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Abstract

A scaling theory of local "eld #uctuations and optical nonlinearities is developed for random metal-
dielectric composites near a percolation threshold. The theory predicts that in the optical and infrared
spectral ranges the local "elds are very inhomogeneous and consist of sharp peaks representing localized
surface plasmons (s.p.). The localization maps the Anderson localization problem described by the random
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Hamiltonian with both on- and o!-diagonal disorder. The local "elds exceed the applied "eld by several
orders of magnitudes resulting in giant enhancements of various optical phenomena. A new numerical
method based on the developed theory is suggested. This method is employed to calculate the giant "eld
#uctuations and enhancement of various optical processes in 2D metal-dielectric composites } semicontinu-
ous metal "lms. The local "eld #uctuations appear to be highly correlated in space. These #uctuations result
in dramatically enhanced Rayleigh and Raman light scattering. The scaling analysis is performed to describe
the giant light scattering in a vicinity of the percolation threshold. The developed theory describes
quantitatively enhancement of various nonlinear optical processes in percolation composites. It is shown
that enhancement depends strongly on whether nonlinear multiphoton scattering includes an act of photon
subtraction (annihilation). The magnitudes and spectral dependencies of enhancements in optical processes
with photon subtraction, such as Raman and hyper-Raman scattering, Kerr refraction and four-wave
mixing, are dramatically di!erent from those processes without photon subtraction, such as sum-frequency
and high-harmonic generation. Electromagnetic properties of metal-dielectric crystals and composites
beyond the quasistatic approximation are also studied. Equations of macroscopic electromagnetism are
presented for these systems. Both linear and nonlinear optical responses are considered in the case of a strong
skin e!ect in metal grains. It is shown that the magnetic "eld undergoes giant spatial #uctuations. Scaling
properties of the local magnetic "eld and its high-order moments are analyzed. ( 2000 Elsevier Science
B.V. All rights reserved.

PACS: 72.20.!e; 73.20.Mf; 72.15.Gd
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1. Introduction

Local electromagnetic "eld #uctuations and related enhancement of nonlinear optical phe-
nomena in metal-dielectric composites near percolation threshold (percolation composites) have
recently become an area of active studies, because of many fundamental problems involved and
high potential for various applications. At zero frequency, strong nonlinearity may result in
breaking down conducting elements when the electric current exceeds some critical value [1}4]. If
the external electric "eld exceeds some value known as a critical "eld, a crack spreads over the
system. The critical "eld decreases to zero when the concentration of the conducting component
approaches the percolation threshold. This indicates that percolation composites become progress-
ively more responsive to the external "eld when the percolation threshold is approached. The
simplest fuse model can be applied, e.g., for description of fractures in disordered media and related
problem of weak tensility of materials in comparison with the strength of the atomic bonds [5]. The
tension concentrates around weak points of materials and a crack spreads out starting from these
weak points.

Another example of unusual nonlinear behavior has been observed recently for the AC and DC
conductivities in a percolation mixture of carbon particles embedded in the wax matrix [6]. In
this case, neither carbon particles nor wax matrix have any nonlinearity in their conductivities;
nevertheless, the conductivity of a macroscopic composite sample increases twice when the applied
voltage increases by few volts. Such a strong nonlinear response can be attributed to the quantum
tunneling between conducting (carbon) particles, which is a distinguished feature of the electric
transport in composites near the percolation threshold [7]. The current and electric "eld are
concentrated in few `hota junctions and make it possible to change their conductances under
action of the high local "elds, whereas the external "eld is relatively small. In general, percolation
systems are very sensitive to the external electric "eld since their transport and optical properties
are determined by rather sparse network of conducting channels, and the "eld concentrates in the
weak points of the channels. Therefore, composite materials should have much larger nonlinear
susceptibilities at zero and "nite frequencies than those of its constitutes.

The distinct feature of percolation composites, which ampli"es nonlinearities of its components,
has been recognized very early [4,5,8}11], and nonlinear conductivities and susceptibilities have
been intensively studied during the last decade (see, for example, [12}17,140]).

In this review article we consider relatively weak nonlinearities when conductivity p(E) can be
expanded in the power series of the applied electric "eld E, and the leading term, i.e., the linear
conductivity p(1), is much larger than others. This situation is typical for various nonlinearities in
the optical and infrared spectral ranges considered here. Even weak nonlinearities lead to qualitat-
ively new physical e!ects. For example, generation of higher harmonics can be strongly enhanced
in percolation composites and bistable behavior of the e!ective conductivity can occur when the
conductivity switches between two stable values [18]. We note that the `languagesa of nonlinear
currents/conductivities and nonlinear polarizations/susceptibilities (or dielectric constants) are
completely equivalent and they will be used here interchangeably.

The local "eld #uctuations can be strongly enhanced in the optical and infrared spectral ranges
for a composite material containing metal particles that are characterized by the dielectric constant
with negative real and small imaginary parts. Then, the enhancement is due to the surface plasmon
resonance in metallic granules and their clusters [12,14,19,20]. The strong #uctuations of the local
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electric "eld lead to enhancement of various nonlinear e!ects. Nonlinear percolation composites
are potentially of great practical importance [21] as media with intensity-dependent dielectric
functions and, in particular, as nonlinear "lters and optical bistable elements. The optical response
of nonlinear composites can be tuned, for example, by controlling the volume fraction and
morphology of constitutes.

In Refs. [10,22}24] nonlinear optical properties of fractal aggregates of metal particles have been
studied. The main result is that the aggregation of initially isolated particles into fractals results in
huge enhancements of the nonlinear responses within the spectral range of the cluster plasmon
resonances. Typical size a&10 nm of metal particles in fractal clusters is much smaller than the
wavelength j'300nm in the optical and infrared spectral ranges. The average density of particles
in fractals is much smaller than in bulk materials and tends to zero with increasing the fractal size.
With this simpli"cations, it is possible to consider each particle as an elementary dipole and
introduce corresponding interaction operator. Then the problem of the optical response of metal
fractals reduces to diagonalizing the interaction operator for the dipoles induced by light. If the
number of metal particles in a fractal aggregate is not very large the diagonalization of the
interaction operator can be done numerically and thus the local electric "eld can be calculated.
Local "elds #uctuations in metal fractals were studied numerically, for example, in [25}27]. It has
been found that the areas of large "eld #uctuations are localized in di!erent small parts of a fractal
that change with the wavelength.

The prediction of large enhancements of optical nonlinearities in metal fractals has been veri"ed
experimentally for the example of degenerate four-wave mixing and nonlinear refraction and
absorption [22]. Aggregation of initially isolated silver particles into fractal clusters in these
experiments led to a 106-fold enhancement of the e$ciency of the nonlinear four-wave process and
&103 enhanced nonlinear refraction and absorption. The localized and strongly #uctuating local
"elds in fractals were imaged by means of the near-"eld scanning optical microscopy (NSOM) in
[27]. Similar pattern for the "eld distribution was obtained for self-a$ne thin "lms [28] that have
fractal structure of the surface, with di!erent scaling properties in the plane of the "lm and normal
to it.

Enhanced optical processes in composites with layered and other structures were studied by
Sipe, Boyd and their co-workers [29] both theoretically and experimentally. The theoretical
treatment of nonlinear e!ects in composite with parallel slabs microstructure can be performed
analytically due to the rather simple geometry of the system (see also [18]). Nonlinear susceptibili-
ties of some hierarchical structures and periodic composites with shell structure were considered in
[30] and [31], respectively.

In spite of big e!orts and some achievements, outlined above, the local "eld distribution and
corresponding nonlinearities were, till very recently, poorly known for percolation metal-dielectric
composites, in the most interesting spectral range where the plasmon resonances occur in metal
grains. When a small volume concentration p;1 of the nonlinear material is embedded in a linear
host the e!ective nonlinear response of the whole composite can be calculated explicitly [32,33]. As
one could expect the nonlinearities are enhanced at the frequency u

3
corresponding to the plasmon

resonance of a single metal grain. Numerical calculations [34] for a "nite concentration p also give
a considerable enhancement in the narrow frequency range around u

3
. These calculations

also show that the system sizes tractable for the known numerical methods [35] are not enough to
make quantitative conclusions about the nonlinear properties for the frequencies u close to the
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resonance frequency u
3
. Thus the system size ¸ equals to ¸"10 in calculations of Ref. [34],

whereas the local "eld #uctuations have typically much larger spatial separation m
%

for the
frequencies u(u

3
[15,36}48]. Then the system size ¸ is an arti"cial damping factor that cuts o!

all "eld #uctuations with m
%
'¸ and results in the corresponding decrease of the nonlinearities.

To avoid direct numerical calculations, the e!ective medium theory [49] that has the virtue
of mathematical and conceptual simplicity, was extended for the nonlinear response of
percolation composites [12,13,50}55] and fractal clusters [56]. For linear problems, predictions
of the e!ective medium theory are usually sensible physically and o!er quick insight into problems
that are di$cult to attack by other means [12]. The e!ective medium theory, however, has
disadvantages typical for all mean-"eld theories, namely, it diminishes #uctuations in a system.
For example, it assumes that local electric "elds are the same in the volume occupied by
each component of a composite. The electric "elds in di!erent components are determined
self-consistently.

For the static case the results of the last modi"cation of the nonlinear e!ective medium theory
[54,55] are in best agreement with comprehensive computer simulations performed for a two-
dimensional (2D) percolation composite [52,54,55]. The original approach that combines the
e!ective medium theory and spectral representation [12,57] has been developed in Refs. [16,140].
In spite of this success, application of any kind nonlinear e!ective medium theories is rather
questionable for the frequency range corresponding to the plasmon resonances in metal grains. The
"rst computer [15,36}38,40}45,47] and experimental results [39,46,58] for the "eld distribution in
percolation composites show that the local "eld distributions contain sharp peaks with distances
between them much larger than the metal grain size. This pattern agrees qualitatively with
numerical calculations and experimental results for metal fractals [25,27,59,60] and self-a$ne "lms
[28]. Therefore, the local electric "eld by no means can be considered as the same in all metal grains
of the composite. Then the main assumption of the e!ective medium theory fails for the frequency
range corresponding to the plasmon resonance in the "lms.

A new theory of electromagnetic "eld distribution and nonlinear optical processes in metal-
dielectric composites has been developed recently [15,36}48]. The new approach is based on
a percolation theory and the fact that the problem of optical excitations in percolation composites
mathematically maps the Anderson transition problem. The theory predicts localization of surface
plasmons (s.p.) in percolation composites and describes in detail the localization pattern. It is
shown that the s.p. eigenstates are localized on the scale much smaller than the wavelength of an
incident light. The s.p. eigenstates with eigenvalues close to zero (resonant modes) are excited most
e$ciently by the external "eld. Since the eigenstates are localized and only a small portion of them
are excited by the incident beam, the overlapping of the eigenstates can typically be neglected and
that signi"cantly simpli"es theoretical considerations and allows one to obtain relatively simple
expressions for enhancements of linear and nonlinear optical responses. It is important to stress
that the s.p. localization length is much smaller than the light wavelength; in that sense, the
predicted sub-wavelength localization of the s.p. di!ers from the well-known localization of light
due to strong scattering in a random homogeneous medium [61].

We also note that the developed scaling theory of optical nonlinearities in percolation com-
posites opens new means to study the classical Anderson problem, taking advantage of unique
characteristics of laser radiation, namely, its coherence and high intensity. For example, the
new theory predicts that at percolation there is a minimum in nonlinear optical responses of
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metal-dielectric composites, the fact that follows from the Anderson localization of s.p. modes and
can be studied and veri"ed in laser experiments.

The rest of the paper is organized as follows. In Section 2, we consider local "elds and their
high-order moment distributions in percolation composites. We also show there that the "eld
distribution maps the Anderson localization problem in quantum mechanics and employ this fact
to describe in detail a localization pattern of s.p. modes. The mapping and scaling arguments are
used to obtain the "eld high-order moments and their dependencies on the frequency of an incident
wave and metal concentration, for arbitrary optical nonlinearity. Our numerical approach and
computer results for the local "elds are described in Section 3. In Section 4 we consider light
scattering (Rayleigh scattering) from two-dimensional (2D) metal-dielectric composites also
known as semicontinuous metal "lms. It is generally accepted that #uctuations are especially
strong in 2D systems. Therefore, we speculate that enhancement of di!erent optical e!ects
due to the local "eld #uctuations are especially large in semicontinuous metal "lms. In Section 5
we present self-consistent, general theory of Raman scattering in inhomogeneous media.
The results of this theory are used to "nd surface-enhanced Raman scattering in semicontinuous
metal "lms. Hyper-Raman scattering is also discussed in this section. In Section 6, we calculate
enhancement factors for a number of nonlinear optical processes, including Kerr-type nonlinear
refraction and absorption and nth harmonic generation. We show that most of the enhancement
originates from strongly localized nanometer-scale areas, where the local electric "eld has its
maxima. Enhancements in these `hot zonesa are giant and exceed a `backgrounda nonlinear
signal by many orders of magnitude. In Section 7 we generalize our approach for the case
when the local electromagnetic "eld cannot be considered as a potential "eld (even on a `micro-
scopicala scale), i.e., when the skin e!ect is strong. Two di!erent classes of metal-dielectric
systems will be analyzed, percolation composites and arti"cial electromagnetic crystals }
three-dimensional periodic metal structures [62,63]. We show that the electromagnetic
properties of the composites and electromagnetic crystals can be understood in terms of
e!ective dielectric constant and magnetic permeability as soon as the wavelength of the
incident wave is much larger than an intrinsic spatial scale of the system. The most interesting
e!ects we expect in the limit of wavelength vanishing inside the metal, that is in the limit
of the strong skin e!ect. Thus e!ective dielectric constant becomes negative in some metal-
dielectric crystals.

2. Scaling theory of 5eld 6uctuations and high-order 5eld moments

In metal-dielectric percolation composites the e!ective DC conductivity p
%

decreases with
decreasing the volume concentration of metal component p and vanishes when the concentration
p approaches concentration p

c
known as a percolation threshold [12,20,64]. In the vicinity of the

percolation threshold p
c
, the e!ective conductivity p

%
is determined by an in"nite cluster of

percolating (conducting) channels. For concentration p smaller than the percolation threshold p
c
,

the e!ective DC conductivity p
%
"0, that is the system is a dielectric like. Therefore,

metal}insulator transition takes place at p"p
c
. Since the metal-insulator transition associated

with percolation represents a geometric phase transition one can anticipate that the current and
"eld #uctuations are scale invariant and large.
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In percolation composites, however, the #uctuation pattern appears to be quite di!erent from
that for a second-order transition, where #uctuations are characterized by the long-range correla-
tion, and their relative magnitudes are of the order of unity, at any point of a system [65,66]. In
contrast, for a DC percolation, local electric "elds are concentrated at the edges of large metal
clusters so that the "eld maxima (large #uctuations) are separated by distances of an order of the
percolation correlation length m

1
, which diverges when the metal volume concentration p ap-

proaches the percolation threshold p
c

[34,64,67].
We show below that the di!erence in #uctuations becomes even more striking in the optical

spectral range, where the local "eld peaks have the resonance nature and, therefore, their relative
magnitudes can be up to 105, for the linear response, and 1020 and more, for nonlinear responses,
with distances between the peaks much larger than the percolation correlation length m

1
.

