the electric field
E,, but the local magnetic field also excites eddy electric currents (Foucault currents). An addition
of the electric displacement Dy given by Eq. (7.12) with the average displacement given by Eq. (7.24)
gives the full electric displacement

(D> = ¢.Ey + 1477[<cur1M> , (7.26)

where it is still assumed that the system is much smaller than the wavelength A. Note that the
second term in Eq. (7.26) disappears when the skin effect vanishes, i.e., when |k, |a — 0. Similarly,
the average full magnetic induction {B); equals

i4
(B = pHy — ‘7“<cur1L> : (7.27)

where the vector L is given by Eq. (7.4). Now the Maxwell equations are averaged over a macro-
scopical volume V' whose size ¥ is much larger than the percolation correlation length £, but
much smaller than the wavelength 4, {, < ¥ < 4. The volume V' is supposed to be centered in the
point r. The frequency domain is used. Thus the following Maxwell equations are obtained:

(cutl EY = ik{BY; = ikuH, + 4nlcurlL) , (7.28)
(cutl HY = — ik(DY; = — ike Eq + dnlcurl M , (7.29)
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where Egs. (7.26) and (7.27) are substituted for the electric and magnetic inductances respectively.
The order of the curl operation and the volume average in Egs. (7.28) and (7.29) can be changed as it
is done usually for derivation of the macroscopic Maxwell equations (see [ 130, Chapter 6, Section
6.6]). For example, (curl E) can be written as {curl E) = curl[{E)(r)], where the differentiation in
Lh.p. is over the position r of the volume V. Note that the fields E, and H, defined by Egs. (7.20)
and (7.21) are also functions of ». Then the Maxwell equations (7.28) and (7.29) acquire the form

curl Eq(r) = iku Hy(r) , (7.30)
curl Hy(r) = — ike Eo(r) , (7.31)

i.e., they have the form typical for the macroscopic electromagnetism, describing, for example,
propagation of electromagnetic waves in a composite media.

It is important that all quantities in Egs. (7.20), (7.21), (7.24), (7.25), (7.30) and (7.31) are well
defined and do not depend on the assumptions made in the course of their derivation. Thus the
vector M in Eq. (7.21) can be determined as a magnetic moment of the eddy currents per unit
volume, so that

k 1
My = — IWJ[rXDH]dV = ﬁf[rxjH]dV , (7.32)

where the integration now is over macroscopical volume V. This definition of vector M is in
agreement with Eq. (7.12), but it is not required now that the eddy currents jy are the same in all
metal particles. In a similar way the vector L is defined as the spatial density of the “electric
moments of magnetic eddy currents”

(LY = i%ﬁprE]dV, (7.33)

where the integration is still over the volume V and By = — (i4n/k)curl E, with E being the local
electric field. Note that the vector <L) has no direct analog in the classical electrodynamics since
there is no such thing as loop magnetic currents in atoms and molecules. After defining vectors
L and M, Egs. (7.20), (7.21), (7.24), (7.25), (7.30) and (7.31) form a complete system of equations that
determine the effective parameters and electrodynamic wave propagation in metal-dielectric
composite media. Various approximations, such as the effective medium theory, can still be very
useful in actual calculations of the effective parameters.

7.2. Electromagnetic crystals

In this subsection the method, discussed above, is used to calculate the effective dielectric
constant and magnetic permeability of metal-dielectric crystals, known also as electromagnetic
crystals. In these artificial crystals the metal component is assembled in a periodic lattice. Two
limiting cases of the electromagnetic crystals are considered: a cubic lattice of unconnected metal
spheres and three-dimensional conducting wire mesh configurated in a cubic lattice.

7.2.1. Cubic lattice of metal spheres
The local electromagnetic fields and effective parameters are considered for a system of metal
spheres of radius a that are embedded in a dielectric host (a vacuum, for example) at sites of a cubic
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lattice with period . > 2a. The wavelength /4 of an incident electromagnetic wave is assumed to be
much larger than the lattice period .. Consider first the electric field distribution in the lattice cell
centered at a metal sphere. The electric field outside the metal grain can be expanded in multipole
series; for simplicity, the dipole approximation is used [131,132], which holds in the limit ¥ > a. In
this approximation the outside field E,,; has constant and dipole components only, namely

l%moj:aE14—Ba3V<E¢;r>, (7.34)

where E; is some electric field aligned with the electric field of the incident wave and B is an
unknown coefficient. Provided that the external field E,, is specified, the electric field E;, inside
the metal grain can be found unambiguously by solving the Maxwell equations at the boundary
conditions E;, xn = E,,, xn and ¢, E;,, -n = ¢ E,,, - n imposed at the metal surface (n = r/r is the
normal unit vector directed outward the metal sphere). Thus the internal field E;, is given by
Egs. (7.1), (7.2), (7.4), and (7.5), where the field E, is replaced by E. The pre-factor B in Eq. (7.34)
is also found by matching the fields E;, and E,, at the surface of a metal grain; this gives
B = (g — &,)/(2eq + &4) asin Eq. (7.6), where the renormalized metal dielectric constant €, is given
by Eq. (7.3).

When the local electric field E(r) is known for one lattice cell, the effective dielectric constant of
an electromagnetic crystal can be found following the procedure described above. The homogeniz-
ation procedure can be divided into five steps (I)-(V):

(I) First, the average electric field is calculated as

KE) = %/JE(r)dV = %/(JEin(r)dV + JEom(r)dV> , (I

where the first integration is over the volume V = %3 of the lattice cell, and the fields E;, and
E,, are integrated inside and outside of the metal grain, respectively. Note that in the considered
dipole approximation, when E,, has the form of Eq. (7.34), the integration of the dipole term in
Eq. (7.34) gives zero, if the crystal possesses inversion symmetry. It will be assumed that this is
the case and, therefore, the second integral in Eq. (I) equals V ~'{E,,(r)dV = E;(1 — p), where
p = (4/3)na®/V is the volume concentration of metal (filling factor).

(IT) Second, the eddy magnetic induction, defined as

By(r) = — icurl(E@)/k , (1)

is calculated. In the considered case of a crystal composed from metal spheres, the magnetic
induction Bg(r) is equal to zero outside the metal sphere and is given by Eq. (7.5) for the points
r inside the sphere.

(IIT) Third, the moment (L) = V~'{LdV =ik/(8nV)[rx B dV of the eddy magnetic induction
By is calculated. Then the average, curl-free local electric field E, from Eq. (7.20) equals

Ey=<{E) —4niL) . (I11)
For the considered metal-sphere crystal, the calculated electric field E, equals

Ey =[p3eq/(2eq + 2,) + (1 — p)]E, , (7.35)
where £, is given by Eq. (7.3).
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(IV) The average electric displacement is defined as

1
= J AEW AV ()
where the local dielectric constant takes values &, and ¢4 inside and outside a metal grain,
respectively. For the metal-sphere crystal, the average electric displacement equals

€4 +§m

@ = p5 k1~ pra [ (7.36

where the renormalized metal dielectric constant &, is given by Eq. (7.3).

(V) Finally, the effective dielectric constant is determined from Eq. (7.33) as a coefficient between
(D) and E,, namely, {D) = ¢.E,.

Then it follows from Egs. (7.35) and (7.36) that the effective dielectric constant &, for the
metal-sphere crystal equals

(I 4+ 2p)ey, + 2(1 — pleg
(1 = plem + (p + 2)eq

The above consideration (I)-(V) repeated for the magnetic field defines the effective magnetic
permeability . for a cubic crystal composed of metal spheres as follows:

_ (L4 2p)iim +2(1 — p)
(1 = plitm +(p +2)

where [i,, is the renormalized metal magnetic permeability given by Eq. (7.11); it is still supposed,
for simplicity, that neither a dielectric host nor metal spheres have magnetic properties, i.e.,
ta = Hm = 1.

In the quasistatic case, when the skin effect is negligible, Egs. (7.37) and (7.38) give the well known
Maxwell-Garnett formulae for the effective parameters. It has been demonstrated that the
Maxwell-Garnett approximation, which emerges from the dipole approximation, gives very
accurate results for the effective properties of various metal-dielectric periodic composites, even at
large filling factors p < 0.5[61,131,132]. Then it is reasonable to conjecture that in a nonquasistatic
case Egs. (7.37) and (7.38) hold for this concentration range. For a large filling factor p, the local
fields and effective parameters of the electromagnetic crystals can be defined using the Rayleigh
technique developed by McPhedran and co-workers [131,132]. Again, provided that the internal
field has been found, the effective parameters ¢, and p. can be calculated from the procedure
described by Egs. (I)—(V).

Consider now a strong skin effect when the absolute value of the wave vector k, in metal
particles tends to infinity, i.e., |ky|a — 0. Let us also suppose that Im(k,,)a —» + oo, that is the electric
and magnetic fields fall exponentially in a metal grain, being confined mainly to the skin depth
0 = 1/Im(k,,). Recall that for the positive values of the metal conductivity o,, (wWhich is typical for
most metals for the radio, microwave and far-infrared frequencies w) the skin depth 6 is equal to
0 = ¢/s/2no,0 and the wave vector k,, = (1 + 1)/0. Then as follows from Egs. (7.3) and (7.11) the
renormalized metal dielectric constant &, and the magnetic permeability fi,, are approximated as

B ~ 2ikna/(ka)? (7.39)

: (7.37)

Ee = &g

€

: (7.38)
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and
fm & 21/(kna) , (7.40)

from which it follows that |£,| > 1 and |fi,| <1 when |kyla ~ a/d > 1. Substitution of these
estimates in Egs. (7.37) and (7.38) gives

ge = ¢&q (1 4+ 2p)/(1 —p), (7.41)

and

fe =21 —p)fp +2), (7.42)

for the effective parameters of the metal-sphere crystal in the case of strong skin effect. Thus
obtained ¢, and p. do not depend on the metal properties at all. The effective refractive index

n= \/ Eolle = \/ £42(1 4+ 2p)/(p + 2) is of the order of one for almost all filling factors. The effective

surface impedance { = ./ u./e. determines reflection at the interface of a system, e.g., the normal
reflection at the interface with a vacuum equals R = ({ — 1)/({ + 1). It follows from Egs. (7.41) and
(7.42) that the effective surface impedance { can be estimated as

2
=00 74

and it is also independent of the metal properties and almost linearly decreases with increasing the
filling factor p. The reflection coefficient is given by

R ~(n—1)/(n + 1) + 9pn/2(1 + n)* , (7.44)

where n = \/g is the refractive index for a dielectric host. The reflection coefficient R is real and it
increases almost linearly up to the value of the filling factor p, ~ 0.524 corresponding to the
close-packed metal spheres in the cubic lattice.

It follows from Egs. (7.41)—(7.114) that losses in the crystal are negligible. Electromagnetic field
slips without loss between the metal grains and the electromagnetic crystal is essentially transpar-
ent. Note that the dipole approximation used for obtaining Egs. (7.41)-(7.114) does not hold
when the filling factor p approaches the close-packing limit p, since the direct contact between the
metal spheres becomes important. When the spheres are in contact, the crystal properties are close
to those in mesh wire electromagnetic crystals (see below). The distance b between the spheres,
when this crossover takes place, can be estimated by equating the absolute values of the effective
conductance of a metal sphere |X,,| ~ |&n|wa and the capacitive conductance |X.| ~ eqwa?/b
between the metal grains (where the renormalized metal dielectric constant is given by Eq. (7.39),

for the strong skin effect). Thus the estimate (b/a) < eqka/./|em| < 1 could be suggested for the
proximity b between the metal spheres when Eq. (7.114) is violated and an electromagnetic crystal
becomes opaque.

7.2.2. Wire mesh electromagnetic crystal
We consider now electromagnetic properties of three-dimensional metal wire mesh configurated
in a cubic lattice. This electromagnetic crystal can be thought of as an opposite limit to the above
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considered case of unconnected metal spheres. It is worthwhile to consider first a two-dimensional
array of metal cylinders assembled in a square lattice with period .. The direction of the incident
electromagnetic wave is supposed to be perpendicular to the cylinders. Then there are two basic
polarizations TE (transverse electric) and TM (transverse magnetic) polarizations. For TE polar-
ization, considered first, the electric field of an incident wave is perpendicular to the direction of the
cylinders. The problem of the local electric field in a lattice cell with a metal cylinder in the center is
a two-dimensional analog of the electric field distribution considered above for a cell of metal-
sphere crystals. Therefore, the following expression can be written in the dipole approximation for
the electric field outside the cylinder [cf. Eqgs. (7.34)]

E,.(r) = E, +Ba2V<E;2' ') , (7.45)

where E is a vector aligned with the electric field of the incident wave, B is a numerical coefficient,
r is a two-dimensional vector in the plane perpendicular to the cylinders. The electric field inside
the cylinder E;,, which matches the outside field E,,, given by Eq. (7.45), can be written as [82,
Section 59]:

E (r) = Acurlcurl[Jo(knr)E{] , (7.46)

where A is another coefficient and J, is the Bessel function of the zeroth order. As in the case of
a sphere, the coefficients 4 and B are found from the boundary conditions E;, x n=FE,,, x n and
emEi, - n=¢ygEy, -n imposed at the surface of the cylinder, where n = r/r is a unit normal vector
directed outward the metal cylinder, namely

&4 — &m

B 747
&g + Em ( )

and

2¢e4
4= (64 + EmkmJo(kma)[1 — F(kna)] ’ (7.48)

where the renormalized metal dielectric constant &, and function F; are given by

Em = &mF1(kna)/[1 — Fi(kna)] , (7.49)
and

Fi(x) = J1(x)/xJo(x) , (7.50)

respectively, with J; being the first-order Bessel function. Given the electric field in the lattice cell,
the effective dielectric constant of the wire mesh crystal can be found from the procedure (I)—(V)
outlined above:

(I) The electric field averaged over the cell is equal to

_1 ) 2t Flkna) B
= ?qE dr+ JE d’> - El[(ed T a1 — Flpa] T4 P )} B

where p = na?/#? is the filling factor.
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(IT) The magnetic induction generated by the electric field inside the metal cylinder is as follows:

2iegkyr F(ky)J o (km?)
(ea + &m)[1 — F(kma)]Jo(kma

B(r) = {0, 0, — E, ) sin(q_’))} : (7.52)

where ¢ is a polar angle, so that the vector r equals r = {rcos ¢, rsin ¢,0}.
(ITI) The average curl-free local field is given by

2peq

iyt p)} : (7.53)

E, = (E) —%f prE(r)dr:El[

(IV) The average electric displacement is as follows:

1 2pEqEm
(D) = ?<\£<a8mEin dr + J;>:;8dEout dr> =E; [ﬁ +(1 - p)Sd} . (7.54)

Finally, the effective dielectric constant of the mesh crystal is given by

_ KDYl 2pém + (1 — p)lea + Em)

_ e i) 755
Eol ~ “2peq + (1 = p)oa + m) (7.53)

Cel

Now recall that this result holds for the TE polarization, when the electric field of an incident wave
is perpendicular to the cylinder axes. Therefore, the effective dielectric constant is denoted as ¢, . In
the case of strong skin effect the renormalized metal permittivity is large, |€,| > 1 [see Eq. (7.39)];
then the effective dielectric constant takes the following asymptotic form:

ger = (1 + A1 —p), (7.56)

which is independent of the metal properties [cf. Eq. (7.41)].

Now the effective magnetic properties are considered. It is still assumed that the metal and
dielectric components are nonmagnetic, i.e. y,, = g = 1. For the TE polarization the magnetic
field is parallel to the cylinders. The local magnetic field outside the cylinder is uniform and is
denoted as H,. The field inside the cylinder is equal to HJ(k,1)/Jo(kna), where J, is the Bessel
function of the zeroth order. Again, the procedure (I)-(V) allows to find the effective magnetic

permeability.
(I) The average magnetic field is given by
H) = H,[2pF(kna) + (1 — p)] , (7.57)

where the function F is defined in Eq. (7.50).
(IT) The “Foucault” electric displacement Dy is circular, i.e., in the cylindrical coordinates it has
only the “¢” component

. kmjl(kmr)

el (7.58)

DH,¢(") =

(ITT) The average curl-free magnetic field H, is given by H;.
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(I'V) Since neither metal nor dielectric host possesses intrinsic magnetism, the average magnetic
induction {B) coincides with the average magnetic field <H) given by Eq. (7.57), and (V) the
effective magnetic permeability pu = [<B)|/|H| is as follows:

Hel] = 2pF(kma) + (1 — p) . (7.59)

Since for the considered TE polarization of the magnetic field in the incident wave is parallel to the
axes of the cylinders the effective permeability is denoted as . In the limit of strong skin effect
(almk,, — + o0), the effective permeability pu,) is given by

pey =(1 —p). (7.60)
In the same limit, the effective refractive index ne = /¢, 1, takes the following form:
ne =/ea(l + p) . (7.61)

This result for n. coincides with the effective refractive index obtained in Ref. [131] from quite
different considerations. We would like to stress out that the difference between the refractive index
n. and the value \/a discussed in Ref. [131], arises naturally in the discussed approach as a result
of the effective magnetic properties of electromagnetic crystals. Thus the ratio n, /\/Z = \/;:H is
not equal to one.