In the optical and infrared spectral ranges, the surface plasmon resonances play a crucial role in
metal-dielectric composites. To get an insight into the high-frequency properties of metals, we "rst
consider a simple model known as a Drude metal that reproduces semi-quantitatively the basic
optical properties of a metal. In this approach, the dielectric constant of metal grains can be
approximated by the Drude formula

e
.
(u)"e

"
!(u

1
/u)2/[1#iuq/u] , (2.1)

where e
"

is the contribution to e
.

due to the inter-band transitions, u
1

is the plasma frequency, and
uq"1/q;u

1
is the relaxation rate. In the high-frequency range considered here, losses in metal

grains are relatively small, uq;u. Therefore, the real part e@
.

of the metal dielectric function e
.

is
much larger (in modulus) than the imaginary part eA

.
(De@

.
D/eA

.
+u/uq<1), and e@

.
is negative for the

frequencies u less than the renormalized plasma frequency,

u8
1
"u

1
/Je

"
. (2.2)

Thus, the metal conductivity p
.
"!iue

.
/4p+(e

"
u8 2

1
/4pu)[i(1!u2/u8 2

1
)#uq/u] is character-

ized by the dominant imaginary part for u8
1
'u<uq , i.e., it is of inductive character. Therefore,

the metal grains can be thought of as inductances ¸, while the dielectric gaps can be represented
by capacitances C. Then, the percolation composite represents a set of randomly distributed ¸ and
C elements. The collective surface plasmons excited by the external "eld, can be thought of as
resonances in di!erent ¸}C circuits, and the excited surface plasmon eigenstates are seen as giant
#uctuations of the local "eld. The discussion below of the giant "eld #uctuations is based on the
recent works [46}48].

2.1. Local xeld distribution in percolation composites with e
$
"!e@

.

We suppose that a percolation composite is illuminated by light and consider local optical "eld
distributions. A typical metal grain size a in the percolation nanocomposites is about few
nanometers [14] and that is much smaller than the wavelength j of the light in the visible and
infrared spectral ranges. When wavelength j is much larger than the particle size a we can
introduce potential /(r) for the local electric "eld. Then the local current density j can be written as
j(r)"p(r)(!+/(r)#E

0
), where E

0
is the applied "eld and p(r) is the local conductivity. In the

considered quasistatic case the "eld distribution problem reduces to solution of the Poisson
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equation, representing the current conservation law div j"0, namely

+ ) (p(r)[!+/(r)#E
0
])"0 , (2.3)

where the local conductivity p(r) takes either p
.

or p
$

values, for metal and dielectric components,
respectively. It is convenient to rewrite Eq. (2.3) in terms of the local dielectric constant
e(r)"4pip(r)/u as follows:

+ ) [e(r)+/(r)]"E , (2.4)

where E"+ ) [e(r)E
0
]. The external "eld E

0
can be chosen real, while the local potential /(r) takes

complex values since the metal dielectric constant e
.

is complex e
.
"e@

.
#ieA

.
in the optical and

infrared spectral ranges. Because of di$culties in "nding solution to the Poisson Eq. (2.3) or (2.4),
a great deal of use has been made of the tight binding model in which metal and dielectric particles
are represented by metal and dielectric bonds of a cubic lattice. After such discretization, Eq. (2.4)
acquires the form of Kirchho! 's equations de"ned on a cubic lattice [12]. We write the Kirchho! 's
equations in terms of the local dielectric constant and assume that the external electric "eld E

0
is

directed along `za axis. Thus we obtain the following set of equations:

+
j

e
ij
(/

j
!/

i
)"+

j

e
ij
E
ij

, (2.5)

where /
i

and /
j

are the electric potentials determined at the sites of the cubic lattice and the
summation is over the nearest neighbors of the site i. The electromotive force (EMF) E

ij
takes value

E
0
a
0
, for the bond SijT in the positive z direction (where a

0
is the spatial period of the cubic lattice)

and !E
0
a
0
, for the bond SijT in the !z direction; E

kj
"0 for the other four bonds at the site i.

Thus the composite is modeled by a resistor}capacitor}inductor network represented by Kir-
chho! 's equations (2.5). The EMF forces E

ij
represent the external electric "eld applied to the

system.
In transition from the continuous medium described by Eq. (2.3) to the random network

described by Eq. (2.5) we suppose, as usual [12,20,64], that bond permittivities e
ij

are statistically
independent and set a

0
equal to the metal grain size, a

0
"a. In the considered case of two

component metal-dielectric random composite, the permittivities e
ij

take values e
.

and e
$
, with

probabilities p and 1!p, respectively. Assuming that the bond permittivities e
ij

in Eq. (2.5) are
statistically independent, we considerably simplify computer simulations as well as analytical
consideration of local optical "elds in the composite. We note that important critical properties are
universal, i.e. they are independent of details of a model, e.g., of possible correlations of permittivi-
ties e

ij
in di!erent bonds.

For further consideration we assume that the cubic lattice has a very large but "nite number of
sites N and rewrite Eq. (2.5) in matrix form with the `Hamiltoniana HK [46}48] de"ned in terms of
the local dielectric constants,

HK /"E , (2.6)

where / is a vector of the local potentials /"M/
1
, /

2
,2, /

N
N determined in all N sites of the

lattice, vector E equals to E
i
"+

j
e
ij
E

ij
, as it follows from Eq. (2.5). The Hamiltonian HK is an N]N

matrix that has o!-diagonal elements H
ij
"!e

ij
and diagonal elements de"ned as H

ii
"+

j
e
ij
,
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where j refers to the nearest neighbors of site i. The o!-diagonal elements H
ij

take values e
$
'0 and

e
.
"(!1#ii)De@

.
D with probability p and 1!p, respectively. The loss factor i"eA

.
/De@

.
D is small,

i;1. The diagonal elements H
ii

are distributed between 2de
.

and 2de
$
, where d is the dimen-

sionality of the space (2d is the number of the nearest neighbors in d dimensional cubic lattice).
It is convenient to represent the Hamiltonian HK as a sum of two Hermitian Hamiltonians

HK "HK @#iiHK A, where the term iiHK A (i;1) represents losses in the system. The Hamiltonian HK @
formally coincides with the Hamiltonian of the problem of metal}insulator transition (Anderson
transition) in quantum systems [68}71]. More speci"cally, the Hamiltonian HK @ maps the quan-
tum-mechanical Hamiltonian for the Anderson transition problem with both on- and o!-diagonal
correlated disorder. Since the o!-diagonal matrix elements in HK @ have di!erent signs, the Hamil-
tonian is similar to the so-called gauge-invariant model. This model, in turn, is a simple version
of the random #ux model, which represents a quantum system with random magnetic "eld [68]
(see also recent numerical studies [72}74]). Hereafter, we refer to operator HK @ as to Kirchho! 's
Hamiltonian (KH).

Thus, the problem of the "eld distribution in the system, i.e., the problem of "nding solution to
Kirchho! 's Eqs. (2.5) or (2.6), becomes the eigenfunction problem for the KH, HK @W

n
"K

n
W

n
,

whereas the losses can be treated as perturbation.
Since the real part e@

.
of metal dielectric function e

.
is negative, e@

.
(0, and the permittivity of

dielectric host is positive, e
$
'0, the manifold of the KH eigenvalues K

n
contains eigenvalues

which have the real parts equal (or close) to zero. Then eigenstates W
n

that correspond to
eigenvalues DK

n
D;De

.
D, De

$
D are strongly excited by the external "eld and seen as giant "eld

#uctuations, representing the resonant s.p. modes. If we assume that the eigenstates excited by the
external "eld are localized, they should look like local "eld peaks. The average distance between
the "eld peaks can be estimated as a(N/n)1@d, where n is the number of the KH eigenstates excited by
the external "eld and N is the total number of the eigenstates.

Now we consider in more detail the behavior of the eigenfunctions W
n

of the HK HK @, in the
special case when e@

.
"!e

$
, corresponding to the plasmon resonance of individual particles in

a 2D system. Since a solution to Eq. (2.5) does not change when multiplying e
.

and e
$

by the same
factor, we can normalize the system and set e

$
"!e

.
"1. We also suppose for simplicity that the

metal concentration p"0.5.
According to the one-parameter scaling theory the eigenstates W

n
are all localized for the 2D

case (see, however, discussion in [71,75]). On the other hand, it was shown in computer simulations
[76] that there is a transition from chaotic [77,78] to localized eigenstates for the 2D Anderson
problem [76], with an intermediate crossover region. We consider "rst the case when metal
concentration p is equal to the percolation threshold p

c
"1/2 for the 2D bond percolation

problem. Then the on-diagonal disorder in the KH HK @ is characterized by SH@
ii
T"0, SH@

ii
2T"4

that corresponds to the chaos-localization transition [76]. The KH has also strong o!-diagonal
disorder, SH@

ij
T"0 (iOj), which favors localization [72,73]. Our conjecture is that eigenstates

W
n

are localized for all K
n

in the 2D system. (We cannot rule out a possibility of inhomogeneous
localization, similar to that obtained for fractals [25], or the power-law localization [68,79]; note,
however, that these possibilities are in strong disagreement with the one-parameter scaling theory.)

In the considered case of e
$
"!e

.
"1 and p"1/2, all parameters in the KH HK @ are of the

order of unity and its properties do not change under the transformation e
$
Q e

.
. Therefore, the

real eigenvalues K
n
are distributed symmetrically with respect to zero, in an interval of the order of
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one. The eigenstates with K
n
+0 are e!ectively excited by the external "eld and represent the giant

local "eld #uctuations. When metal concentration p decreases (increases), the eigenstates with
K

n
+0 are shifted from the center of the distribution toward its lower (upper) edge, which typically

favors localization. Because of this, we assume that the eigenstates, or at least those with K
n
+0,

are localized, for all metal concentrations p in the 2D case.
Despite the great e!ort and all the progress made, the Anderson transition is not yet fully

understood in the 3D case and very little is known about the eigenfunctions of the Anderson
Hamiltonian, even in the case of a diagonal disorder only [68}71,80]. We mention here recent
computer simulations [74] for a 3D system similar to our system with e

$
"!e

.
"1, p"1/2. The

authors of [74] investigate the Anderson problem with diagonal matrix elements w
ii

distributed
uniformly around zero !w

0
/24w

ii
4w

0
/2 and o!-diagonal elements t

ij
"exp (i/

ij
), with phases

/
ij

also distributed uniformly 04/
ij
42p. It was found that in the center of the band, the states

are localized for the disorder w
0
'w

#
"18.8. In our 3D HK HK @ Hamiltonian, the diagonal

elements are distributed as !64H
ii
46 and, therefore, the diagonal disorder is smaller than the

above critical disorder w
#
. On the other hand, our o!-diagonal disorder is stronger than in

calculations [74]. It is shown [72,73] that even small o!-diagonal disorder strongly enforces
localization. We conjecture here that the eigenstates corresponding to the eigenvalues K

n
+0 in the

3D case are also localized for all p.
Suppose we found all eigenvalues K

n
and eigenfunctions W

n
of HK @. Then we can express the

potential / in Eq. (2.6) in terms of the eigenfunctions as /"+
n
A

n
W

n
and substitute it in Eq. (2.6).

Thus we obtain the following equation for coe$cients A
n
:

(iib
n
#K

n
)A

n
#ii +

mEn

(W
n
DHK ADW

m
)A

m
"E

n
, (2.7)

where b
n
"(W

n
DHK ADW

n
), and E

n
"(W

n
DE) is a projection of the external "eld on eigenstate W

n
. (The

product of two vectors, e.g., W
n

and E is de"ned here in a usual way, as E
n
"(W

n
DE),+

i
WH

n,i
E

i
,

where the sum is over all lattice sites.) Since all parameters in the real Hamiltonian HK @ are of the
order of unity, the matrix elements b

n
are also of the order of unity. We approximate them by some

constant b, which is about unity. We suggest that eigenstates W
n

are localized within spatial
domains m

A
(K), where m

A
(K) is the Anderson localization length, which depends on the eigenvalue

K. Then, the sum in Eq. (2.7) converges and it can be treated as a small perturbation. In the zeroth
approximation,

A(0)
n

"E
n
/(K

n
#iib) . (2.8)

The "rst-order correction to A
n

is equal to

A(1)
n

"!ii +
mEn

(W
n
DHK ADW

m
)E

m
/(K

m
#iib) . (2.9)

For iP0, most important eigenstates in this sum are those with DK
m
D4bi. Since the eigen-

states K
n

are distributed in the interval of the order of unity the spatial density of the
eigenmodes with DK

m
D4bi vanishes as a~diP0 at iP0. Therefore A(1)

n
is exponentially

small DA(1)
n

D&D+
mEn

(W
n
DHK ADW

m
)E

m
/b

m
DJexpM![a/m

A
(0)]i~1@dN and can be neglected when
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i;[a/m
A
(0)]d. Then, the local potential / is equal to /(r)"+

n
A(0)

n
W

n
"+

n
E

n
W

n
(r)/(K

n
#iib)

[see Eq. (2.8)] and the #uctuating part of the local "eld E
&
"!+/(r) is given by

E
&
(r)"!+

n

E
n
+W

n
(r)/(K

n
#iib) , (2.10)

where the nabla operator + is understood as a lattice operator. The average "eld intensity is as
follows:

SDED2T"SDE
&
#E

0
D2T"DE

0
D2#T+

n,m

E
n
EH

m
(+W

n
(r) )+WH

m
(r))

(K
n
#iib)(K

m
!iib) U , (2.11)

where we took into account that SE
&
T"SEH

&
T"0. We consider now the eigenstates W

n
with

eigenvalues K
n

within a small interval DK
n
!KD4*K;i centered at K. These states are denoted

as W
n
(K, r). Recall that the eigenstates are assumed to be localized so that eigenfunctions W

n
(K, r)

are well separated in space. The average distance between them, l, can be estimated as
l(*K)&a(o(K)*K)~1@d, where

o(K)"ad+
n

d(K!K
n
)/< (2.12)

is the dimensionless density of states for the KH HK @ and < is the volume of the system. We assume
here that the metal concentration p is about one-half so that all quantities in the KH HK @ are about
unity and, therefore, the density of states o(K) is also about unity at the center of the spectrum, i.e.,
at K"0. Then the distance l(*K) can be arbitrary large for *KP0; we assume, of course, that
l(*K) is still much smaller than the system size, and the total number of eigenstates W

n
(K, r) is

macroscopically large. When the interstate distance l(*K) is much larger than the localization
length m