The most interesting results are obtained for the TM polarization, where the electric field of the
incident wave is parallel to the cylinders while the magnetic field is perpendicular. In the
long-wavelength limit considered throughout the paper (when the wavelength A is much larger
than the size . of the lattice cell) the local electric field in the cell can be found as above in the
dipole approximation. In this approximation the local TM electric field has a circular symmetry.
Then the electric field in the cell is obtained from the Maxwell’s equations as follows (recall that
a square cell is considered):

Er)=E{Jolknr), r<a

Err)=E, [Jo(kma) — knalJ(kna) log<£>} r>ak& |yl < L2& |x| < ZL)2; (7.62)
where r = {x,y} is a two-dimensional vector in the plane perpendicular to the cylinder and
E, ={0,0,E,} is a vector aligned with the cylinder axis and proportional to the amplitude of the
electric field in the incident wave.

The homogenization procedure (I)-(V) allows to find the effective dielectric constant ¢ for the
TM polarization. (I) The average electric field is given by

Jl (kma) 2 2 2(12
Jak.. [Sp — (aky)*(2p — 6 + 1) + 2(aky,) log<?>}} .

(E) =E; {(1 — p)olkma) +

(7.63)

(IT) The circular magnetic induction By generated by the local electric field has only the “¢”
component in the cylindrical coordinates:

BE,</>(") = —iE knJi(kmr)/k, T <a,
BE,(/)(r) = —iE kynaJ(kna)/(kr), r>a& |y| < L2& |x| < Z/2 . (7.64)
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(ITI) The average curl-free electric field E is as follows:

1 2a*
EO = El {Jo(kma) + kaajl (kma)|:4 — T + 210g<?>:|} . (765)

(iv) The electric displacement averaged over the cell is given by
2k,p  eqkma 2a?
<D> = El {Sd(l — p)Jo(kma) + Jl(kma)[W — d 2 <2p — 6 + T — 210g<?>>:|} .

(7.66)

and (V) the effective dielectric constant &, = [<D)|/|E,| is as follows:

44(1 —p) + 8mF1(kma){8p + (ak)28d|:6 —2p—mn+ 210g<g>}}

(7.67)

& =

4 + (kma)zFl(kma)|:4 — T+ 210g<§>}

where the function F; is defined in Eq. (7.50). For the important case of thin cylinders, when the
radius a of the cylinders is much less than the lattice period .# [i.e. when log(.#/a) > 1], the above
expression can be simplified as follows:

2%, Fy (kena)
(k) F 1 (k) log<g ) 1

a

|| =€a — D (7.68)

This equation in turn can be rewritten as & = &g + &mp, Where &, is the renormalized metal
dielectric constant for the TM polarization. It is interesting to note that this renormalized metal
dielectric constant &, coincides with the renormalized dielectric constant for the conducting-stick
composites considered in Ref. [107].

In the case of strong skin effect when aImk, — + oo, Eq. (7.68) simplifies further to the
expression

2
4 ta — = (7.69)

|| =€~ 7\ =
(ak)? log(%) @

that does not depend on the metal conductivity. Here the “plasma frequency” is given by

2¢%p 2nc?

2 —
P LN\ LN\
2logl = 2logl =
a 0g<a> % 0g<a>

It follows from Eq. (7.69) that the effective dielectric constant becomes negative for the frequency
o smaller than the renormalized plasma frequency @, = wp/\/a. Therefore, the incident TM

o (7.70)
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electromagnetic wave decays exponentially in the electromagnetic crystal for o < @,. The negative
values of the effective dielectric constant in metal-dielectric composites containing conducting
sticks were predicted theoretically [107,133] and obtained experimentally [134,135]. The cutoff
frequency in Eq. (7.70) was first suggested in [63], where it was related to the effective plasma
frequency of the electron gas in an electromagnetic crystal.

The problem of the effective magnetic permeability p., for the TM polarization, when the
magnetic field of the incident wave is perpendicular to the axis of the cylinders, coincides with the
problem of the effective dielectric constant ¢., for the TE polarization. Thus the distribution of
the local magnetic field in the lattice cell can be found from Eq. (7.45)-(7.50) by the replacement
H(r) > E(r), 8, — fim, ém — 1 and &g —» 1. The effective magnetic permeability ., can also be
obtained from ¢., by using the above replacement

2+ (1= p)L A+ fim)

, (7.71)

where it is assumed again that neither metal nor dielectric possess intrinsic magnetism.

Consider now a three-dimensional conducting wire mesh configurated in the cubic lattice. Let us
suppose, for simplicity, that the wires are sufficiently thin and, therefore, the filling factor p is small.
Then the effect of the intersections of the wires can be neglected since these effects give corrections
of the order of p?. Thus the following expression are obtained for the effective dielectric constant
& = €| + 26, — 2¢4 and for the magnetic permeability u. = ue + 2u.; — 2. The quantities
Ee|l> €el» Mejp and p., are given by Egs. (7.67), (7.55), (7.59), and (7.71) respectively, where the
filling factor should be changed from p to p/3, which corresponds to three metal cylinders in
a lattice cell.

Below it is supposed that the metal conductivity is real (i.e., the dielectric constant is purely
imaginary) and, therefore, there is no internal resonances in metal wires. This situation is typical for
simple nonstructured wires for the frequencies up to the far-infrared. We will not consider here
the plasmon resonance in a metal wire, which occurs in the optical spectral range when ¢, = — &4.
In the absence of the resonances and at the filling factor p < 1, the effective dielectric constant is
approximated as ¢, ~ &.; and the magnetic permeability as . ~ 1. The dependence of the real ¢;(4)
and the imaginary &;(4) parts of the effective dielectric constant on the wavelength 4 is shown in
Figs. 21 and 22, respectively. The behavior of ¢.(1) changes dramatically when the ratio of the skin
depth 6 and the wire radius a decrease. The losses are very significant when é/a > 0.1. Under this
condition the imaginary part &; of the effective dielectric constant is larger than the real part,
&y > ¢.. On the other hand, the effective dielectric constant ¢, is almost real when the skin effect is
strong. It becomes large in magnitude and negative in sign with decreasing the frequency below the
cutoff frequency @,,. This means that the crystal reflects completely incident em waves, while losses
are negligible.

To understand the physical meaning of the negative dielectric constant, let us take into account
the fact that the electric field of an incident wave excites not only the current in metal wires but also
the circular magnetic induction By around the wires as it is sketched in Fig. 23 [see also Eq. (7.64)].
Thus, the energy of the incident wave reversibly converts to the energy of the circular magnetic field
that concentrates around the wires. This field in turn generates an electric field, which is phase-
shifted by © with respect to the external field. When this secondary field is larger than the primary
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Fig. 21. The real part of the effective dielectric constant &,(4) in the cubic lattice of metal wires. The period of the lattice
L equals L = 1 cm, the diameter of the wire 2a = 1 mm. Figs. a-c correspond to different magnitudes of the skin effect at
wavelength 2 = 1cm.

electric field (which occurs at the strong skin effect) the average electric field is opposite to the
external field, so that the effective dielectric constant is negative.

The above equations describe the “macroscopic” electromagnetism in metal-dielectric media.
The equations hold on scales much larger than the spatial scale of inhomogeneity, e.g., the size of
a metal grain. In the derivation of the macroscopic equations the Foucault currents are taken into
account that are excited in metal grains or wires by the high-frequency (HF) magnetic field and the
eddy currents of the magnetic induction induced by the HF electric field. The latter has no analogy
in the classical electrodynamics since an electric field does not generate the magnetic induction
in atoms and molecules. The theory gives macroscopic Maxwell equations describing the wave
propagation in metal-dielectric media that include the effective dielectric constant and magnetic
permeability. The theory also provides the unambiguous procedure for calculation of the effective
parameters.

In the case of periodic metal-dielectric structures, known as electromagnetic crystals, the explicit
equations are obtained for the effective dielectric constant and magnetic permeability. Thus the
cubic lattice of thin conducting wires appears to have a negative dielectric constant and negligible
losses, when the skin effect is strong. The negative values of the dielectric constant result from
the eddy currents of the magnetic induction induced by the high-frequency electric field inside and
around the metal wires. Such electromagnetic crystals have properties that are similar to bulk
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Fig. 22. The imaginary part of the effective dielectric constant ¢;(1) in the cubic lattice of metal wires. The period of the

lattice L is given by L = 1 cm, the wire diameter is 2a = 1 mm. Figs. a-c correspond to different skin effects at wavelength
A=1lcm.
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Fig. 23. Circular magnetic field exited in the cubic wire lattice by external electric field.

metal in the optical and near-infrared spectral ranges, e.g., surface plasmons can be excited at the
boundaries and also at defects inside a crystal. Another interesting high-frequency property of
electromagnetic crystals is the effective magnetism that can be observed, even in systems where
neither metal nor dielectric possesses inherent magnetism.
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7.3. Optical properties of metal semicontinuous films beyond the quasistatic approximation

The formalism developed in Sections 2-4 cannot be used to describe the optical properties of
semicontinuous films in the important case of a strong skin effect in the metal grains. In an attempt
to expand the theoretical treatment beyond the quasistatic approximation, an approach has
recently been proposed that is based on the full set of Maxwell’s equations [39,96,97]. This
approach does not use the quasistatic approximation because the fields are not assumed to be curl
free inside the physical film. Although that theory was proposed with metal-insulator thin films
in mind, it is in fact quite general and can be applied to any kind of inhomogeneous film under
appropriate conditions. For reason that will be explained below the above theory is called the
“generalized Ohm’s law”. We present here this new theory.

Below we restrict ourselves to the case where all the external fields are parallel to the plane of the
film. This means that an incident wave, as well as the reflected and transmitted waves, are traveling
in the direction perpendicular to the film plane. The consideration is focused on the electric and
magnetic field magnitudes at certain distances away from the film and relate them to the currents
inside the film. We assume that inhomogeneities on a film are much smaller in size than the
wavelength 4 (but not necessarily smaller than the skin depth), so that the fields away from the film
are curl-free and can be expressed as gradients of potential fields. The electric and magnetic
induction currents averaged over the film thickness obey the usual two-dimensional continuity
equations. Therefore the equations for the fields (e.g., V x E = 0) and the equations for the currents
(e.g., V-j = 0) are the same as in the quasistatic case. The only difference is that the fields and the
averaged currents are now related by new constitutive equations and that there are magnetic
currents as well as electric currents.

To determine these new constitutive equations, we find the electric and magnetic field distribu-
tions inside the conductive and dielectric regions of the film. The boundary conditions completely
determine solutions of Maxwell’s equations for the fields inside a grain when the frequency is fixed.
Therefore, the internal fields, which change very rapidly with position in the direction perpendicu-
lar to the film, depend linearly on the electric and magnetic field away from the film. The currents
inside the film are linear functions of the local internal fields given by the usual local constitutive
equations. Therefore, the currents flowing inside the film also depend linearly on the electric and
magnetic fields outside the film. However, the electric current averaged over the film thickness now
depends not only on the external electric field, but also on the external magnetic field. The same is
true for the average magnetic induction current. Thus we have two linear equations that connect
the two types of the average internal currents to the external fields. These equations can be
considered as generalization of the Ohm’s law to the nonquasistatic case and they are denoted as
generalized Ohm’s law (GOL) [97]. The GOL forms the basis of a new approach to calculating the
electromagnetic properties of inhomogeneous films.

7.3.1. Generalized Ohm’s law (GOL) and basic equations
We base the below consideration on the results of Refs. [39,96,97]. In contrast to the traditional
consideration, it is not assumed that the electric and magnetic fields inside a semicontinuous metal
film are curl-free and z-independent, where the z coordinate is perpendicular to the film plane.
Let us consider first a homogeneous conducting film with a uniform conductivity ¢, and
thickness d and assume constant values of the electric field E; and magnetic field H; at some
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Fig. 24. The scheme used in a theoretical model. Electromagnetic wave of wavelength A is incident on a thin
metal-insulator film with thickness d. It is partially reflected and absorbed, and the remainder is transmitted through
the film.

reference plane z = — d/2 — [, behind the film, as shown in Fig. 24. Under these conditions the
fields depend only on the z-coordinate, and Maxwell’s equations for a monochromatic field can be
written in the following form:

d .
TE(Q) = — (@) x HE)] (1.72)
iH(z) = — 4—no'(z)[n x E(2)], (7.73)
dz c

with boundary conditions
E(Z: —d/z—lo):El, H(Z: —d/2—l0)=H1 . (774)

where E; and H, are parallel to the film plane. Here the conductivity o(z) is equal to the metal
conductivity ¢, inside the film (—d/2 <z <d/2), and to o4 = —iw/4n outside the film
(z< —dJ/2 and z > d/2), and similarly, the magnetic permeability u(z) is equal to the film
permeability u,, inside the film and to 1 outside the film; the unit vector n = {0,0, 1} is perpendicu-
lar to the film plane. When solving Eqgs. (7.72) and (7.73) it is taken into account that the electric and
magnetic fields are continuous at the film boundaries. In this way the fields E(z) and H(z) are
determined everywhere. Then electric jp and magnetic ji current flowing in-between the two planes

atz= —d/2 —l, and at z = d/2 + [, are calculated as
im —dj2 d/2 /2 +1,
je= — —|:J E(z)dz + f emE(z)dz + J E(2) d2:| , (7.75)
4r —d/2—1, —dj2 dj2

io —dj2 d/2 dj2+1,
Jju = —[J H(z)dz + f UnH(z)dz + J H(z) dz} , (7.76)

—dj2—1, —d/2 d/2
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where ¢, = 4ino,,/w is the metal dielectric constant. Below it is supposed, for simplicity, that the
magnetic permeability u,, = 1. Since the Maxwell equations are linear the local fields E(z) and H(z)

are linear functions of the boundary values E; and H; defined at the plane z = — d/2 — I,
E(z) = a(z)E{ + c(z)[nxH,] , (7.77)
H(z) = b(z)H, + d(z)[n xE.] . (7.78)

Note that n is the single constant vector in the problem, which allows us to build polar [n x H; ]
and axial [n x E{] vectors in Eqgs. (7.77) and (7.78). By substituting Egs. (7.77) for E(z) and (7.78) for
H(z) in Egs. (7.75) and (7.76) correspondingly we express the currents jr and jy in terms of the
boundary (surface) fields E; and H, as

Je=sE; +g:[nxH,], (7.79)
Ju =mH; + g;[nXE,] . (7.80)

In contrast to the usual constitutive equations, the planar electric current jz, which flows between
the planes z = — d/2 — I, and z = d/2 + [,, depends not only on the external electric field E; but
also on the external magnetic field H;. The same is true for the magnetic induction current jy.
These equations constituted the GOL. The Ohmic parameters s, m, g; and g, have the dimension
of surface conductivity (cm/s) and depend on the frequency w, the metal dielectric constant ¢,,, the
film thickness d and the distance [, between the film and the reference plane z = — d/2 — [,. Below
the films are supposed to be invariant under reflection through the plane z = 0. In this case
g1 = ¢» = ¢ as it is shown in [96], and the Ohmic the parameter g can be expressed in terms of
parameters s and m as

o= - () - (7.81)
Then the GOL equations (7.79) and (7.80) take the following form:

Je=sEy +g[lnxH,], (7.82)

Ju=mH; +g[nxE ], (7.83)

where the Ohmic parameter ¢ is given by Eq. (7.81). The Ohmic parameters s and m can be
expressed in terms of the film refractive index n = /¢, and film thickness d in the following way:

s = ﬁ[e_i‘”‘"(n cos(adk) — isin(adk))* — €' (n cos(adk) + isin(adk))*] , (7.84)
_C o —idkng . 2 idkn . : 2
m=e [e (icos(adk) + nsin(adk))” — e'“*"( — icos(adk) + nsin(adk))*] , (7.85)

where k = w/c; we still assume, for simplicity, that ¢ = 1 outside the film (z < — d/2, z > d/2) and
introduce dimensionless parameter a = Iy /d (see [96,97]). The skin (penetration) depth § is equal to
0 = 1/kImn in these notations. In the microwave spectral range metal conductivity is real and
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dielectric constant ¢, is purely imaginary so that the skin depth 6 = ¢/\/2no,,®; on the other hand
the dielectric constant is negative for a typical metal in the optical and infrared spectra ranges,

therefore 6 =~ 1/k./|en| in this case.

We now turn to the case of laterally inhomogeneous films. Then the currents j; and j defined by
Egs. (7.75) and (7.76), as well as the fields £, and H, are functions of the two dimensional vector
r = {x,y}. From Maxwell’s equations it follows that the fields and currents are connected by some
linear relations:

Je(r)=sE; +g[nxH,], (7.86)
Ju(r)=mH, + g[nxE;], (7.87)

where s, m and g are some integral operators now. The metal islands in semicontinuous films
usually have an oblate shape so that the grain diameter D is much larger than the film thickness
d (see, e.g., [84]). When the thickness of a conducting grain d (or skin depth ¢) and distance [, are
much smaller than the grain diameter D, the relation of the fields E; and H; to the currents
becomes fully local in Egs. (7.86) and (7.87). The local Ohmic parameters s = s(r), m = m(r),
and g = ¢g(r) given by Egs. (7.81), (7.84) and (7.85) are determined by the local refractive index
n(r) = /&(r), where &(r) is a local dielectric constant. Egs. (7.86) and (7.87) are the local GOL for
semicontinuous films. For binary metal-dielectric semicontinuous films the local dielectric constant
is equal to either ¢, or &;. The electric j; and magnetic jy currents given by Eqgs. (7.86) and (7.87) lie

in between the planes z = — d/2 — I, and z = d/2 + l,. These currents satisfy the two-dimensional
continuity equations
Vjer) =0, V-jgr)=0, (7.88)

which follow from the three-dimensional continuity equations when the z-components of E; and
H, are neglected at the planes z = + (d/2 + [y). This is possible because these components are
small, in accordance with the fact that the average fields <E; ) and (H;) are parallel to the film
plane. Since we consider semicontinuous films with an inhomogeneity scale much smaller than the
wavelength A, the fields E, () and H, (r) are still the gradients of potential fields when considered as
functions of x and y in the fixed reference plane z = — d/2 — |, i.e,,