A
(K) the localized eigenfunctions W

n
(K, r) can be characterized by spacial positions of their

`centersa r
n

so that W
n
(K, r)"W(K, r!r

n
) and Eq. (2.11) acquires the following form:

SDED2T"DE
0
D2# +

K
1 ,K2

S+
n,m

E
n
EH
m
(+W(K

1
, r!r

n
) )+WH(K

2
, r!r

m
))T

(K
1
#iib)(K

2
!iib)

, (2.13)

where the "rst sum is over positions of the intervals DK
n
!K

1
D and DK

m
!K

2
D in the K space,

whereas the sum in the numerator is over spatial positions r
n
and r

m
of the eigenfunctions. For each

realization of a macroscopically homogeneous random "lm, the positions r
n

of eigenfunctions
W(K, r!r

n
) take new values that do not correlate with the value of K. Therefore, we can

independently average the numerator in the second term of Eq. (2.13) over positions r
n

and r
m

of
eigenstates W

n
and W

m
. Taking into account that S+W

n
(r)T"0, we obtain

SE
n
EH

m
(+W(K

1
, r!r

n
) )+WH(K

2
, r!r

m
))TKSDE

n
D2D+W(K

1
, r!r

n
)D2TdK

1
K

2
d
nm

, (2.14)

where we neglected possible correlations of eigenfunctions from di!erent intervals K
1

and K
2

since
the spatial density of the eigenfunctions excited e!ectively by the external "eld is estimated as
a~do(K)i, i.e. it vanishes for iP0. Substitution of Eq. (2.14) in Eq. (2.11) results in

SDED2T"DE
0
D2#+

K

+
n
DE

n
D2SD+W

n
(K, r)D2T

K2#(bi)2
. (2.15)
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The localized eigenstates are not in general degenerate, so that the eigenfunctions W
n
can be chosen

as real, i.e., W
n
"WH

n
. Then we can estimate DE

n
D2"D(W

n
DE)D2"D+N

i/1
W

n,i
E

i
D2 in Eq. (2.15) by

replacing the sum over all N sites of the system with integration over the system volume <, which
gives DE

n
D2&a~2dD:W

n
EdrD2. Using Eqs. (2.5) and (2.4), we "nd

DE
n
D2&a4~2dKPWn

(E
0
)+e) drK

2
"a4~2dKPe(E0

)+W
n
) drK

2
, (2.16)

where to obtain the last relation we integrated by parts and took into account that the eigenstates
W

n
are localized within the localization length m

A
(K). Since the local dielectric constants DeD are

of the order of unity, DeD&1, and the spatial derivative +W
n

is estimated as W
n
/m

A
(K) in Eq. (2.16),

we "nd

DE
n
D2&

DE
0
D2a4

a2dm2
A
(K) KPWn

(r) drK
2
&

DE
0
D2a4

m2
A
(K) K

N
+
i/1

W
n,i K

2
, (2.17)

where we returned to summation over sites of the tight binding model. Because the eigenfunctions
W

n
are normalized to unity, i.e., SW

n
DW

n
T"+N

i/1
DW

n,i
D2"1 and localized within m

A
(K) we estimate

them as W
n,i
&[m

A
(K)/a]~d@2 in the localization domain. Substituting this estimate in Eq. (2.17) we

obtain

DE
n
D2&DE

0
D2a2[m

A
(K)/a]d~2 . (2.18)

In a similar way we can estimate the average spatial derivative in the numerator of Eq. (2.15),

SD+W
n
(K, r)D2T&m~2

A
(K)SDW

n
(K, r)D2T&m~2

A
(K)N~1

N
+
i/1

DW
n,i

D2&m~2
A

(K)/N , (2.19)

where N"</ad is the total number of sites. Now we use the estimates (2.18) and (2.19) and rewrite
the numerator of Eq. (2.15) as

+
n

DE
n
D2SD+W

n
(K, r)D2T&

1
N

+
n

DE
0
D2[m

A
(K)/a]d~4&DE

0
D2[m

A
(K)/a]d~4o(K)*K , (2.20)

where we took into account the fact that the total number of the eigenstates within interval *K is
equal to No(K)*K. By substituting (2.20) in Eq. (2.15) and replacing the summation by integration
over K, we obtain the following estimate for the "eld intensity:

SDED2T&DE
0
D2#DE

0
D2P

o(K)(a/m
A
(K))4~d

K2#(bi)2
dK . (2.21)

Since all matrix elements in KH H@ are of the order of unity (in fact, the o!-diagonal elements are
$1), the density of states o(K) and localization length m

A
(K) change signi"cantly within an interval

of an order of one. In contrast, the denominator in Eq. (2.15) has an essential singularity at
K"$ibi. Then the second moment of the local electric "eld M

2
,M

2,0
"SDED2T/DE

0
D2 is

estimated as

Mw

2
&1#o(a/m

A
)4~dP

1
K2#(bi)2

dK&o(a/m
A
)4~di~1<1 , (2.22)
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provided that i;o(a/m
A
)4~d (we set m

A
(K"0),m

A
, o(K"0),o and approximated b by unity).

Thus the "eld distribution, in this case, can be described as a set of the KH eigenstates localized
within m

A
, with the "eld peaks having the amplitudes

Ew

.
&E

0
i~1(a/m

A
)2 , (2.23)

which are separated in distance by the "eld correlation length

mw

%
&a(oib)~1@d&a(oi)~1@d , (2.24)

where again we used that b&1. All the above speculations leading to Eqs. (2.22)}(2.24) hold when
the "eld correlation length mw

%
is much larger than the Anderson localization length, i.e., mw

%
<m

A
.

This condition is ful"lled in the limit of small losses when iP0.
Note that hereafter by the superscript w we mark the "elds and spatial scales that are given for

the special case !e
.
"e

$
"1 considered here (this sign w, of course, should not be confused with

the complex conjugation, denoted by *). Using the scale renormalization described in Section 2.3,
we will see how these quantities are transformed when De

.
/e

$
D<1, i.e., in the long wavelength part

of the spectrum. Note also that, for m
A

and o we omit the w sign in order to avoid complicated
notations; it is implied that their values are always taken at !e

.
"e

$
"1, even if the case of

De
.
/e

$
D<1 is considered.

In the above estimates we supposed that the localization length m
A

is proportional to the
eigenstate `sizea. This assumption might not be exact for the Anderson system, in general (e.g.,
see discussion in [68]), but it is con"rmed well by numerical calculations (see Figs. 1 and 2) for the
case of 2D percolation composites.

Above we assumed that metal concentration p is about one-half, which corresponds to the
percolation threshold for d"2. The derivation of Eqs. (2.21) and (2.22) was based on the
assumption that the density of states o(K) is "nite and about unity for K"0. This assumption,
however, is violated for small metal concentration p, when the eigenvalue distribution
shifts to the positive side of K so that the eigenstates with K+0 are shifted to the lower edge
of the distribution. Then, the density of states o in Eq. (2.22) becomes a function of the
metal concentration p. In the limit of pP0, the number of states e!ectively excited by the external
"eld is proportional to the number of metal particles. Then the function o(p) can be estimated as
o(p)&p, for pP0. The same consideration holds in the other limit, when a small portion of holes
in otherwise continuous "lm resonate with the external "eld and the density of states can be
estimated as o(p)&1!p, for pP1. When the density of states decreases, localization becomes
stronger and we estimate the localization length m

A
as m

A
(K"0, pP0)&m

A
(K"0, pP1)&a.

This behavior of the "eld #uctuations is best illustrated in Fig. 1a}g where the results of our
computer simulation are shown for 2D composites } semicontinuous metal "lms. When the metal
concentration pP0 or pP1 the number of the "eld maxima decreases while the peaks become
progressively sharper. It is seen from Fig. 1 and also follows then from Eq. (2.22) that strong
"eld #uctuations (M

2
'1) exist in a metal-dielectric composite with e

$
"!e@

.
in the wide

concentration range

i(p(1!i, i;1 . (2.25)
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Fig. 1. Distribution of the local "eld intensities DE(x, y)D2/DE
0
D2 on a metal (silver) semicontinuous "lm for

e@
.
"e

$
"!2.2 (j+365 nm) at di!erent metal concentrations, p. (a) p"0.001, (b) p"0.01, (c) p"0.1, (d) p"0.5,

(e) p"0.9, (f ) p"0.99, and (g) p"0.999.
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Fig. 2. Distribution of the local "eld intensities DE(x, y)D2/DE
0
D2 in a semicontinuous "lm at the percolation threshold for

di!erent wavelengths; (a): j"0.5lm, (b): j"1.5lm, (c): j"10lm, and (d): j"20 lm.

Although we estimated the above local "elds for the special case of e
$
"!e@

.
all the above

speculations, which are based on the assumption that the eigenstates of KH are localized, hold in
a more general case, when the real part of the metal dielectric constant e@

.
is negative and its

absolute value is of the order of e
$
. The important case of the large contrast when De

.
D<e

$
will be

considered in Section 2.3.
Note that the above speculations leading to prediction of giant "eld #uctuations described by

Eqs. (2.21) and (2.22), do not require long-range spatial correlations (such, for example, as in fractal
structures) in particle positions. The large "eld #uctuations have been seen in computer simula-
tions, in particular, for the so-called random gas of metal particle [26,24], i.e., for metal particles
randomly distributed in space. This, however, is not true when the contrast is large De

.
D<e

$
; we

show below that in this case the internal structure of a composite becomes crucial.

2.2. High-order moments of local electric xelds

Now we consider arbitrary high-order "eld moments de"ned as

M
n,m

"

1
<Em

0
DE

0
DnPDE(r)DnEm(r) dr (2.26)
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where, as above, E
0
,E(0) (both notations are used interchangeably) is the amplitude of the

external "eld and E(r) (which is de"ned so that E2(r),E(r) )E(r)) is the amplitude of the local "eld;
the integration is over the total volume < of a system. The moments M

n,0
we will denote, for

simplicity, as

M
n
,M

n,0
"

1
<DE

0
DnPDE(r)Dndr . (2.27)

It is assumed that the volume average in Eqs. (2.26) and (2.27) is equivalent to the ensemble average,
i.e., M

n,m
"SDEDnEmT/Em

0
DE

0
Dn.

The high-order "eld moment M
2k,m

JSEk`mEHkT represents a nonlinear optical process in
which in one elementary act k#m photons are added and k photons are subtracted (annihilated)
[81,82]. This is because the complex conjugated "eld in the general expression for the nonlinear
polarization implies photon subtraction, so that the corresponding frequency enters the
nonlinear susceptibility with the sign minus. Enhancement of the Kerr optical nonlinearity G

K
is

proportional to M
2,2

, third-harmonic generation (THG) enhancement is given by DM
0,3

D2,
and surface-enhanced Raman scattering (SERS) is represented by M

4,0
(see Sections 4}6).

The integrands in Eq. (2.26) for M
2,2

and M
0,3

, i.e., the local nonlinear "eld sources
g
3
"(E(r))2E(r)/E

0
(E

0
)2 (THG) and g

K
"DE(r)D2E2(r)/E2

0
DE

0
D2 (Kerr optical e!ect) are shown in

Figs. 3 and 4.
We are interested here in the case when M

n,m
<1 which implies that the #uctuating part

of the local electric "eld E
&

is much larger than the applied "eld E
0
. It is suggested, for

simplicity, that the applied "eld is real and E
0
"1. We substitute in Eq. (2.26) the expression for

E
&

given by Eq. (2.10) and obtain for the moment M
2p,2q

(p and q are integers) the following
equation:

M
2p,2q

"T
N
+

n1 ,n2 ,2,n2p _ m1 ,m2 ,2m2q

E
n1
E

n2
(+W

n1
)+WH

n2
)2E

n2p~1
E

n2p
(+W

n2p~1
)+WH

n2p
)

(K
n1
#ibk)(K

n2
!ibk)2(K

n2p~1
#ibk)(K

n2p
!ibk)

]
E

m1
E

m2
(+W

m1
)+W

m2
)2E

m2q~1
E

m2q
(+W

m2q~1
)+W

m2q
)

(K
m1

#ibk)(K
m2

#ibk)2(K
m2q~1

#ibk)(K
m2q

#ibk)U , (2.28)

where S2T denotes as above the ensemble average, which is equivalent to the volume average
and the sums are over all eigenstates of KH HK @. As a next step, we average Eq. (2.28) over spatial
positions of eigenstates W

n
(r),W(r!r

n
) as done in transition from Eq. (2.13) to Eq. (2.15). This

results in the following estimate:

M
2p,2q

&+
K

+
@Kn~K@y*K DE

n
D2pE2q

n
S(+W

n
)+WH

n
)p(+W

n
)+W

n
)qT

(K2#(bk)2)p(K#ibk)2q
, (2.29)

where the summation in the numerator is over eigenfunctions W
n
"W(K, r!r

n
) with eigenvalues

within the interval DK
n
!KD4*K;i, while the external sum is over positions K of the intervals

that cover the whole range of eigenvalues K
n
. The average in the numerator of Eq. (2.29) can be
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Fig. 3. Distribution of the x component of the local `third harmonic "elda (real part) g@
3
"Re[E2(r)E

x
(r)] in semicon-

tinuous silver "lms at wavelength j"1.5lm, for di!erent metal concentration p. (a1 and a2): p"0.3; (b1 and b2):
p"p

c
"0.5; (c1 and c2): p"0.7. The positive (a1, b1, c1) and negative (a2, b2, c2) values of the local nonlinear "elds are

shown in di!erent "gures. The applied "eld E
0
"1.

estimated as follows [see derivation of Eq. (2.19)]:

S(+W
n
)+WH

n
)p(+W

n
)+W

n
)qT&

1
Nm2(p`q)

A
(K)

N
+
i/1

DW
n,i

D2pW2q
n,i

&

1
Nm2(p`q)

A
(K)C

a
m
A
D

d(p`q~1)
, (2.30)
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Fig. 4. Distribution of the local `Kerr "elda (real part) g@
K
"Re[E2(r)DE(r)D2] in semicontinuous silver "lms at wavelength

j"1.5lm, for di!erent metal concentration p. (a1 and a2): p"0.3; (b1 and b2): p"p
c
"0.5; (c1 and c2): p"0.7. The

positive (a1, b1, c1) and negative (a2, b2, c2) values of the local "elds are shown in di!erent "gures. The applied "eld E
0
"1.

where, as above, m
A
(K) is the localization length, a is the period of the square lattice in the tight

binding model [see discussion after Eq. (2.5)], and N is the total number of cites in the lattice. We
substitute this equation and expression for E

n
given by Eq. (2.18) in Eq. (2.29). Then the sum in the

numerator of Eq. (2.29) takes the following form

+
@Kn~K@y*K

DE
n
D2pE2q

n
S(+W

n
)+WH

n
)p(+W

n
)+W

n
)qT&o(K)[a/m

A
(K)]4(p`q)~d*K , (2.31)
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where o(K) is the dimensionless density of states [see Eq. (2.12)]. By replacing the "rst sum in
Eq. (2.29) by integration over the spectrum we obtain

M
2p,2q

&P
o(K)[a/m

A
(K)]4(p`q)~d

[K2#(bi)2]p(K#ibi)2q
dK . (2.32)

Note that to obtain the above expression we neglected all cross-terms in the product of eigenstates,
when averaging Eq. (2.28) over the spatial positions of the eigenfunctions W

n
"W(K, r!r

n
). It can

be shown that after integrating over K, these cross-terms result in negligible [in comparison with
the leading term given by Eq. (2.32)] contribution to M

n,m
, for iP0.