E(r)= —Vo.(r), H@r)= —Vy(r). (7.89)

By substituting these expressions in the continuity Eq. (7.88) and taking into account the GOL
(7.86) and (7.87), the system of two basic equations for the electric ¢, and magnetic y/; potentials
are obtained

VsV, +g[lnxVy])=0, V-mVyy +g[nxVe,])=0, (7.90)

where all variables are functions of the coordinates x and y in the reference plain. The above
equations must be solved under the following conditions:

Vo y =<E), VWi)=<H), (7.91)

where the constant fields <E; ) and {H, ) are external (given) fields. Here and below { --- > denotes
an average power coordinates “x” and “y”.
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The essence of the generalized Ohm’s law can be summarized as follows. The entire physics of
a three-dimensional inhomogeneous layer, which is described by the full set of Maxwell’s equa-
tions, has been reduced to a set of quasistatic equations in a (two-dimensional) reference plane. Part
of the price for this achievement is the introduction of coupled electric/magnetic fields and currents
and dependence on one adjustable parameter, namely, the distance [, to the reference plane.
Comparison of numerical calculation and GOL approximation for the metal film with periodic
corrugation [97] show that GOL results are not sensitive to the distance [, in general. The original
choice [, = 0.25D [96] [i.e., parameter a = D/4d in Egs. (7.84) and (7.85)] allows to reproduce most
of the computer simulations except those where a surface polariton is excited in the corrugated film.

7.3.2. Diagonalization of GOL equations

To simplify the system of the basic equations (7.90) the electric and magnetic fields on both sides
of the film are considered [39,97]. Namely, the electric and magnetic fields are considered at
a distance ly behind the film E;(r) = E(r, — d/2 — l,), H,(r) = H(r, — d/2 — l,), and at a distance
lo in front of the film E,(r) = E(r,d/2 + 1), Hy(r) = H(r,d/2 + lo). Recall that r={x,y} is
two-dimensional vector in a plane perpendicular to “z” axis. The components of the fields aligned
with “z” are still neglected. Then second Maxwell’s equation curl H = (4r/c)j can be written as
$H dI = (4m/c)(n; "jg)A, where the integration is over the rectangular contour, which has sides
d + 2y and 4 so that the sides d + 2l, are perpendicular to the film and sides A4 are in the planes
z = =4 (d/2 + ly); vector n; is perpendicular to the contour. When 4 — 0 this equation takes the
following form:

H, —H, = —4771[" Xjel = _?(S[nXEl]_ng): (7.92)

where the current ji is given by the GOL Eq. (7.86). The same procedure being applied to the first
Maxwell equation curl H = ikH gives

4t . 47
E, —E = —7[’1 Xjul = —7(’”[” xH]—gE,), (7.93)

where the GOL equation (7.87) has been substituted for the electric current j;. Then electric field
E{ can be expressed from Eq. (7.92) in terms of the magnetic fields H, and H, as

c

e, — Hy), (7.94)

[nxE ] = %H1
magnetic field H,; can be expressed from Eq. (7.93) in terms of the electric fields E; and E, as
g c
[nXHIJZ—El ——(E2 _El) (795)
m 4nm
Substituting the r.h.s. of Eq. (7.94) in the GOL Eq. (7.87) and substituting Eq. (7.95) in the GOL

Eq. (7.86) results in

. C
JE = SE1 + g(gEl — —(Ez — E1)> , (796)
m 4nm
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c

= (Hy — H1)> : (7.97)
S 4drnts

Ju = mH; + g(ng —

Finally the relation (7.81) between the Ohmic parameters s, m and g allows us to rewrite the above
equations as

Je =uE, jg=wH, (7.98)

where E = (E; + E,)/2, H= (H, + H,)/2 and parameters u and w are given by the following
equations:

U= —-2, w= -2 (7.99)

Thus the GOL is diagonalized by introducing new fields E and H so that Egs. (7.98) have the same
form as constitutive equations of the macroscopic electrodynamics. The only difference is that the
local conductivity ¢ is replaced by parameter u and magnetic permeability u is replaced by
parameter — i4nw/w.

It follows from Egs. (7.99) and (7.81), (7.84), (7.85) that the new Ohmic parameters u and v are

expressed in terms of the local refractive index n = /&(r) as
__.c tan(Dk/4) + ntan(dkn/2)
~ 2nl — ntan(Dk/4) tan(dkn/2)
Wil ntan(Dk/4) + tan(dkn/2)
" 2nn — tan(Dk/4) tan(dkn/2)

(7.100)

(7.101)

where the parameter a = D/4d is substituted as it is discussed at the end of the previous section. The

refractive index n in the above equations takes values n, = /&, and ng = \/a for metal and
dielectric regions of the film, respectively. In the quasistatic limit, when the optical thickness of
metal grains is small dk|n,,| < 1, while the metal dielectric constant is large in magnitude, |e,| > 1,
the following estimates hold:
W€ )

Uy ~ —i—d, W, ~1
4n

(d+ DJ2) (d/o <1) (7.102)
4n

for the metal grains. In the opposite case of strong skin effect, when the skin depth (penetration
depth) 06 = 1/kIm n,, is much smaller than the grain thickness d and the electromagnetic field does
not penetrate in metal grains, the parameters u, and w,, take values

. 2¢? wD

=5 W =i (A5 > 1), (7.103)

For the dielectric region, when the film is thin enough so that dkny < 1, and ¢4 ~ 1 Egs. (7.100) and
(7.101) give

.(DEyY

T3

Ug =

.
D, wy=iz(d+D/2). (7.104)
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where the reduced dielectric constant ¢35 = 1 + 2e4d/D is introduced. Note that in the limit of
strong skin effect the Ohmic parameters u,, and w,, are purely imaginary and the parameter u,, is of
inductive character, i.e., it has the sign opposite to the dielectric parameter uy. In contrast, the
Ohmic parameter w remains essentially the same w ~ iDw/8r for dielectric and for metal regions
regardless of the value of the skin effect.

Potentials for the fields E,(r) and H,(r) can be introduced for the same reason as potentials for
the fields E,(r) and H,(r) [see discussion accompanying Eq. (7.89)]. Therefore, the fields E(r) and
H(r) in Egs. (7.98) can in turn be represented as gradients of some potentials:

E= —V¢, H= —Vy . (7.105)

By substituting these expressions in Egs. (7.98) and then in the continuity Egs. (7.88), we obtain the
following equations:

V- [urVe'(r)] =0, (7.106)
V- [w(r)Vy'(n] =0, (7.107)

which can be solved independently for the potentials ¢’ and . The above equations are solved
under the following conditions:

(Vo1) =<E) =E,, (Wi)=<H,)=H,, (7.108)

where the constant fields E, and H,, are external (given) fields that are determined by the incident
wave. When the fields E, H and currents jg, j; are found from a solution of Egs. (7.106), (7.107) and
(7.108), the local electric and magnetic fields in the plane z = — [, — d/2 are given by the equations

2 2
E, =E+7n[n xjul, H, =H+§[n ] (7.109)

that follow from Eqs. (7.92) and (7.93) and definitions of the fields E and H. Note that the field E (r)
can be measured in a near field experiment. (For a comprehensive review see, e.g., [137].) The
effective parameters u, and w, are defined in a usual way

Jp> = ucEo = u.(CE;) + <E»))/2, (7.110)
(> =weHo = w((Hy ) + CH3))/2. (7.111)

These expressions are substituted in Egs. (7.92) and (7.93), which are averaged over the {x,y}
coordinates to obtain equations

(¢ (CH>> — CHLY] = u(CEyy + <E»), (7.112)
[ (CE2> — CE] = e (CHL + CHLY)., (.113)

for the averaged fields that determine the optical response of an inhomogeneous film.
Let us suppose that the wave enters the film from the right half-space (see Fig. 24), so that its
amplitude is proportional to ¢ ~*2, The incident wave is partially reflected and partially transmitted
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through the film. The electric field amplitude in the right half-space, away from the film, can be
written as e[e ~ % 4 re’**], where r is the reflection coefficient and e is the polarization vector. Then
the electric component of the electromagnetic wave well behind the film acquires the form ete ™%,
where t is the transmission coefficient. It is supposed for simplicity that the film has no optical
activity. Therefore wave polarization e remains the same before and after the film. At the planes
z=d/2+ 1y and z= —d/2 — |, the average electric field equals (E,)> and <{E;), respectively.
Now the wave away from the film is matched with the average fields in the planes z = d/2 + [,
and z= —d/2 — 1y, ie, {E,) = e[e” 2+l 4 pelk@2%L)] and (E,) = ete® 271 The same
matching but with magnetic fields gives <(H,) = [nxe][ — e 2+l 4 peik@2+L)1] gnd
(H{) = — [nxe]te™¥?7h) in the planes z = d/2 + [, and z = — d/2 — I, respectively. Substitu-
tion of these expressions for the fields <E; >, {E, >, (H,) and {H, ) in Egs. (7.112) and (7.113) gives
two scalar, linear equations for reflection r and transmission t coefficients. Solution to these

equations gives the reflectance,

2 2
e+ w)
= 2 —_—
R=r| < e >< e ) , (7.114)
1+—u, |1 ——w,
c c
transmittance
2 2
14+ <7n> UW,
T=|t|? = .
lt] < e >< o ) (7.115)
1+—u, |1 ——w,
c c
and absorbance
A=1—-T—-R (7.116)

of the film. Therefore, the effective Ohmic parameters u, and w, determine completely the optical
properties of an inhomogeneous films.