Assuming that the density of states o(K) and the localization length m
A
(K) are both smooth

functions of K in the vicinity of zero and taking into account that all parameters of the KH HK @ for
the case e

$
"!e@

.
"1 are of the order of one, we obtain the following estimate for the local "eld

moments:

Mw

n,m
&o(p)(a/m

A
(p))2(n`m)~di~n~m`1 , (2.33)

for n#m'1 and m'0, where we set for simplicity b"1. Note that the same estimate can be
obtained by considering the local "elds as a set of peaks (stretched over the distance m

A
), with the

magnitude Ew

.
and the average distance mw

%
between the peaks given by Eqs. (2.23) and (2.24). Recall

that the superscript w denotes physical quantities de"ned in the system with e
$
"!e@

.
"1. In

Eq. (2.23) we indicated explicitly the dependence of the density of states o(p) and localization length
m
A
(p) on the metal concentration p (as mentioned above o(p) and m

A
(p) are always given at

e
$
"!e@

.
"1 and the sign w for them is omitted). The notations o(p) and m

A
(p) should be

understood as o(p)"o(p,K"0) and m
A
(p)"m

A
(p, K"0), i.e., they are given at the eigenvalue

K"0.
The Anderson localization length m

A
(K) has typically its maximum at the center of the distribu-

tion of the eigenvalues K [74]. When p departs from 1/2, the value K"0 moves from the center of
the K-distribution toward its wings, where the localization is typically stronger (i.e., m

A
is less).

Therefore, it is plausible to suggest that m
A
(p) reaches its maximum at p"1/2 and decreases toward

p"0 and p"1, so that the absolute value of the local "eld moments may have a minimum at
p"1/2, according to Eq. (2.23). In 2D composites the percolation threshold p

c
is typically close to

p
c
K0.5. Therefore, the moments M

n,m
in 2D composites have a local minimum at the percolation

threshold as a function of the metal concentration p. In accordance with this, the amplitudes of
various nonlinear processes, while much enhanced, have a characteristic minimum at the percola-
tion threshold. This localization minimum becomes more and more profound for higher optical
processes.

It is important to note that the moment magnitudes in Eq. (2.33) do not depend on the number of
`subtracteda (annihilated) photons in one elementary act of the nonlinear scattering. If there is
at least one such photon, then the poles in Eq. (2.32) are in di!erent complex semi-planes and the
result of the integration is estimated by Eq. (2.33).

However, for the case when all photons are added (in other words, all frequencies enter the
nonlinear susceptibility with the sign plus), i.e., when n"0, we cannot estimate the moments
M

0,m
,E~m

0
<~1:Em(r) dr by Eq. (2.33) since the integral in Eq. (2.32) is not further determined

by the poles at K"$ibi. Yet all the functions of the integrand are about unity and the moment
M

0,m
must be of the order of unity M

0,m
&O(1) for m'1. Note that the moment M

0,m
describes,
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in particular, enhancement G
nHG

of n-order harmonic generation, through the relation
G

nHG
"DM

0,m
D2 (see below).

2.3. Field yuctuations for the frequencies much below the resonance (De
.
D<1)

Above we assumed that De
.
D/e

$
+1 correspond to the plasmon resonance in the metal grains. To

estimate the local "eld #uctuations in percolation composites for the large contrast, De
.
D/e

$
<1, we

follow the scaling approach developed in Refs. [15,38,48]. Here we recapitulate brie#y the main
points of the scaling renormalization. Consider "rst a percolation composite where the metal
concentration p is equal to the percolation threshold, p"p

c
. We divide a system into cubes of size

l and consider each cube as a new renormalized element. All such cubes can be classi"ed into two
types. A cube that contains a continuous path of metallic particles is considered as a `conductinga
element. A cube without such an `in"nitea cluster is considered as a nonconducting, `dielectrica,
element [83]. The e!ective dielectric constant of the `conductinga cube e

.
(l) decreases with

increasing its size l as e
.
(l)K(l/a)~t@le

.
, whereas the e!ective dielectric constant of the `dielectrica

cube e
$
(l) increases with l as e

$
(l)K(l/a)s@le

$
(t, s and l are the percolation critical exponents for the

static conductivity, dielectric constant, and percolation correlation length, respectively; for 2D case,
t+s+l+4/3, in 3D, the exponents are equal to tK2.0, sK0.7, and lK0.88 [12,64]). We set now
the cube size l to be equal to

l"l
3
"a(De

.
D/e

$
)l@(t`s) . (2.34)

Then, in the renormalized system, where each cube of size l
3
is considered as a single element, the

dielectric constant of these new elements takes either value e
.
(l
3
)"et@(t`s)

$
De
.
Ds@(t`s)(e

.
/De

.
D), for the

element renormalized from the conducting cube, or e
$
(l
3
)"et@(t`s)

$
De
.
Ds@(t`s), for the element renor-

malized from the dielectric cube. The ratio of the dielectric constants of these new elements is equal
to e

.
(l
3
)/e

$
(l
3
)"e

.
/De

.
D+!1#ii, where the loss-factor i"eA

.
/De

.
D;1 is the same as in the

original system. According to the basic ideas of the renormalization group transformation [64,83],
the concentration of conducting and dielectric elements does not change under the above trans-
formation, provided that p"p

c
. The "eld distribution in a two component system depends on the

ratio of the dielectric permittivities of the components. Thus after the renormalization, the problem
becomes equivalent to the above considered "eld distribution for the case e

$
"!e@

.
"1. Taking

into account that the electric "eld renormalizes as Ew

0
"E

0
(l
3
/a), we obtain from Eq. (2.23) that the

"eld peaks in the renormalized system are

E
.
KE

0
(a/m

A
)2(l

3
/a)i~1KE

0
(a/m

A
)2A

De
.
D

e
$
B

l@(t`s)

A
De
.
D

eA
.
B , (2.35)

where m
A
"m

A
(p

c
) is the localization length in the renormalized system. In the original system, each

"eld maximum of the renormalized system locates in a dielectric gap in the `dielectrica cube of the
l
3
size or in-between two `conductinga cubes of the size l

3
that are not necessarily connected to each

other [83]. There is no characteristic length in the original system which is smaller than l
3
, except

the microscopical length in the problem, which is grain size a. Therefore, it is plausible to suggest
that the width of a local "eld peak in the original system is about a. Then the values of the "eld
maxima E

.
do not change when returning from the renormalized system to the original one.

Therefore, Eq. (2.35) gives the values of the "eld maxima in the original system. Note that the value
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E
.

of the "eld maxima is di!erent from previously obtained estimate (2.23) due to the renormaliz-
ation of the applied "eld E

0
.

Eq. (2.35) gives the estimate for the local "eld extrema when the real part e@
.

of the metal
dielectric constant becomes negative. For metals e

.
increases in absolute value with the

wavelength, when the frequency u is smaller than u8
1

[see discussion below Eq. (2.1)]. Therefore,
the "eld peaks E

.
(u) increase strongly with the wavelength (see, for example, Fig. 2 taken from

[15]). For a Drude metal the steep growth of the peaks E
.
(u) occurs for the frequencies u[u8

1
,

when the dielectric constant e
.

can be approximated as

e
.
(u[u8

1
)+2(u!u8

1
)
e
"

u8
1

#i
e
"
uq

u8
1

. (2.36)

By substituting this expansion in Eq. (2.35), we obtain

E
.
(u[u8

1
)KE

0
(a/m

A
)2A

2e
"
Du!u8

1
D

u8
1

B
(l`t`s)@(t`s) u8

1
uqe"el@(t`s)

$

. (2.37)

Since losses in a typical metal are small, uq;u8
1
, the "eld peak amplitudes "rst increase steeply

and then saturate (see below) at the magnitude E
.
KE

0
(a/m

A
)2(e

"
/e

$
)l@(t`s)(u8

1
/uq )&E

0
u8

1
/uq

when u+0.5u8
1
. Therefore, the intensity maxima I

.
exceed the intensity of the incident wave I

0
by

the factor I
.
/I

0
&(u8

1
/uq )2<1. For a silver-glass percolation composite we obtained I

.
/I

0
&103

(see also the "eld distribution in Figs. 1 and 2).
Now we consider the case of small frequencies u;u

1
when the dielectric constant e

.
for

a Drude metal [see Eq. (2.1)] takes the form

e
.
(u;u

1
)+!A

u
u

1
B

2

A1!i
uq
u B , (2.38)

where we again assume that u<uq . By substituting this expression in Eq. (2.35), we obtain

E
.
(u;u

1
)KE

0A
a
m
A
B

2

A
u

1
Je

$
uB

2l@(t`s)

A
u
uqB . (2.39)

For the 2D case, the critical exponents are equal to l+t+s+4/3 and Eq. (2.39) gives
E
.
&E

0
(a/m

A
)2u

1
/(Je

$
uq )"E

0
(a/m

A
)2(u8

1
/uq)Je

"
/e

$
&E

0
(u8

1
/u) and that coincides with the

estimate obtained from Eq. (2.37) for u"0.5u8
1
. This means that the local "eld peaks increase

steeply when the real part of the metal dielectric constant e
.

becomes negative e@
.
(0 and then

remains almost the same in the wide frequency range u8
1
'u'uq , for 2D composites.

For 3D percolation composites, the critical exponents are equal to l+0.88, t+2.0, s+0.7 [12].
To simplify estimations we put below l+(t#s)/3 for d"3. Then Eq. (2.39) takes the following
form E

.
&E

0
(e
"
/e

$
)1@3u8 2@3

1
u1@3/uq , that is the local "eld peaks increase up to E

.
/E

0
&u8

1
/uq

when e@
.

becomes negative and then the peaks decrease as E
.
/E

0
&(u8

1
/uq )(u/u8

1
)1@3, with further

decrease of frequency. For silver composites, we estimate that the maximum value of the peaks is
achieved at u+0.5u8

1
that corresponds to j+0.6lm.

Since we know the peak amplitudes for the local electric "eld we can estimate the moments
M

n,m
of the local "eld. To obtain M

n,m
we consider "rst the spatial distribution of the "eld maxima

for De
.
D<e

$
. The average distance between the "eld maxima in the renormalized system is equal to
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mw

%
given by Eq. (2.24). Then the average distance m

%
between the "eld maxima in the original system

(provided that o&1) is equal to

m
%
+(l

3
/a)mw

%
&aA

De
.
D

e
$
B

l@(t`s)

A
De
.
D

eA
.
B

1@d
. (2.40)

Note that in the 2D case this ascribes a simple form

m
%
&a

De
.
D

Je
$
UuxK%A

.

, (2.41)

where the critical exponents for 2D percolating composites, t+s+l+4/3 are used. In the renor-
malized system a typical `areaa of a "eld peak corresponds to d power of the Anderson localization
length m

A
. Therefore, in the original system each "eld maximum is stretched over (m

A
/a)d clusters of

size l
3
. In each of these clusters the "eld maximum splits into n(l

3
) peaks of the E

.
amplitude located

along a dielectric gap in the `dielectrica square of the l
3

size. The gap `areaa scales as the
capacitance of the dielectric squares, so does the number of peaks

n(l
3
)J(l

3
/a)d~2`s@l . (2.42)

Multiplying the amplitude of the "eld peaks E
.

raised to the proper power by the number of the
peaks in one group (m

A
/a)dn(l

3
) and normalizing to the distance between the groups m

%
we obtain the

following estimate for the local-"eld moments:

M
n,m

&(m
A
/a)dA

E
.

E
0
B

n`m n(l
3
)

(m
%
/a)d

&o(m
A
/a)d~2(n`m)(l

3
/a)n`m`s@l~2i1~n~m

&o(m
A
/a)d~2(n`m)A

De
.
D

e
$
B

*(n`m~2)l`s+@(t`s)

A
De
.
D

eA
.
B

n`m~1
(2.43)

that holds for n#m'1 and n'0. Since De
.
D<e

$
and De

.
D/eA

.
<1 the moments of the local "eld

are very large, M
n,m

<1, in the visible and infrared spectral ranges. Note that the "rst moment
M

0,1
&1 that corresponds to the equation SE(r)T"E

0
. We stress again that the localization

length m
A

in Eq. (2.43) corresponds to the renormalized system with e
$
"!e@

.
"1. The localiza-

tion length in the original system, i.e., a typical size of the eigenfunction is estimated as (l
3
/a)m

A
<a.

In other words, the eigenstates become macroscopically large in the limit of large contrast
De
.
D/e

$
<1 and consist of sharp peaks separated in space by distances much larger than a. The

eigenstates of HK HK cover the volume (m
A
l
3
/a)d&(m

A
u8

1
/u)d<ad for two-dimensional Drude metal

composites and u;u
1
.

We consider now the moments M
n,m

for n"0 that correspond to the volume average of the mth
power of the complex amplitude E(r), namely, M

0,m
"SEm(r)T/DE

0
Dm. In the renormalized system,

where De
.
(l
3
)D"De

$
(l
3
)D and e

.
(l
3
)/e

$
(l
3
)+!1#ii, the "eld distribution coincides with the "eld

distribution in the system with e
$
K!e@

.
&1. In the system with e

$
K!e@

.
&1 the "eld peaks

Ew

.
are di!erent in phase and because of the destructive interference, the moment Mw

0,m
&O(1) [as

follows from Eq. (2.32)]. In transition to the original system the peaks increase by the factor l
3
/a,

leading to the corresponding increase of the moment M
0,m

. We suppose that within a single
`dielectrica cube the "eld peaks are in phase, i.e., the "eld maxima form chains of aligned peaks
which are stretched out in a dielectric cube. This assumption is con"rmed by results of numerical
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simulation shown in Fig. 3, where the "eld maxima with di!erent signs are concentrated in di!erent
places of a percolation composite. Then we obtain the following equation for the moment:

M
0,m

&Mw

0,m
(l
3
/a)m

n(l
3
)

(m
%
/a)d

&i(l
3
/a) m~2`s@l&A

eA
.

De
.
DBA

De
.
D

e
$
B

(m~2`s@l)l@(t`s)
, (2.44)

which holds when M
0,m

given by this equation is larger than one.
Using the critical exponents for 2D percolating composites, t+s+l+4/3 [12], we can simplify

Eqs. (2.43) and (2.44) as follows:

M
n,m

&oA
De
.
D3@2

(m
A
/a)2Je

$
eA
.
B

n`m~1
(d"2) , (2.45)

for n#m'1 and n'0, and

M
0,m

&

eA
.
De
.
D(m~3)@2

e(m~1)@2
$

(d"2) , (2.46)

for m'1, n"0 and (De
.
D/e

$
)(m~1)@2'De

.
D/eA

.
(the last inequality corresponds to the condition that

the moment given by Eq. (2.46) is larger than one).
The moments M

n,m
(nO0) are strongly enhanced in 2D Drude metal-dielectric composites. The

moments reach the maximum value

M
n,m

&oA
u

1
uqJe

$
(m

A
/a)2B

n`m~1
(d"2) , (2.47)

when frequency u decreases so that the condition u;u
1

is ful"lled. The spatial moments of the
local electric in a 2D percolation composite are independent of frequency, for u;u

1
. For metals

it typically takes place in the red and infrared spectral ranges. For a silver semicontinuous "lm
on a glass substrate, the moment M

n,m
can be estimated as M

n,m
&[(a/m

A
)2 3]102]n`m~1, for

u;u
1
.

It follows from Eq. (2.43) that for 3D metal-dielectric percolation composites, where the dielectric
constant of metal component can be estimated by the Drude formula (2.1), the moments
M

n,m
(nO0) achieve the maximum value at frequency u

.!9
+0.5u8

1
. To estimate the maximum

value, we note that the following relations l/(t#s)+1/3, s+l are valid for the 3D case, where
t+2.0, s+0.7 and l+0.88 [12]. Then the maximum value of the moments is estimated as

M
n,m

(u"u
.!9

)&o(m
A
/a)[(a/m

A
)2(e

"
/e

$
)1@3u8

1
/uq]n`m~1 (d"3) . (2.48)

For small frequencies u;u
1
, the moments of the local "eld decrease with the wavelength as

M
n,m

(u;u
1
)&o(m

A
/a)C

(a/m
A
)2u2@3

1
u1@3

e1@3
$

uq D
n`m~1

(d"3) . (2.49)

In Fig. 5 we compare results of numerical and theoretical calculations for the "eld moments in
2D silver semicontinuous "lms on glass. We see that there is excellent agreement between the
scaling theory [formulas (2.45) and (2.46)] and numerical simulations. To "t the data we used
m
A
+2a. [Results of numerical simulations for M

0,4
are not shown in Fig. 5 since it was not
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Fig. 5. High-order "eld moments of local electric "eld in semicontinuous silver "lms as a function of the wavelength j at
p"p

c
. (a) Results of numerical calculations of the moments M

n
,M

n,0
"SDE

1
(r)DnT/DSE

1
TDn for n"2, 3, 4, 5 and 6 are

represented by #,L,*,], and d, respectively. The solid lines describe M
n

found from the scaling formula (2.43). (b)
Comparison of the moment M

4,0
"SDE

1
(r)D4T/DSE

1
TD4 [upper solid line } scaling formula (2.43) , * } numerical

simulations] and moment M
0,4

"DSE4
1
(r)TD/DSE

1
TD4 [upper dashed line } scaling formula (2.44)]. The moment

M
2,0

"SDE
1
(r)D2T/DSE

1
TD2 [lower solid line } scaling formula (2.43), # } numerical simulations] vs. moment

M
0,2

"DSE
1
(r)2TD/DSE

1
TD2 [lower dashed line } scaling formula (2.44), L } numerical simulations]. In all presented

analytical calculations we set m
A
"2a and o"1 in Eqs. (2.43) and (2.44).

possible to achieve reliable results in the simulations because of large #uctuations in values of this
moment.] A small value of m

A
indicates strong localization of surface plasmons in percolation

composites, at least for the 2D case. As seen in Fig. 5b the spectral dependence of enhancement
M

n,m
di!ers strongly for processes with (nO0) and without (n"0) subtraction of photons.

As discussed in the introduction, nonlinear optical processes, in general, are phase dependent
and proportional to a factor DEDnEm, i.e., they depend on the phase through the term Em and their
enhancement is estimated as M

n,m
"SDE/E

0
Dn(E/E

0
)mT. According to the above consideration,

M
n,m

&M
n`m,0

,M
n`m

, for n51. For example, enhancement of the Kerr-type nonlinearity
G

K
"M

2,2
is similar to the enhancement of the Raman scattering G

RS
KM

4
(see Sections 5

and 6). For nearly degenerate four-wave mixing (FWM), the enhancement is given by
G

FWM
&DG

K
D2&DM

2,2
D2 and can reach giant values up to &1012.

Above, for the sake of simplicity, we assumed that p"p
c

when considering the case of e@
.
;0.

Now we estimate the concentration range *p"p!p
c
, where the above estimates for the local "eld

moments are valid [37,38]. We note that the above expressions for the local "eld and average "eld
moments M

n,m
hold in almost all concentration range given by Eq. (2.25) when e

.
K!e

$
. The

metal concentration range *p, where the local electric "eld is strongly enhanced, shrinks, however,
when e@

.
;0. The above speculations are based on the "nite size scaling arguments, which hold

provided the scale l
3

of the renormalized cubes is smaller than the percolation correlation length
m
1
+a(Dp!p

c
D/p

c
)~l. At the percolation threshold, where the correlation length m

1
diverges, our

estimates are valid in the wide frequency range uq(u(u8
1

which includes the visible, infrared,
and far-infrared spectral ranges for a typical metal. For any particular frequency from this interval,
we estimate the concentration range *p (where the giant "eld #uctuations occur) by equating the
values of l

3
and m

1
, which results in the inequality D*pD4(e

$
/De

.
D)1@(t`s). Therefore, the local electric

"eld #uctuates strongly for these concentrations and its moments M
n,m

are strongly enhanced.
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Fig. 6. Fourth-order "eld moments M
m,n

(m#n"4) of the local electric "eld in 2d metal-dielectric composite with
e
$
"1 and metal permittivity e

.
"!100 (1!ii), as functions of i: M

4,0
} v, M

3,1
} m, M

2,2
} j.

In Fig. 6 we show the moments M
4,0

, M
3,1

and M
2,2

as a function of i for 2D percolating
system with e

.
"100(!1#ii), e

$
"1 and metal concentration p"0.7'p

c
"0.5. All the

moments are close in magnitude and increase with decreasing losses i according to a power-law
dependence with the same exponent, as it is predicted by Eq. (2.45).

3. Numerical and experimental studies of 5eld distributions in two-dimensional percolation
composites

The optical properties of metal-insulator thin "lms have been intensively studied both experi-
mentally and theoretically. Semicontinuous metal "lms with a two-dimensional (2D) morphology
are usually produced by thermal evaporation or spattering of metal onto an insulating substrate. In
the growing process, "rst, small metallic grains are formed on the substrate. As the "lm grows, the
metal "lling factor increases and coalescences occur, so that irregularly shaped clusters are formed
on the substrate resulting in 2D fractal structures. The sizes of these structures diverge in a vicinity
of the percolation threshold. A percolating cluster of metal is eventually formed, when a continuous
conducting path appears between the ends of the sample. The metal-insulator transition (the
percolation threshold) is very close to this point, even in the presence of quantum tunneling.
At higher surface coverage, the "lm is mostly metallic, with voids of irregular shapes. As further
coverage increase, the "lm becomes uniform.

The optical properties of metal-dielectric "lms show anomalous phenomena that are absent
for bulk metal and dielectric components. For example, the anomalous absorption in the near-
infrared spectral range leads to unusual behavior of transmittance and re#ectance. Typically, the

300 A.K. Sarychev, V.M. Shalaev / Physics Reports 335 (2000) 275}371



transmittance is much higher than that of continuous metal "lms, whereas the re#ectance is much
lower (see Refs. [12,19,20,64,84}86] and references therein). Near and well-below the conductivity
threshold, the anomalous absorptance can be as high as 50% [85,88}91]. A number of the
e!ective-medium theories were proposed for calculation of the optical properties of semicontinu-
ous random "lms, including the Maxwell}Garnett [92] and Bruggeman [49] approaches and their
various modi"cations [12,85}87]. The renormalization group method is also widely used to
calculate e!ective dielectric response of 2D percolation "lms near the percolation threshold (see
[93,94] and references therein). However, none of these theories allows one to calculate the "eld
#uctuations and the e!ects resulting from these #uctuations.

Because semicontinuous metal "lms are of great interest in terms of their fundamental physical
properties and various applications, it is important to study statistical properties of the electro-
magnetic "elds in the near-zone of these "lms. To simplify theoretical considerations, we assume
below that the electric "eld is homogeneous in the direction perpendicular to the "lm plane. This
assumption means that the skin depth for the metal grains, d+c/(uJDe

.
D), is much larger than the

grain size, a, so that the quasistatic approximation holds. Note that the role of the skin e!ect can be
very important resulting, in many cases, in strong alterations of the electromagnetic response found
in the quasistatic approximation [39,95}97]. These e!ects will be discussed in Section 7. Yet, the
quasistatic approximation signi"cantly simpli"es theoretical considerations of the "eld #uctu-
ations and describes well the optical properties of semicontinuous "lms providing qualitative
(and in some cases, quantitative) agreement with experimental data [12,20,98,99].

Below, we neglect the skin e!ect so that a semicontinuous "lm can be considered as a 2D object.
In the optical frequency range, when the frequency, u, is much larger than the relaxation rate q~1 of
the metallic component, a semicontinuous metal "lm can be thought of as a 2D ¸}R}C lattice
[12,20,98,99]. As above, the capacitance C stands for the gaps between metal grains that are "lled
by dielectric material (substrate), with the dielectric constant e

$
. The inductive elements, ¸}R,

represent the metallic grains that for the Drude metal have the dielectric function e
.
(u) given by

Eq. (2.1). In the high-frequency range considered here, the losses in metal grains are small, u<uq .
Therefore, the real part of the metal dielectric function is much larger (in modulus) than the
imaginary part and it is negative for the frequencies u below the renormalized plasma frequency,
u8

1
"u

1
/Je

"
. Thus, the metal conductivity is almost purely imaginary and metal grains can be

modeled as the ¸}R elements, with the active component much smaller than the reactive one.
If the skin e!ect cannot be neglected, i.e., the skin depth d is smaller than the metal grain size

a the simple quasistatic presentation of a semicontinuous "lm as a 2D array of the ¸}R and
C elements is not valid. Still, we can use the ¸}R}C model in the other limiting case, when the skin
e!ect is very strong, d;a [95,96]. In this case, the losses in metal grains are small, regardless of the
ratio u/uq , whereas the e!ective inductance for a metal grain depends on the grain size and shape
rather than on the material constants for the metal. Properties of metal-dielectric composites
beyond the quasistatic approximation will be discussed in detail in Section 7.

The e!ective properties of the 2D ¸}R}C lattices have been intensively studied during the last
decade [12,20,98,99]. However, there was not much attention paid to the fact that the spatial
distributions of the local "elds in such systems can exhibit rich nontrivial behavior.

It is instructive to consider "rst the "lm properties at the percolation threshold, p"p
c
, where the

exact result for the e!ective dielectric constant e
%
holds in the quasistatic case [100]: e

%
"Je

$
e
.
. If

we neglect the metal losses and put uq"0, the metal dielectric constant e
.

is negative for
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Fig. 7. The real space renormalization scheme.

frequencies smaller than the renormalized plasma frequency, u8
1
. We also neglect possible small

losses in a dielectric substrate, assuming that e
$

is real and positive. Then, e
%
is purely imaginary for

u(u8
1
. Therefore, a "lm consisting of loss-free metal and dielectric grains is absorptive for

u(u8
1
. The e!ective absorption in a loss-free "lm means that the electromagnetic energy is stored

in the system and thus the local "elds could increase unlimitedly. In reality, the local "elds in
a metal "lm are, of course, "nite because of the losses. If the losses are small, one anticipates very
strong "eld #uctuations. To calculate Rayleigh, Raman scattering and various nonlinear e!ects in
a semicontinuous metal "lm, one needs to know the "eld and current distributions in the "lm.

3.1. Numerical model

There exist now very e$cient numerical methods for calculating the e!ective conductivity of
composite materials (see [12,20]), but they typically do not allow calculations of the "eld distribu-
tions. Here we describe a new computer approach [36}38] based on the real space renormalization
group (RSRG) method suggested by Reynolds et al. [83] and extended to study the conductivity
[101] and permeability of oil reservoirs [102]. The method [36}38] follows the approach used by
Aharony [102].

This approach can be adopted for "nding the "eld distributions in the following way. First, we
generate a square lattice of the ¸}R (metal) and C (dielectric) bonds, using a random number
generator. As seen in Fig. 7, such lattice can be considered as a set of the `cornera elements. One
of such element is labeled as (ABCDEFGH), in Fig. 7a. In the "rst stage of the RSRG procedure,
each of these elements is replaced by the two Wheatstone bridges, as shown in Fig. 7b. After this
transformation, the initial square lattice is converted to another square lattice, with the distance
between the sites twice larger and with each bond between the two nearest neighboring sites being
the Wheatstone bridge. Note that there is a one-to-one correspondence between the `xa bonds in
the initial lattice and the `xa bonds in the `xa directed bridges of the transformed lattice, as seen in
Fig. 7. The same one-to-one correspondence exists also between the `ya bonds. The transformed
lattice is also a square lattice, and we can again apply to it the RSRG transformation. We continue
this procedure until the size l of the system is reached. As a result, instead of the initial lattice, we
have two large Wheatstone bridges in the `xa and `ya directions. Each of them has a hierarchical
structure consisting of bridges with the sizes from 2 to l. Because the one-to-one correspondence is
preserved at each step of the transformation, the correspondence also exists between the elemen-
tary bonds of the transformed lattice and the bonds of the initial lattice.
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After using the RSRG transformation, we apply an external "eld to the system and solve the
Kirchho! equations to determine the "elds and the currents in all the bonds of the transformed
lattice. Due to the hierarchical structure of the transformed lattice, these equations can be solved
exactly. Then, we use the one-to-one correspondence between the elementary bonds of the
transformed lattice and the bonds of the initial square lattice to "nd the "eld distributions in the
initial lattice as well as its e!ective conductivity. The number of operations to get the full
distributions of the local "elds is proportional to l2 (to be compared with l7 operations needed in
the transform-matrix method [12] and l3 operations needed in the Frank}Lobb algorithm [103];
none of these methods give the local "eld distributions). With our method, it takes only a few
minutes to calculate the e!ective conductivity and "eld distributions in a system 1000]1000 using
a PC.