Thus the problem of the field distribution and optical properties of the metal-dielectric films
reduces to uncoupled quasistatic conductivity problems [Eq. (7.107)] to which extensive theory
already exists. Thus numerous analytical as well as numerical methods developed in the percola-
tion theory can be used to find the effective parameters u. and w, of the film (see Section 3).

Let us consider now the case of the strong skin effect in metal grains and trace the evolution of
the optical properties of a semicontinuous metal film when the surface density p of the metal is
increasing. When p = 0 the film is purely dielectric and the effective parameters u, and w, coincide
with the dielectric Ohmic parameters given by Eqgs. (7.104). By substituting u, = ug and w, = wy
in Egs. (7.114), (7.115) and (7.116) and assuming that the dielectric film has no losses and
it is optically thin (dkeq < 1), we obtain the reflectance R = d?*(eq — 1)*k?/4, transmittance
T =1 — d*(eq — 1)*k?/4, and the absorbance 4 = 0 that coincide with the well known results for
a thin dielectric film [82,130].

It is not surprising that the film without losses has zero absorbance. When the ratio of the
penetration length (skin depth) 6 = 1/kImn,, is negligible in comparison with the film thickness
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d and |n,| > 1 the losses are also absent in the limit of full coverage, when the metal concentration
p = 1. In this case the film is a perfect metal mirror. Indeed substituting the Ohmic parameters
U, = Uy and w, = wy, from Egs. (7.103) in Egs. (7.114), (7.115) and (7.116) we obtain for the
reflectance R = 1, while the transmittance T and absorbance 4 are both equal to zero. Note that
the optical properties of the film do not depend on the particle size D for the metal concentration
p = 0 and p = 1 since properties of the dielectric and continuous metal films do not depend on the
shape of the metal grains.

We consider now the film at the percolation threshold p = p, with p, = 1/2 for a self-dual system
[12,20]. A semicontinuous metal film may be thought of as a mirror, which is broken into small
pieces with typical size D much smaller than the wavelength 4. At the percolation threshold the
exact Dykhne formulas u, = \/ugty,, w. =/ WqWn hold [100]. Thus the following equations for
the effective Ohmic parameters are obtained from Egs. (7.104) and (7.103)

2n - 2n .Dk 2d
“uelp) = e welpe) =i [T+ (7.117)

From this equation it follows that |w./u.| ~ Dk < 1 and the effective Ohmic parameter w, can be
neglected in comparison with u.. By substituting the effective Ohmic parameter u.(p.) given by
Eq. (7.117) in Egs. (7.114), (7.115) and (7.116) the optical properties at the percolation are obtained

R(p.) = e4/(1 + /€0)?, (7.118)
T(p.) = 1/(1 + /z)?, (7.119)
Ape) = 2\/ea/(1 + \Jea)?; (7.120)

recall that the reduced dielectric function ¢ = 1 + 2&4d/D. When metal grains are oblate enough so
that ¢4d/D < 1 and ¢4 — 1 the above expressions simplify to the universal result

R=T=1/4, A=1. (7.121)

Thus, there is effective adsorption in semicontinuous metal films even for the case when neither
dielectric nor metal grains absorb light energy. The mirror broken into small pieces effectively
absorbs energy from the electromagnetic field. The effective absorption in a loss-free film means
that the electromagnetic energy is stored in the system and that the amplitudes of the local
electromagnetic field increase up to infinity. In any real semicontinuous metal film the local field
saturates due to non-zero losses, but the significant field fluctuations take place over the film when
losses are small, as discussed below.

To find the optical properties of semicontinuous films for arbitrary metal concentration p the
effective medium theory can be implemented and this had been originally developed to provide
a semi-quantitative description of the transport properties of percolating composites [12].
The effective medium theory being applied to Egs. (7.106), (7.110) and (7.107), (7.111) results in the
following equations for the effective parameters:

ug — Ap (i — ug) — gty =0, (7.122)

We — ApWe(Wn — Wg) — WaWp, =0, (7.123)
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where the reduced concentration Ap = (p — p.)/p. (p. = 1/2) is introduced. It follows from
Eq. (7.123) that for the considered case of strong skin effect, when the Ohmic parameters w,, and
wy are given by Egs. (7.103) and (7.104), the effective Ohmic parameter |w.| < ¢ for all metal
concentrations p. Therefore, the parameter w, is negligible in Eqgs. (7.114) and (7.115). For further
simplification the Ohmic parameter u4 can be neglected in comparison with u,, in the second term
of Eq. (7.122) [cf. Egs. (7.103) and (7.104)]. Then introduction of the dimensionless Ohmic
parameter u, = (2n/c)u, allows to rewrite Eq. (7.122) as

AAp ,

u? — 2171;—1;)”5 e =0. (7.124)
Right at the percolation threshold p = p., = 1/2, when the reduced concentration Ap =0,
Eq. (7.124) gives the effective Ohmic parameter u.(p.) = \/5 that coincides with the exact
Eq. (7.117) and results in reflectance, transmittance and absorbance given by Egs. (7.118), (7.119)
and (7.120), respectively. For concentrations different from the percolation threshold, Eq. (7.124)

gives
. JAp JAp\?
ue_lnD+\/_<nD> e (7.125)

which becomes purely imaginary for |[Ap| > nD\/g /A. Then Eqgs. (7.118), (7.119) and (7.120) result
in the zero absorbance 4 =1—R —T =1 — [u.]?/|1 + u.|* — 1/|]1 +u.|*> =0 (recall that the
effective Ohmic parameter w, is neglected). In the vicinity of a percolation threshold, namely, for

|Ap| < 1D/ /ey (7.126)

the effective Ohmic parameter u, has a nonvanishing real part and, therefore, the absorbance
AAp\?
2 \/ — <_Dp> + &g
T
4= ZAp\?
1+s{1+2/—<” p) + &
D

is nonzero and has a well-defined maximum at the percolation threshold; the width of the
maximum is inversely proportional to the wavelength. The effective absorption in almost loss-free
semicontinuous metal film means that local electromagnetic fields strongly fluctuate in the system
as was speculated above. The spectral width for the strong fluctuations should be the same as the
width of the absorption maximum, i.e. it is given by Eq. (7.126).

Note that the effective parameters u, and w, can be determined experimentally by measuring
the amplitude and phase of the transmitted and reflected waves using, for example, a waveguide
technique (see, Ref. [136] and references therein), or by measuring the film reflectance as function of
the fields E; and H,. In this case, a metal screen placed behind the film can be used to control the
values of these fields [138,139].

(7.127)

7.3.3. Numerical simulation of local electric and magnetic fields
To find the local electric E(r) and magnetic H(r) fields Egs. (7.106) and (7.107) should be
solved. Consider the first equation (7.106), which can be conveniently rewritten in terms of the
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dimensionless “dielectric constant”

& = 4miu(r)/owd (7.128)
as follows
V-[&rVer] =&, (7.129)

where ¢(r) is the fluctuating part of the potential ¢'(r) so that V¢'(r) = Vop(r) — Eg, {¢p(r)> = 0, and
& = V- [&r)E,]. Recall that the “external” field E,, is defined by Eq. (7.108). For the metal-dielectric
films considered here local dielectric constant &r) equals (2, =) 4miu,,/wd and (84 =) ¢3D/2d for
the metal and dielectric regions, respectively. The external field E, in Eq. (7.129) can be chosen real,
while the local potential ¢(r) takes complex values since the dielectric constant &, is complex
Em = &m + 18-

In the quasistatic limit when the skin depth ¢ is much larger than the film thickness d the
dielectric constant &, coincides with the metal dielectric constant ¢, as it follows from Eq. (7.102).
Recall that the real part of the metal dielectric constant &, becomes negative, ¢, < 0, for the
frequency w < @,, where @, is given by Eq. (2.2). This allows to model the metal grains as
inductances L for frequencies @, > w > w, while the dielectric gaps can be represented by
capacitances C (see discussion at the beginning of Section 3). In the opposite case of the strong skin
effect, the Ohmic parameter u, is inductive according to Eq. (7.103) for all spectral ranges
regardless of the metal properties. Then, the percolation metal-dielectric film represents a set of
randomly distributed L and C elements for all spectral ranges when the skin effect is strong in the
metal grains. Note that Ohmic parameter w takes the same sign and rather close absolute values for
metal and dielectric grains according to Egs. (7.102), (7.103) and (7.104). A film can be thought as
a collection of C elements in “w” space. Therefore, the resonance phenomena are absent in
a solution of Eq. (7.107). The fluctuations of the potential ' can indeed be neglected in comparison
with the ¢’ fluctuations. For this reason we concentrate attention on the properties of the “electric”
field E(r) = — V¢'(r) = — V¢(r) + E, when considering the fluctuation of the local fields. The field
E(r) can be found from the solution of Eq. (7.129).

Since Eq. (7.129) has the same form as Eq. (2.4) it can be discretized on a square lattice in the
same way. Then numerical methods discussed in Section 3 can be used to find the local field
distribution. The real space renormalization method described in Section 3.1 was employed to
solve Eq. (2.5) and calculate the potentials ¢; in the lattice. This gives the local field E(r) and electric
current jg(r) in terms of the average field Eq. The effective Ohmic parameter u, is determined by
Eq. (7.110) that can be written as {jg» = u.E,. The effective dielectric constant &, equals 4miu, /wd.
In the same manner the field H(r), the magnetic current jy(r) and the effective parameter w, can be
found from Eq. (7.107) and its lattice discretization. Note that the same lattice should be used to
determine the fields E(r) and H(r). The directions of the external fields E, and H, may be chosen
arbitrarly when the effective parameters u, and w, are calculated since the effective parameters do
not depend on the direction of the field for a film, which is isotropic as a whole.

Though the effective parameters do not depend on the external field the local electric E, (r) and
magnetic H, (r) fields do depend on the incident wave. The local fields E, (r) and H, (r) are defined in
the reference plane z = — d/2 — [, (see Fig. 24). Note that the field E,(r) can be measured in a
typical near field experiment (see, e.g., Ref. [137]). For the calculations below the electric and
magnetic fields of the incident electromagnetic wave have been chosen in the form < E; ) = {1,0,0}
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and {H, ) = {0, — 1,0} in the plane z = — [, — d/2. This choice corresponds to the wave vector of
the incident wave as k = (0,0, — k), i.e., there is only a transmitted wave behind the film (see
Fig. 24). It follows from the average of Eqgs. (7.109), which can be written as {E,;) = E, +
2r/cyw.[nx Hy] and <H{) = Hy, + (2n/c)u.[n x Ey], that the fields E, and H, are given by

B>~ TwlnxHY] HD — Tunx B

H =
2r\ ? > e 2r\ ?
1+({— UWe I+|— UeWe
C C

These values of the fields E, and H, are used to calculate the local fields E(r) and H(r). The local
electric E;(r) and magnetic H{(r) ficlds are restored then from the fields E(r) and H(r) by using
Eq. (7.109).

The local electric and magnetic fields have been calculated in silver-on-glass semicontinuous film
as functions of the surface concentration p of silver grains. The typical glass dielectric constant is
about ¢4 = 2.2. The dielectric function for silver was chosen in the Drude form (2.1). The following
parameters were also used in Eq. (2.1): the interband-transition contribution &, = 5, the plasma
frequency w, = 9.1eV, and the relaxation frequency w, = 0.021eV [104]. The metal grains are
supposed to be oblate. The ratio of the grain thickness d (film thickness) to the grain diameter D has
been chosen (D/d =) 3, the same as that used in Ref. [96]. To consider skin effect of different
strength (i.e. different interactions between the electric and magnetic fields), we vary the size d of
silver particles in a wide range, d = 1-100 nm. The size of metal grains in semicontinuous metal
films is usually of the order of few nanometers but it can be increased significantly by using a proper
method of preparation [108]. For microwave experiments [39] the films were prepared by
lithography method so that the size of metal particle could vary in a large range.

The space distribution of the electric and magnetic fields was calculated at two sets of parameters
as illustrated in Figs. 25-28. In Figs. 25 and 26 we show the electric and magnetic field distributions
for 2 = 1 um and two different thicknesses d of the film, d = 5nm and d = 50 nm. The first thickness

E, = (7.130)

[’

3.0x10*

1.5x10*

(a) (b)

Fig. 25. Distribution of local em field intensities (a) |E{ (r)|*/|[<E; Y|* and (b) |[H(r)|*/|{HY|* in a semicontinuous silver
film at the percolation threshold for 1 = 1 pum and 6/d = 4.5, where ¢ is the skin depth and d is the thickness of the film.
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|E[

3.0x10*

1.5x10*

(a) (b)

Fig. 26. Distribution of local em field intensities (a) |E, ()|*/|<E1 >|* and (b) |H,(r)|?/|{H; Y|? in a semicontinuous silver
film at the percolation threshold for 4 = 1 pm and ¢/d = 0.45.

2
|E|
3.0x104 2.0x103
1.5x10* 1.0x103
(a) (b)

Fig. 27. Distribution of local em field intensities (a) |E; (¥)|*/|<E; Y|* and (b) |H,(r)|*/|{H; Y|? in a semicontinuous silver
film at the percolation threshold for 2 = 10 um and 6/d = 4.5.

(a) (b)

Fig. 28. Distribution of local em field intensities (a) |E; (r)|*/|<E; Y|* and (b) |H,(r)|?/|{H; Y|? in a semicontinuous silver
film at the percolation threshold for 2 = 10 um and d6/d = 0.45.
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(Fig. 25) corresponds to a weak skin effect since the dimensionless thickness is small, 4 = d/6 = 0.2
[where 0 = 1/(kImn,,) is the skin depth]. In this case we observe the giant field fluctuations
of the local electric field; the magnetic field also strongly fluctuates over the film but the field peaks
are small compared to the electric field. This is because the film itself is not magnetic, ug = pun = 1,
and the interaction of the magnetic field with the electric field through the skin effect is relatively
small.

In Fig. 26 we show results for a significant skin effect, when the film thickness d = 50 nm
and the dimensionless thickness exceeds one, 4 = 2.2. It is interesting to note that the ampli-
tude of the electric field is roughly the same as in Fig. 25a, despite the fact that the
parameter A4 increased by one order of magnitude. In contrast, the local magnetic field in
Fig. 26b is strongly increased in this case so that the amplitude of magnetic field in peaks is
of the same order of magnitude as the electric field maxima. This behavior can be
understood by considering the spatial moments of the local magnetic field as shown in the next
subsection.

In Figs. 27 and 28 we show results of the calculations for the local electric and magnetic fields at
/.= 10 um, when the metal dielectric constant |e,,| ~ 10*. We see that in this case the local magnetic
field can even exceed the electric field. It is interesting to note that the giant local field fluctuations
were observed first in the microwave experiment [39] for the metal-dielectric films with strong skin
effect. Later the local field peaks were obtained in the optic near field experiments [46,58] as it is
discussed in Section 3.2.

The local fields being given, the effective parameters u. and w, can be found and thus the
effective optical properties of the film. In Figs. 29 and 30 we show the reflectance, transmittance
and absorbance as functions of silver concentration p, for wavelengths A = 1 pm and 4 = 10 um
respectively. The absorbance in these figures has an anomalous maximum in the vicinity of
the percolation threshold that corresponds to the behavior predicted by Egs. (7.127). This
maximum had been detected first in the experiments [85,88-90]. The maximum in the absorption
corresponds to strong fluctuations of the local fields. We have estimated in Eqgs. (7.126)
the concentration range Ap centered at the percolation threshold p. (where the giant local field
fluctuations occur) as Ap oc 1/4. Indeed, the absorbance shrinks at transition from Fig. 29 to
Fig. 30, when wavelength A increases ten times. In Fig. 31 we compare the experimental results for
gold semicontinuous film [85,88-90] with calculations based on the GOL approximation. In
particular calculations the dynamic effective medium given by Egs. (7.122) and (7.123) had been

0.25

0.0 \Z

(a) (b)

Fig. 29. Computer simulation of (a) absorptance 4, (b) reflectance R and (c) transmittance T for a silver-on-glass
semicontinuous film as functions of metal concentration p and film thickness d (um) at 4 = 1 um.
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Fig. 30. Computer simulation of (a) absorptance 4, (b) reflectance R and (c) transmittance T for a silver-on-glass
semicontinuous film as functions of metal concentration p and film thickness d (um) at 1 = 10 um.
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Fig. 31. Experimental and calculated coefficients 4 (absorptance), R (reflectance), and T (transmittance) for a gold-glass
film as functions of metal concetration p at a wavelength A = 2.2 pm. Solid circles show the experimental results [89,90],
solid lines our calculations. The frequency-dependent complex conductivity of gold was taken to be o4./(1 — iwt), where

e =0.7x107s " and 1 = 3x 10~ 135, in accordance with Ref. [90]. The thickness of the gold grains was d = 20 nm,
and the value of the parameter a was taken to be 3.

used [96]. One observes that the theory indeed reproduces maximum of absorptance in the vicinity
of the percolation threshold.