The RSRG procedure is certainly not exact since the e!ective connectivity of the transformed
system does not repeat exactly the connectivity of the initial square lattice. To check the accuracy of
the RSRG, we solved the 2D percolation problem using this method. Namely, we calculated the
e!ective parameters of a two-component composite with the real metallic conductivity, p

.
, much

larger than the real conductivity, p
$
, of the dielectric component, p

.
<p

$
. We obtained the

percolation threshold p
c
"0.5 and the e!ective conductivity at the percolation threshold that is

very close to p(p
c
)"Jp

.
p
$
. These results coincide with the exact ones for 2D composites [100].

This is not surprising since the RSRG procedure preserves the self-duality of the initial system. The
critical exponents obtained by the RSRG are also close to the known values of the exponents from
the percolation theory [12]. Therefore, we believe that the local "elds we obtain here are close to
the actual ones.

All numerical results for the local "eld distribution and various linear and nonlinear optical
e!ects for semicontinuous metal "lms, presented in this paper, have been obtained by the above
method. The Drude formula 2.1 for metal dielectric functions was used and the optical constants
for metals were taken from [104]. For silver, the following parameters were used in Eq. (2.1): the
interband-transition contribution e

"
"5, the plasma frequency u

1
"9.1 eV, and the relaxation

frequency uq"0.021 eV; for gold: the interband-transition contribution e
"
"6.5, the plasma

frequency u
1
"9.3 eV, and the relaxation frequency uq"0.03 eV. The "lms were supposed to be

deposited on a glass substrate with the dielectric constant e
$
"2.2 for all numerical simulations

discussed in this paper.

3.2. Field distributions on semicontinuous metal xlms

As mentioned, we model a "lm by a square lattice consisting of metallic bonds with conductivity
p
.
"!ie

.
u/4p (¸}R bonds) and concentration p, and dielectric bonds with conductivity

p
$
"!ie

$
u/4p and concentration 1!p (C bonds). The applied "eld E

0
is set to be equal unity

E
0
"1, whereas the local "elds inside the system are complex quantities. The dielectric constant of

silver grains has the form of Eq. (2.1) with parameters discussed in last subsection. Below, we still
use e

$
"2.2 typical for a glass. In Fig. 1 we show the "eld distributions DE(r)/E

0
D2 for the plasmon

resonance frequency u"u
3
that corresponds to the condition Re(e

.
(u

3
))"!e

$
. The value of the

frequency u
3
is slightly below the renormalized plasma frequency u8

1
de"ned above in Eq. (2.2). For

silver particles the resonance condition ful"lled at wavelength j+0.4lm. The frequency u
3
gives
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the resonance of an isolated metal particle. (For a 2D, i.e., z-independent problem, particles can be
thought of as in"nite in the z-direction cylinders that resonate, in the quasistatic approximation, at
the frequency u"u

3
corresponding to the condition e

.
(u

3
)"!e

$
, for the "eld polarized in the

x, y-plane). The results are presented for various metal fractions p. For p"0.001 metal grains
practically do not interact so that all the peaks are almost of the same height and indicate the
locations of metal particles. Note that similar distribution is obtained for p"0.999 when the role of
metal particles is played by the dielectric voids. For p"0.1 and, especially, for p"0.5, metal grains
form clusters of strongly interacting particles. These clusters resonate at di!erent frequencies (than
that for an isolated particle), therefore, for the chosen frequency the "eld peaks are smaller, on
average, than those for the isolated particles, and the height distribution is very inhomogeneous.
Note that spatial scale for the local "eld distribution is much larger than the metal grain size a that
is chosen to be unity for all the "gures. Therefore, the main assumption of the e!ective medium
theory [13,50}55] that the local "elds are the same for all metal grains fails for the frequencies of
the plasmon resonance and nonvanishing concentrations p. We emphasize a strong resemblance in
the "eld distributions for p and 1!p (cf. Fig. 1a and g, b and f, c and e).

For larger wavelengths, a single metal grain is o! the plasmon resonance. Nevertheless, as one
can see from Fig. 2a}d, the local "eld #uctuations are even larger than those at the plasmon
resonance frequency. At these wavelengths, clusters of the conducting particles (rather than
individual particles) resonate with the external "eld oscillations. Therefore, it is not surprising that
the local "eld distributions are quite di!erent from those in Fig. 1. In Fig. 2, we show the "eld
distributions at the percolation threshold p"p

c
"0.5 for di!erent wavelengths, namely, (2a):

j"0.5lm, (2b): j"1.5lm, (2c): j"10lm, and (2d): j"20lm. Note that the "eld intensities in
peaks increase with j, reaching very high values, &105E

0
; the peak spatial separations increase

with j as well. These results are also in contradiction with the e!ective medium theory that predicts
strong "eld #uctuations [34] in the vicinity of plasmon resonance frequency u

3
only. In the

previous section, we have presented a scaling theory for the "eld distributions that explains, at least
qualitatively, all peculiarities of the above results.

The "rst experiment on the "eld distribution in the semicontinuous metal "lms [39] had been
done in the microwave range and will be discussed in Section 7. For the visible spectral range the
local "eld distribution qualitatively similar to the calculated (see Figs. 1 and 2) has been experi-
mentally obtained using scanning near-"eld optical microscope (SNOM) providing subwavelength
resolution [46,58]. An SNOM was operating in the tapping mode, so that the detected local signals
were averaged over the tip-surface separations ranging between 0 and 100 nm. Because of this and
the "nite size of the tip, the detected "eld intensities were by two to three orders of magnitude less
than the actual "eld right on the "lm surface (that can be probed, for example, by surface-adsorbed
molecules). Aside this, the detected "eld distribution shown in Fig. 8 is similar to that predicted by
theory (Figs. 1 and 2). When the SNOM averaging e!ect is taken into account in simulations there
is very good agreement between the calculations and experiments as seen in Fig. 8.

The near-"eld spectroscopy of percolation "lms was also performed in [46,58], by parking
an SNOM tip at di!erent points of the surface and varying the wavelength. This local nano-
spectroscopy allows one to determine the local resonances of nm-size areas right underneath the
tip; the nano-structures at di!erent points resonate at di!erent j leading to di!erent local near-"eld
spectra. The spectra characterize j-dependence of the "eld hot spots associated with the localized
s.p. modes.
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Fig. 8. Experimental (a) and calculated (b) SNOM images of the localized optical excitations in a percolation
gold-on-glass "lm for di!erent wavelengths j.

In Fig. 9 we show the measured and calculated near-"eld spectra taken at di!erent points of the
"lm. Again, there is qualitative agreement between theory and experiment. The spectra consist of
several peaks &10 nm in width, and they depend markedly on spatial location of the point where
the near-"eld tip is parked. Even as small shift in space as 100 nm results in di!erent spectra, which
is a strong evidence of the s.p.-mode localization. We note that for continuous metal (or dielectric)
"lms neither sub-j hot spots nor their local spectra can be observed, because, in this case, optical
excitations are delocalized.

In conclusion, the near-"eld imaging and spectroscopy of random metal-dielectric "lms near
percolation suggests localization of optical excitations in small nm-scale hot spots. The observed
pattern of the localized modes and their spectral dependences are in agreement with theoretical
predictions and numerical simulations. The hot spots of a percolation "lm represent very large
local "elds (#uctuations); spatial positions of the spots strongly depend on the light frequency.
Near-"eld spectra observed and calculated at various points of the surface consist of several
spectral resonances whose spectral locations depend on the probed site of the sample. All these
features are only observable in the near zone. In the far zone, one observes images and spectra in
which the hot spots and the spectral resonances are averaged out. The local "eld enhancement is
large, which is especially important for nonlinear processes of the nth order proportional to the
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Fig. 9. Experimental (a) and calculated (b) near-"eld spectra at di!erent spatial locations (100nm apart) of the "lm.
(Arbitrary intensity units are used.)

enhanced local "elds to the nth power. This opens a fascinating possibility for nonlinear near-"eld
spectroscopy of single nanoparticles and molecules.

4. Anomalous light scattering from semicontinuous metal 5lms

In this section we consider quantitatively the spatial distribution of the local "eld #uctuations
and light scattering induced by these #uctuations. Numerical as well as analytical results are
presented for 2D semicontinuous metal "lms that, as above (see Section 3), are modeled as a 2D
¸}C lattice where capacitors C stand for the dielectric grains that have dielectric constant e

$
while

the inductances ¸ represent the metallic grains that have dielectric constant e
.
. The resonance

frequency u
3
, corresponding to the condition e@

.
(u

3
)"!e

$
is considered "rst. For a Drude metal,

when metal dielectric constant e
.

is given by Eq. (2.1), this condition is ful"lled at the frequency

u
3
"u

1
J1/(e

"
#e

$
)!(uq/u1

)2Ku
1
/Je

"
#e

$
, (4.1)

where it is taken into account that the relaxation rate uq"1/q;u
1

for a typical metal. Then
metal dielectric function takes value e

.
(u

3
)"e

$
(!1#ii), where the loss factor i is equal to

iK(1#e
"
/e

$
)uq/u3

;1. Remind that for silver or gold the ratio uq/u3
K10~2. Since distribution

of the local "eld does not change when bond conductances are multiplied by the same factor it is
convenient to consider the lattice where a bond conductance takes value R

.
"!1#ii with

probability p (¸ bonds) and R
$
"1 with probability 1!p (C bonds). Since the absolute values of
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R
$

and R
.

are very close, the standard method, using the percolation theory scaling
approach [12,20,24,64] and based on the assumption of large di!erence between the two
components conductivities, cannot be used, even to estimate the spatial distribution of the
"eld in the system. This is the reason why computer simulation has been used in the works
[36,37,44].

For numerical calculations, the RSRG method described in Section 3 is applied to a system of
size 1024]1024. The concentrations of C and ¸ elements are equal to p"p

c
"0.5 and frequency

u is equal to the resonance frequency u"u
3
. The electric "eld was calculated in all the bonds for

the loss parameters i from 10~1 to 10~4. The external "eld is assumed to be one (E
0
"1) while the

local "elds inside the system are complex quantities.
The distribution function of the "eld intensity I(r)"DE(r)D2 is close to the well-known log-normal

distribution and the "eld intensity is distributed over many orders of magnitude, even for a loss
parameter i"10~1. For the parameter i"10~4, the intensity I is almost uniformly distributed
from zero up to 104. The average intensity I

!7
"DE

0
D2M

2
increases as I

!7
Ji~1 when the loss

parameter i is decreased, which is in agreement with scaling Eq. (2.33). Note that the same result
I
!7
Ji~1 have been conjecture for fractals consisting of small metal particles (see, for example,

Ref. [25]).
It is clear that the "eld #uctuations, shown in Figs. 1, 2 and 10 can lead to the enhanced

light scattering from the "lm. The Rayleigh scattering from metal fractals was studied in
Ref. [105].

It is worth noting that the #uctuations considered here and the corresponding light scattering
are not linked to the fractal nature of metal clusters but to the distribution of local resonances in
a disordered metal-dielectric "lm, which is homogeneous on a macroscopical scale. It appears that
the local intensity of the electric "eld is strongly correlated in space and that the distribution
is dominated by the "eld correlation length m

%
introduced by Eqs. (2.24) and (2.40). The "eld

correlation length may be de"ned as the length scale at which the "eld #uctuations become small.
One can then de"ne a critical exponent related to the divergence of this correlation length as the
¸ (metallic) component becomes loss-free

m
%
Ji~l% , (4.2)

where l
%

is a critical exponent. This exponent has been calculated using several numerical
methods [36,37] based on RSRG method described in Section 3. The values obtained for l

%
are in the range 0.45$0.05. The scaling theory presented in Section 2 gives l

%
"1/d [see Eqs. (2.24)

and (2.40)], where d is the space dimension. The result l
%
"1/d has been conjectured for the "rst

time by Stinchcombe and Hesselbo [106]. Note that the dimension D connected to the Wheatstone
bridge transformation in the RSRG method is given by D"log 5/log 2, which gives here
1/D"0.43, very close to the numerical result l

%
"0.45$0.05. For small loses at resonance, the

correlation length m
%
is the only relevant characteristic length of the system at percolation threshold

since the contrast De
.
D/e

$
is close to one. In this case, the percolation dynamic correlation length

de"ned by Eqs. (2.34) as l
3
"a(De

.
D/e

$
)l@(t`s) [20] reduces to the size of a single bond and is

irrelevant for the problem.
As the frequency is varied from its resonant value u

3
a crossover between the region character-

ized by m
%

and l
3

is observed clearly at lengths smaller than the percolation correlation length
m
1

[37].
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Fig. 10. Intensity of the electric "eld I(r)"DE(r)D2 in gold semicontinuous metal "lms at wavelength j"1.5lm, p"p
c
.

The amplitude of the incident wave DE
0
D2 is set equal to one.