7.3.4. Spatial moments of the local electric and magnetic fields

The results obtained in the previous subsection allow to find spatial moments of the local
electric E; distributed in the reference plane z = — d/2 — [, (see Fig. 24) behind the film.
The electric field E; is expressed in terms of the fields E and H by means of Eq. (7.109). The
fluctuations of the local magnetic current j(r) = w(r)H(r) can be neglected in the first Eq. (7.109)
as it is discussed after Eq. (2.2). Therefore, the moments MF,, = |E,(r)"ET(r)> /([<E D|"<E{ D™,
where EY = (E, - E,)™?, are approximately equal to the moments M,, ,, of the field E(r) estimated
in Eq. (2.43).
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Consider the moments MF,, for arbitrarily strong skin effect assuming that the metal dielectric
constant &, is negative, large in absolute value and can be approximated by Drude formula (2.1).
The Drude formula Eq. (2.1) is substituted in Eq. (7.100) to obtain the Ohmic parameter u,, in the
limit v <€ w, and w > w,.; then the Ohmic parameter u,, is substituted in Eq. (7.128) to obtain
Zn and finally the moment M£,, is obtained from Eq. (2.43) as

Mﬁ,m~p[‘“ <5> folx )J" " (7.131)
4 tanh(x) [1 + 4—D5tanh(x)}
folx) = (7.132)

x{tanh(x) + x[1 — tanh(x)*]}*’

where x = d/26 = dw,/2c is the ratio of the film thickness d to the skin depth 6 ~ c/w,,. It follows
from these equations that the moments of the local electric field are independent of the frequency in
the wide frequency band w, > @ > w, that include, for example, in the case of the silver semicon-
tinuous films optical and infrared spectral ranges [cf. Fig. 5a]. When skin effect increases the
function f; in Eq. (7.131) increases monotonically from f,(0) = 1 to fo(c0) = D/(2d). When the shape
of the metal grains is fixed and they are very oblate, i.c., D/d > 1 the moments MZ, increases
significantly with increasing the parameter x.

Let us consider now the far-infrared, microwave and radio frequency ranges, where the metal
conductivity g, acquires its static value, i.e., it is positive and does not depend on frequency. Then
it follows from Egs. (7.103), (7.104) and (7.128) that Eq. (2.43) for the field moments acquires the
following form:

2 (n+m—1)/2
ME,, ~ ( TZ"‘) (7.133)

in the limit of the strong skin effect. Since typical metal conductivity is much lager than frequency
o in the microwave and radio bands the moments remain large at these frequencies.
We proceed now to fluctuations of the local magnetic field H,(r) in the reference plane

z = —d/2 — ly. The fluctuations of the field H( ) can still be neglected. Then it follows from the
second Eq. (7.109) that moments MY, = {|H,(r)"H}(r)>/(|<H|"{H, >™) of the local magnetic field
are estimated as

Mo = My = Q2n/c)* | je@")/IKE DI, (7.134)

where the conditions |[{E{ »| = |{H; )|, discussed in connection with Eq. (7.130), is used. Thus the
external electric field induces electric currents in a semicontinuous metal film and these currents,
in turn, generate the strongly fluctuating local magnetic field.

To estimate the moments {|jz(r)|"> of the electric current density in semicontinuous metal films
the approach suggested by Dykhne [100] was generalized for the nonlinear case [40]. Since in the
considered case the electric current ji is connected to the local field E via the first equation (7.98),
the following equation {|jg|"> = aum, uq){JEF)|*> can be written, where the coefficient o(uy,, ug) is
a function of variables u,, and u,.

Let us consider now the concentration corresponding to the percolation threshold p = p. and set
the percolation value as p, = 1/2. It is also supposed that statistical properties of the system do not
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change when inter-replacing the metal and the dielectric. If all conductivities are increased by
a factor k then the average nonlinear current <|jz|"> also increases by a factor |k|". Therefore, the
coefficient a(uy,,uq) increases by |k|” times as well. Then the coefficient of(uy,,uq) has important
scaling properties, namely, o(ku,, kig) = |k|"o(um, tq). By taking k = 1/u,, the following equation is
obtained:

U, Ua) = [t "1 (U /Ua) - (7.135)
Now we perform the Dykhne transformation

J¥=[nxE], (7.136)

E* =[nxjg], (7.137)

It is easy to verify thus that the introduced field E* is still potential, i.e., V x E* = 0, whereas the
current j* is conserved, i.e., V-j* = 0. The current j* is coupled to the field E* by the Ohm’s law
Jj* = u*E*, where the “conductivity” u* takes values 1/u, and 1/uy. Therefore, the following
equation <{|j*|"> = a(1/um,1/uq){|JE*|") holds, from which it follows that o(1/uy,,1/uq)o(uy,, ug) = 1.
Since we suppose that at the percolation threshold p, = 1/2 statistical properties of the system do
not change when inter-replacing the metal and the dielectric the arguments in the first function can
be changed to obtain o(1/ug,1/uy)o(uy,uq) = 1. This equation, in turn, can be rewritten using
Eq. (7.135) as |y, /ug|"e? (U /tq) = 1. Thus we find that o (U, /tq) = |ug/um|"?, and the final result is
given by (i, tg) = |um ug|”?, i€., the following generalization of the Dykhne’s formula is valid:

jel™> = lugua|"*<|E") . (7.138)
This expression for {|jg|*> is substituted in Eq. (7.134), which takes the following form:
2 2 n/2
My = [<§> Iuduml] My - (7.139)

In optical and infrared spectral ranges it is possible to simplify this equation as it has been done for
Eq. (7.134). Using again the Drude formula (2.1) for the metal dielectric constant and assuming that
0, €< o < w, the following estimate is obtained:

x tanh x

n/2
H __ ’ E
Mum = [Sd(zd/D) n xtanhx:| Mo (7.140)

where the moment M}, is given by Eq. (7.134) and x = d/20 = dw,/2c has the same meaning as in
Eq. (7.134). It follows from Eq. (7.140) that spatial moments of the local magnetic field M, are of
the same order of magnitude as moments of the local electric field ME,, in the limit of the strong
skin effect, i.e., when x > 1.

We can estimate the moments of the local electric and magnetic fields from Egs. (7.134) and
(7.140) for silver-on-glass semicontinuous film with w, =9.1eV, and w, = 0.021eV. Thus the
moments of the local electric field are equal to ME,, ~ (4 x 102"~ 1, so that the field fluctuations are
huge and they are in agreement with the numerical results shown in Figs. 25-28. For sufficient



A.K. Sarychev, V.M. Shalaev | Physics Reports 335 (2000) 275-371 367

200

Fig. 32. Microwave localization. Electric field distribution in a macroscopic copper-dielectric film for 4 = 2.5 cm at metal
concentration p = 0.6. Thickness of the copper spots d = 0.04 mm.

strong skin effect (x > 1) the moments of local magnetic field M}, ~ My, which is also in
agreement with computer results.

At frequencies much smaller than the relaxation rate w, ~ 3.2 x 10'3s™! the silver conductivity
acquires its static value w?/4nw, ~ 10'¥s™!. In this case the moments are given by Eq. (7.133).
Thus for wavelength 2 = 3cm (w/21 = v = 10 GHz) the moments are MY, ~ M%,, ~ (10*)". Thus
we conclude that the local electric and magnetic field strongly fluctuate in a very large frequency
range from the optical down to the microwave and radio spectral ranges. The fluctuations become
even stronger for the microwave and radio bands. This is because for the strong skin effect (when
the penetration depth is much smaller than the size of a metal grain), losses are small in comparison
with the electromagnetic field energy accumulated around the film. This opens a fascinating
possibility to observe the Anderson localization of the surface plasmons in microwave experiments
with localization length in a centimeter scale.

Strong fluctuations of local electric field (see Fig. 32) was obtained in the microwave spectral
range in the experiment [39]. In this experiment the local field was investigated in the macroscopic
copper-dielectric films prepared by the lithographic method. The samples are composed of round
spots made of copper foil and arranged on a plastic substrate. The diameter a of the spots was given
by a = 2mm and thickness d was given by d = 0.04 mm. The microwave properties of the films
were studied at the wavelength 4 = 2.5 cm so that the skin depth ¢ ~ 1.0 um was much less than the
metal thickness d > 6. In the case of regular (periodical) arrangement of the spots the absorptance
A was less than 4 < 5% for any surface concentration p of the copper. For random arrangement
of the spots a wide absorption band was observed around the percolation threshold p.
where absorptance 4 achieves 40%. The local field fluctuations shown in Fig. 32 as well as effective
absorptance in almost loss-free film allow us to speculate that the Anderson localization of the
surface plasmons was observed in the experiment [39].
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