4.1. Rayleigh scattering

To calculate theoretically and numerically the anomalous scattering resulting from the spatial
correlations of the local "eld #uctuations, the values of the dielectric constant for gold were used to
estimate semiquantitatively enhancement of the scattering. Fig. 10 shows the intensity of the local
electric "eld I(r)"DE(r)D2 (where r"Mx, yN is a radius vector in the "lm plane) obtained by the
RSRG method, presented in Section 3, for a gold semicontinuous "lm consisting of small particles
at p"p

c
for j"1.5lm. One can see the intensity #uctuations of more than four orders of

magnitude over the "lm.
We consider now Rayleigh scattering induced by the giant "eld #uctuations [44]. The usual

procedure leading to expressions for the critical opalescence [65] can be implemented to "nd the
anomalous scattering from the metal-dielectric "lms. Suppose a semicontinuous "lm is illuminated
by a wave normal to the "lm plane. The gaps between metal grains are "lled by dielectric material
of the substrate. Therefore, the "lm can be considered as a two-dimensional array of metal and
dielectric grains that are distributed over the plane. The incident electromagnetic wave excites the
surface currents j in the "lm. Let us consider the electromagnetic "eld induced by these currents at
some distant point R. The coordinate origin is chosen somewhere in the "lm. Then a contribution
to the vector potential A(R) of the scattered "eld Mmagnetic "eld H(R)"[+]A(R)]N arising from
the surface current j(r) is equal to

A(R, r) dr"
j(r)
c

exp(ikDR!rD)
DR!rD

dr , (4.3)

where k"u/c is a wave vector. The vector potential A(R) of the total scattered "eld is equal to
A(R)":A(R, r) dr, where the integration is over the entire "lm area. In experiments, the dimensions
of the "lm are typically small compared to the distance R (r;R). Therefore, the term in the
exponent of Eq. (4.3) can be expanded in series of the ratio r/R; this gives ikDR!rD+ikR!ik(n ) r),
where n is the unit vector in the direction of R. The distance r is also neglected in comparison with
R in the denominator of Eq. (4.3). Thus the equations for the magnetic H and electric E "elds at
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a distant point R take the following form:

H(R)"[+]A(R)]+
ik exp(ikR)

cR P[n]j(r)] exp[!ik(n ) r)] dr ,

E(R)"
i
k
[+]H(R)]+

!ik exp(ikR)
cR P[n][n]j(r)]] exp[!ik(n ) r)] dr , (4.4)

where the integrations are over the "lm area. It follows from Eqs. (4.4) that the magnetic "eld H(R)
is perpendicular to the electric "eld E(R) and their absolute values are equal to each other
DE(R)D"DH(R)D, which means that the scattered "eld can be considered locally as a plane wave,
when the distance from the "lm is large. The total intensity S

5
of the light scattered in the direction

n"R/R is equal to

S
5
(n)"

c
4p

R2
1
2
ReS[E(R)]HH(R)]T

"

c
8p

R2SE(R) )EH(R)T"
c
8p

R2SH(R) )HH(R)T

"

c
8p

k2

c2PS[n]j(r
1
)] ) [n]jH(r

2
)]T exp[ikn ) (r

1
!r

2
)] dr

1
dr

2
, (4.5)

where `*a denotes, as above, complex conjugation and the angular brackets stand for the ensemble
averaging. Note that the semicontinuous metal "lms considered here are much larger than any
characteristic intrinsic spatial scale, such as the "eld correlation length m

%
. Therefore, the ensemble

average can be included in the integrations over the "lm area in Eqs. (4.5) without changing
the result. It is assumed, for simplicity, that the incident light is natural (unpolarized) and
that its direction is perpendicular to the "lm plane. Then the product S[n]j(r

1
)] ) [n]jH(r

2
)]T in

Eqs. (4.5) should be averaged over the polarizations of the incident wave, which gives
S j(r

1
) ) jH(r

2
)T(1!sin2 h/2), where h is the angle between the direction n and normal to the "lm

plane.
The replacing of the local currents j(r) by their averaged values S j(r)T in Eq. (4.5) gives the

specular scattering S
4
. The scattering in all other directions is obtained as

S(h)"S
5
!S

4

"

c
8p

k2

c2A1!
sin2 h

2 BP[S j(r
1
) ) jH(r

2
)T!DS jTD2] exp[ikn ) (r

1
!r

2
)] dr

1
dr

2
. (4.6)

There is a natural correlation length m
%

[see Eqs. (2.24), (2.40), and (4.2)] for the local "eld
#uctuations and, therefore, for the current}current correlations. If this correlation length is much
smaller than the wavelength of the incident light m

%
;j"2p/k, Eq. (4.6) is simpli"ed by replacing

the exponent by unity (exp(ikn ) (r
1
!r

2
))+1). This gives

S(h)"
c
8p

k2

c2A1!
sin2 h

2 BDS jTD2P C
S j(r

1
) ) jH(r

2
)T

DS jTD2
!1Ddr

1
dr

2
. (4.7)
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Since the macroscopically homogeneous and isotropic "lms are considered the current}current
correlations S j(r

1
) ) jH(r

2
)T depend only on the distance r"Dr

2
!r

1
D between the currents. It is

convenient to introduce the correlation function

G(r)"
S j(r

1
) ) jH(r

2
)T

DS jTD2
!1"

ReS j(0) ) jH(r)T
DS jTD2

!1 . (4.8)

Substituting this correlation function in Eq. (4.7) and replacing the integrations over coordinates
r
1

and r
2

by integrations over r"r
2
!r

1
and r@"(r

2
#r

1
)/2, the following equation is obtained

for the intensity of the scattered light:

S(h)"A
c
8p

k2

c2A1!
sin2 h

2 BDS jTD22pP
=

0

G(r)rdr , (4.9)

where A is the "lm area. The intensity of the scattered light is compared with the integral intensity
(power) of the incident light I

0
"A(c/8p)DE

0
D2, where E

0
is the amplitude of the incident wave. For

the normal incident light, the average electric "eld in the "lm SET is equal to SET"¹E
0
, where

¹ is the transmittance of the "lm (see discussion in Ref. [38]). Note that for semicontinuous
metallic "lms at p"p

c
the transmittance D¹D2+0.25 in a wide spectral range from the visible

to the far infrared spectral range [85]. The average surface current S jT is related to the average
electric "eld SET through the Ohm's law; in thin "lms it takes the following form
S jT"ap

%
SET"ap

%
¹E

0
, where p

%
"!ie

%
u/(4p) is the e!ective conductivity, and thickness of

the "lm is approximated by the size a of a metal grain.
By substituting S jT"p

%
a¹E

0
in Eq. (4.9), the ratio of the scattering intensity S(h) to the total

intensity of the incident light I
0

can be obtained. This ratio is independent of a "lm geometry:

SI (h)"
S(h)
I
0

"

2p(ka)2
c2 A1!

sin2h
2 BD¹p

%
D2P

=

0

G(r)rdr , (4.10)

which can be rewritten as

SI (h)"
(ka)4
8p A1!

sin2 h
2 BD¹e

%
D2

1
a2 P

=

0

G(r)rdr . (4.11)

It follows from this equation that the portion of the incident light that is not re#ected, transmitted
or adsorbed, but is scattered from the "lm is equal to

S
505
"2pPSI (h) sin h dh"

(ka)4
3

D¹e
%
D2

1
a2 P

=

0

G(r)r dr . (4.12)

Eqs. (4.11) and (4.12) have a transparent physical meaning. The anomalous scattering like Rayleigh
scattering is inversely proportional to the fourth power of the wavelength SI JS

505
J(ak)4J(a/j)4,

and it is much enhanced due to spatial current}current ("eld}"eld) correlations described by the
correlation function G(r) in Eqs. (4.9)}(4.12). The function G(r) can have di!erent behaviors for
di!erent frequencies. The factor D¹e

%
D2 in Eq. (4.12) also depends on the frequency and achieves

large values D¹e
%
D2<1 in the infrared spectral range.
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Fig. 11. Absorptance of gold semicontinuous "lms at p"p
c
} continuous line; the same but "lm is loss free } dash line;

* } S"S
505

/4p } average scattering from the "lm into the unit solid angle (p"p
c
).

The scattering given by Eq. (4.12) can be compared with the scattering in the case when the metal
grains interact with the electromagnetic "eld independently. The cross-section p

R
of Rayleigh

scattering from a single metal grain can be estimated as p
R
"(8p/3)(ka)4a2 for De

.
D<1 [82]. The

portion of the light which would be scattered if the grains were independent is equal then to
SR
505
Kp(8/3)(ka)4. Assuming p"1/2, the following estimate is obtained for the enhancement g of

the scattering due to the "eld #uctuations:

g"
S
505

SR
505

&

D¹e
%
D2

4a2 P
=

0

G(r)rdr . (4.13)

If the integral in this equation is determined by the largest distances where "eld correlations are
essential, i.e., r&m

%
, the scattering is enhanced up to in"nity, when the losses vanish and m

%
PR.

It is the case for 2D metal-dielectric "lms as it is shown below. Certainly, the above formalism holds
if the part of the incident wave being scattered is much less than one, S

505
;1. Otherwise, it is

necessary to take into account the feedback e!ects, i.e., the interaction of the scattered light with
the "lm.

The function G(r) for 1024]1024 ¸}C system is calculated using the RSRG method, discussed in
the previous section, and scattering function S

505
(u) is obtained for gold semicontinuous metal "lm

at the percolation threshold p"p
c
"1/2. The results are shown in Figs. 11 and 13. One can see in

Fig. 11 that the scattering dramatically increases for u below u8
1

when real part of the metal
dielectric function e@

.
becomes negative. The scattering has a broad double peak maximum and

"nally drops down in the infrared spectral range, where uq;u;u8
1
. To understand this result let

us investigate the behavior of the correlation function G(r) in more detail, using numerical
calculations as well as the scaling arguments discussed in Section 2.

4.2. Scaling properties of correlation function

The correlation function G(r) was calculated for the resonance frequency u
3
[see Eq. (4.12)] so

that e@
.
(u

3
)"!e

$
, and for di!erent values of loss parameters i"eA

.
/De@

.
D [44]. The concentration

of metal grains represented by ¸}R elements is equal to p"p
c
"1/2. The system size is equal to

1024]1024 and results are averaged over 100 di!erent realizations of the system for each value
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Fig. 12. Correlation function G(r) for the !e@
.
"e

$
and di!erent loss parameters i"eA

.
/De@

.
D: O } i"10~1,

] } i"10~2, L } i"10~3, * } i"10~4. The same for H"100.0 and i"10~3 }#.

of i. The obtained function G(r) is shown in Fig. 12 (the distance r is measured in units of the metal
grain size a). It follows from Fig. 12 that for the scales a(r(m

%
, the correlation function decays as

Gw(r)&Mw

2
(r/a)~(1`g)&i~1(r/a)~(1`g) , (4.14)

where Mw

2
, given by Eq. (2.22), is the second moment of the local "eld in the system with e@

.
"!e

$
,

and the critical exponent g"0.8$0.1 is a new critical exponent that determines the spatial
correlation of the local electric "eld. Substitution of the correlation function G from Eq. (4.14) in
expressions (4.11) and (4.12) for the scattering gives that the integrals diverge at the upper limit.
Therefore, the scattering is determined by the values of the function G(r) at large distances, where
Eq. (4.14) still holds, i.e., r&m

%
. This suggests that the "eld #uctuations with spatial distances of the

"eld correlation length m
%
<1 are responsible for the anomalous scattering from semicontinuous

"lms.
Now the dependence of scattering on the frequency of an incident electromagnetic wave is

considered. First we consider frequencies just below u8
1

when the metal dielectric function can be
estimated for a Drude metal as e

.
"e@

.
#ieA

.
+2e

"
(u!u8

1
)/u8

1
#ie

"
uq/u8 1 [see Eq. (2.1)], i.e.,

e@
.
(0. The contrast De@

.
D/e

$
is about unity De@

.
D/e

$
41 for these frequencies, while the loss factor

i+uq/2(u8
1
!u) decreases rapidly with frequency u decreasing below the renormalized plasma

frequency u8
1
. For the contrast De@

.
D/e

$
K1, the correlation function G(r) can be estimated by

Eq. (4.14). Substituting Eq. (4.14) in Eq. (4.12) and integrating up to m
%
&ai~1@d [see Eq. (2.24)], the

following estimate is obtained:

S
505
&

(ka)4
3

D¹D2De
%
D2i~1m1~g

%
&

(ka)4
3

D¹D2De
%
D2i~1~(1~g)@$

&

(ka)4
3

D¹D2e
$
e
"A

u8
1

uq B
1`(1~g)@d

A1!
u
u8

1
B

2`(1~g)@$
, u(u8

1
, (4.15)

where the Dykhne's formula is used for the e!ective dielectric constant at the percolation threshold:
e
%
(p"p

c
)"Je

$
e
.

for 2D percolation systems [100]. Eq. (4.15) holds for frequencies below u8
1
.

Consider now the other limit u;u8
1
, assuming again that u<uq . Then the dielectric constant

for a Drude metal can be approximated as e
.
+(u

1
/u)2(!1#iuq/u) [see Eq. (2.1)] that gives
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De@
.
D/e

$
+(u

1
/u)2/e

$
<1 and i"e@

.
/De@

.
D +u/uq;1. To estimate the behavior of the correlation

function G(r) the usual procedure of dividing the system into squares of size l and considering each
square as a new element is applied, as it has been discussed in Section 2.3. The square size l is set
equal to l

3
given by Eq. (2.34). Then the correlation function Gw in the renormalized system has the

form of Eq. (4.14), while in the original system it has the form G(r)+(l
3
/a)1`gGw(r) for r<l

3
. The

function G(r) follows the usual behavior of the current}current correlation function in a percolation
system G(r)Jr~t@l [107], for the distance r;l

3
. By matching these asymptotic expressions at

r"l
3
, the following anzats for the correlation function is obtained:

G(r)&Mw

2A
l
3
r B

t@l
&i~1A

l
3
r B

t@l
, a;r(l

3
,

G(r)&Mw

2A
l
3
r B

1`g
&i~1A

l
3
r B

1`g
, l

3
(r(m

%
, (4.16)

where l
3
and m

%
are given by Eqs. (2.34) and (2.40), respectively. The correlation function calculated

for the loss parameter i"10~3 and contrast De@
.
D/e

$
"102, which corresponds to l

3
"10a, is

shown in Fig. 12. It is in reasonable agreement with the scaling of Eq. (4.16).
The scaling given by Eq. (4.16) allows to estimate the second moment of the local electric current

M
j
,SD j(r)D2T at the percolation threshold p

c
. The moment M

j
is expressed from Eq. (4.8) in terms

of the current}current correlation function G(r) as M
j
"DE

0
D2Dp

%
D2G(0)"(u/4p)2DE

0
D2De

%
D2G(0),

where E
0

is the external "eld, p
%

and e
%

are the e!ective conductivity and the dielectric constant,
respectively. At the percolation threshold the e!ective dielectric constant is estimated as e

%
&

e
$
(e
.
/e

$
)s@(s`t) [12,20]. To estimate the correlation function G for r&a the Eq. (4.16), obtained for

distances r much larger than the grain size a, is extrapolated to rPa. Such an extrapolation gives
G(0)&G(a)&Mw

2
(l
3
/a)t@l&Mw

2
(De

.
D/e

$
)t@(s`t). Combining the above estimates for e

%
and G(0) the

following equation is obtained:

M
j
&(u/4p)2DE

0
D2e2

$
Mw

2A
De
.
D

e
$
B

(2s`t)@(s`t)
&(u/4p)2DE

0
D2e

$
De
.
DM

2
, (4.17)

where in transition to the second estimate Eqs. (2.22) and (2.43) are used for the local "eld moments
Mw

2
,Mw

2,0
and M

2
,M

2,0
correspondingly. This equation holds for arbitrary spatial dimension.

In two dimensional case Eq. (4.17) coincides with exact Eq. (7.138) (see Section 7.3.4), which is held
for self-dual composites at the percolation threshold.

Now we return to the consideration of the light scattering from semicontinuous metal "lms.
Note that the frequency u;u

1
is considered, when metal dielectric constant for a Drude metal

[see Eq. (2.1)] can be approximated as e
.
K!(u

1
/u)2(1!iuq/u). By substituting the correlation

function G(r) from Eq. (4.16) in Eq. (4.12) and taking into account that at the percolation threshold
De
%
D2Ke

$
De
.
DKe

$
(u

1
/u)2, the following result is obtained:

S
505
&

(ka)4
3

D¹D2De
%
D2i~1l1`g

3
m1~g
%

&

(ka)4
3

D¹D2i~1~(1~g)@2De
.
D2&0.1A

u
1
a

c B
4

A
u
uqB

1`(1~g)@2
, (4.18)
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Fig. 13. Enhancement of Rayleigh scattering from semicontinuous gold "lms as a function of the wavelength; p"p
c
.

where the relation between the 2D percolation exponents t+s+l+4/3 [12,20] is used as well as
the experimental result D¹D2K0.25, which holds for p"p

c
and uq;u;u

1
[85]. Thus, the

scattering "rst increases as u1`(1~g)@2 with increasing the frequency according to Eq. (4.18) and
then vanishes as (u8

1
!u)2`(1~g)@2 when u approaches u8

1
[see Eq. (4.15)] in accordance with the

numerical results shown in Fig. 11.
The enhancement of the scattering due to the "eld #uctuations can be estimated from Eqs. (4.13)

and (4.16) as g&D¹D2e
$
De
.
Dl2
3
i~1~(1~g)@2/4, which gives for a Drude metal [see Eq. (2.1)] and

u;u
1

the following equation:

g&
D¹D2
4 A

u8
1

u B
4

A
u
uq B

1`(1~g)@2
. (4.19)

Taking the value D¹D2"1/4 and e
$
"2.2, which is typical for a glass, the enhancement of scattering

shown in Fig. 13 is obtained. The enhancement g becomes as large as g&5]104 at wavelength
j"1.5lm and continues to increase towards the far infrared spectral range. At "rst glance this
continuous increase of the scattering enhancement g seems to contradict to the behavior of the
scattering shown in Fig. 11. It can be explained by noticing that Fig. 11 shows the anomalous
scattering itself, whereas Fig. 13 shows the enhancement of the anomalous scattering with respect
to Rayleigh scattering, assuming that metallic grains are independent. Rayleigh scattering
decreases as u4 with decreasing frequency, whereas the anomalous scattering varies as
S&u1`(1~g)@2+u1.1. Then the enhancement increases as g&u~2.9&j2.9 in the infrared part of
the spectrum.

In the formalism above it was assumed that the wavelength j is much larger than the grain size
a and that j is much larger than the spatial scale m

%
of the giant "eld #uctuations, j<m

%
.

Consequently, the calculated Rayleigh scattering contains a small portion of the incident light only.
The size of metal grains in semicontinuous metal "lms is usually of the order of few nanometers but
it can be increased signi"cantly by using a proper method of preparation [108]. In such a way the
situation can be achieved, when the "eld correlation length m

%
in Eq. (2.40) becomes larger than the

wavelength j of the incident wave. In this case, the scattering can be a dominating process in
the light interaction with semicontinuous metal "lms. Then some kind of critical opalescence,
which is typical for critical phenomena, can be observed for these "lms. The consideration
presented above holds for the spatial scales a(l(j; one can speculate that the scattering is still
given by Eq. (4.6), but the exponential term cannot be set as one. Integration in Eq. (4.6) over all
directions of the vector r

1
!r

2
gives the factor J

0
(kr sin h), which means that the scattering is
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proportional to SJ:=
0

G(r)J
0
(kr sin h)rdr, where h is the angle between the normal to the "lm

plane and the direction of the scattered wave. Therefore, a thorough study of the conjectured
`critical opalescencea from the "lms (e.g., the angular distribution of the scattered light) could give
quantitative information on the spatial structure of the correlation function G(r) and on the spatial
structure of the giant "eld #uctuations in semicontinuous metal "lms.

After a possible analogy between the anomalous scattering and the critical opalescence is
mentioned, now an important di!erence should be stressed between these phenomena. Indeed, the
critical opalescence originates from the long-range #uctuations of some physical quantity, e.g.,
density #uctuations near the liquid}vapor critical point or fractal structure of metal clusters
[25,105], etc. In contrast to this, the spatial distribution of metal grains in semicontinuous metal
"lms is random or correlated on the scales of a grain size a;j. The anomalous light scattering
originates from the long-range xeld #uctuations. Therefore, the incident electromagnetic wave
plays a two-fold role: it "rst generates the giant #uctuations of local electric "elds which in turn
induce anomalous scattering. Considered anomalous scattering is, in a sense, a new kind of critical
opalescence } the "eld opalescence.

5. Raman scattering

This section is concerned with surface-enhanced Raman scattering (SERS) } one of the most
intriguing optical e!ects discovered in the past twenty years (see, for example, Refs. [24,109}112]).
We present a theory of Raman scattering enhanced by strong "eld #uctuations of the local "elds
[38,42]. SERS from rough thin "lms is commonly associated with excitation of surface plasmon
oscillations (see, e.g., [109,113]). Plasmon oscillations are typically considered in the two limiting
cases: (1) oscillations in independent (noninteracting) roughness features of various shapes and (2)
surface plasmon waves (polaritons) that laterally propagate along the metal surface (see [109,113]
and references therein). In reality, there are strong light-induced interactions between di!erent
features of a rough surface and, therefore, plasmon oscillations should be treated as collective
surface excitations (localized surface plasmons) that depend strongly on the surface morphology as
it has been explained in Section 2. Below, we present a theory that expresses the enhancement of
Raman scattering in terms of the local "eld #uctuations.

5.1. General formalism

We consider optical properties of a semicontinuous metal "lm consisting of metal grains
randomly distributed on a dielectric substrate. The gaps between metal grains are usually "lled by
dielectric material of the substrate. The local conductivity p(r) of the "lm takes either the `metallica
values, p(r)"p

.
, in the metal grains or the `dielectrica values, p(r)"!iue

$
/4p, outside the

metal grains. Here u is the frequency of the external "eld. It is supposed that the wavelength j is
much larger than a typical scale of inhomogeneity in the composite including the grain size a,
the gaps between the grains, percolation correlation length m

1
, and the local "eld correlation length

m
%

[see Eq. (2.40)]. In this case, the local "eld E(r) is given by Eq. (2.3). This equation is solved
to "nd the #uctuating potentials /(r) and the local "elds E(r) induced in the "lm by the external
"eld E

0
(r).
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It is instructive to assume "rst that the external "eld E
0
(r) is pin-like, E

0
(r)"E

1
d(r!r

1
), where

the d(r) is the Dirac delta function. The current density at arbitrary point r
2

is given by the
following linear relation:

j(r
2
)"RK (r

2
, r

1
)E

1
, (5.1)

de"ning the nonlocal conductivity matrix RK (r
2
, r

1
). This matrix represents the system's response at

point r
2

to the "eld source located at point r
1
. If an inhomogeneous external "eld E

0
(r) is applied to

the system the local current at point r
2

is equal to

j(r
2
)"PRK (r2 , r

1
)E

0
(r
1
) dr

1
, (5.2)

where the integration is over the total area of the system.
The nonlocal conductivity RK can be expressed in terms of the Green function G of Eq. (2.3):

+ ) Mp(r
2
)[+G(r

2
, r

1
)]N"d(r

2
!r

1
) , (5.3)

where the di!erentiation with respect to the coordinate r
2

is assumed. Comparing Eqs. (2.3) and
(5.3) and using the de"nition of the nonlocal conductivity given in Eq. (5.1), the following equation
is obtained

Rab(r2 , r
1
)"p(r

2
)p(r

1
)
R2G(r

2
, r

1
)

Rr
2,a Rr1,b

, (5.4)

where the Greek indices take values x and y. As follows from the symmetry of Eq. (5.3), the Green
function is symmetric with respect to the interchange of its arguments: G(r

1
, r

2
)"G(r

2
, r

1
). Then,

Eq. (5.4) implies that the nonlocal conductivity is also symmetric:

Rab(r1 , r
2
)"Rba (r2 , r

1
) . (5.5)

The introduction of the nonlocal conductivity, RK , considerably simpli"es further calculations of the
local "eld distributions. The symmetry of RK given by Eq. (5.5) is also important for the following
analysis.

Since the wavelength of the incident em wave is much larger than all spatial scales in a semicon-
tinuous metal "lm, the external "eld E

0
is constant in the "lm plane. The local "elds E(r

2
) induced

by the external "eld E
0

can be obtained by using Eq. (5.2) for the nonlocal conductivity RK as
follows:

E(r
2
)"

1
p(r

2
)PRK (r2 , r

1
)E

0
dr

1
. (5.6)

The local "elds E(r
2
) excite Raman-active molecules that are assumed to be uniformly distributed

in the composite. The Raman-active molecules, in turn, generate the Stokes "elds E
4
(r
2
)"

a
4
(r
2
)E(r

2
), oscillating at the shifted frequency u

4
[a

4
(r
2
) is the ratio for the Raman and linear

polarizabilities of the Raman-active molecule at the point r
2
]. The Stokes "elds E

4
(r
2
) induce in the

composite currents j
4
(r
3
) that are given by an equation similar to Eq. (5.6):

j
4
(r
3
)"PRK (r3 , r

2
)E

4
(r
2
) dr

2
. (5.7)
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Since the Stokes-shifted frequency u
4

is typically very close to the frequency of the external "eld
Du!u

4
D/u;1 the nonlocal conductivities RK , appearing in Eqs. (5.6) and (5.7), are considered to be

the same.
The intensity of the electromagnetic wave I scattered from any inhomogeneous system is

proportional to the current #uctuations inside the system, as it has been discussed in all details in
Section 4.1, namely

IJTK P[ j(r)!S jT] drK
2

U , (5.8)

where the integration is over the entire system and the angular brackets S2T denote the ensemble
average. For Raman scattering, the mean includes averaging over the #uctuating phases of the
incoherent Stokes "elds generated by di!erent Raman-active molecules. Therefore, the averaged
current densities oscillating at u

4
is zero, S j

4
T"0. Then, the intensity of Raman scattering I

4
from

a semicontinuous metal "lm acquires the following form:

I
4
JTK P j(r) drK

2

U
"PSRab (r3 , r

2
)a

4
(r
2
)Eb(r2)RHac(r5 , r

4
)aH

4
(r
4
)EHc (r4 )Tdr

2
dr

3
dr

4
dr

5
, (5.9)

where the summation over repeating Greek indices is implied. All the integrations in Eq. (5.9) are
over the entire "lm plane. Eq. (5.9) is averaged over the #uctuating phases of the Raman
polarizabilities a

4
. Since the Raman "eld sources are incoherent, this average results in

Sa
4
(r
2
)aH

4
(r
4
)T"Da

4
D2d(r

2
!r

4
) , (5.10)

and Eq. (5.9) takes the following form:

I
4
JPSRab(r3 , r

2
)RHkc(r5 , r

2
)dak Da4

D2Eb (r2 )EHc (r2 )Tdr
2

dr
3

dr
5

, (5.11)

where the Kronecker symbol dak is introduced to simplify further considerations. Since a semicon-
tinuous "lm is macroscopically homogeneous, Raman scattering is independent of the orientation
of the external "eld E

0
; therefore, Eq. (5.11) can be averaged over the orientations of the E

0
without

changing the result. The averaging of the products Eb (r2 )EHc (r
2
) and E

0,aEH0,k results in the
following expressions:

SEb(r2)EHc (r2 )T
0
"1

2
SDE(r

2
)D2T

0
dbc (5.12)

dak"2
SE

0,aEH0,kT0
DE

0
D2

, (5.13)

where the sign S2T
0

denotes the orientation averaging. Substituting Eqs. (5.12) and (5.13) in
Eq. (5.11) and noting that the nonlocal conductivity RK is independent of the "eld orientations, the
following result is obtained for the intensity of the Raman signal:

SI
4
TJPRab (r3 , r

2
) RHkb (r5 , r

2
)
SE

0,aEH0,kT0
DE

0
D2

Da
4
D2SDE(r

2
)D2T

0
dr

2
dr

3
dr

5
. (5.14)
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[For simplicity, the sign for ensemble averaging is omitted here.] Now the symmetry of the
nonlocal conductivity, given by Eq. (5.5), is used to rewrite Eq. (5.14) as

SI
4
TJPSRba(r2 , r

3
)E

0,a&Hbk (r2 , r
5
)EH

0,kT0

Da
4
D2

DE
0
D2

SDE(r
2
)D2T

0
dr

2
dr

3
dr

5
. (5.15)

Integration over the coordinates r
3

and r
5

and implementation of Eq. (5.2) gives

SI
4
TJ

Da
4
D2

DE
0
D2PDp(r

2
)D2SDE(r

2
)D2T

0
SDE(r

2
)D2T

0
dr

2
. (5.16)

It is easy to show that this equation can be rewritten for macroscopically isotropic system in the
following form:

SI
4
TJ

Da
4
D2

DE
0
D2PDp(r

2
)D2DE(r

2
)D4dr

2
. (5.17)

If there were no metal grains on the "lm, the local "elds would not #uctuate and one would obtain
the following expression for Raman scattering:

I0
4
JPDp$

D2Da
4
D2DE

0
D2dr

2
. (5.18)

Therefore, the enhancement of Raman scattering G
RS

due to presence of metal grains on a dielectric
substrate is given by

G
RS
"

SI
4
T

I0
4

"

SDp(r)D2DE(r)D4T
Dp

$
D2DE

0
D4

"

SDe(r)D2DE(r)D4T
e2
$
DE

0
D4

. (5.19)

Note that the derivation of Eq. (5.19) is essentially independent of the dimensionality and
morphology of a system. Therefore, the enhancement of Raman scattering given by Eq. (5.19) holds
for any inhomogeneous system provided the "eld #uctuations take place inside it. In particular,
Eq. (5.19) gives the enhancement for Raman scattering from a rough metallic surface, provided
the wavelength is much larger than the roughness spatial scales; it can be also used to calculate
enhancements for Raman scattering in a three-dimensional percolation composites. The presented
theory, which was developed in Refs. [38,42], implies that the main sources for the Raman signal
are the currents excited by Raman molecules in metal grains. This explains why a signi"cant
enhancement for Raman scattering is observed even for relatively #at metal surfaces [109,113,114].

5.2. Raman and hyper-Raman scattering in metal-dielectric composites

It has been shown in Section 2 that in percolation composites the local electric "eld concentrates
mainly in the dielectric gaps between metal clusters. Then the SERS enhancement given by
Eq. (5.19) can be estimated as G

RS
&M

4,0
"SDE(r)/E

0
D4T. Eq. (2.43) for the fourth moment gives

G
RS
&o(p)[m

A
(p)/a]d~8A

De
.
D

e
$
B

(2l`s)@(t`s)

A
De
.
D

eA
.
B

3
, (5.20)
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where the dependence of the density of states o(p) and localization length m
A
(p) on the concentra-

tion p of metal grains is indicated explicitly. Thus the obtained Raman enhancement G
RS

depends
strongly on localization length m

A
. When the states are delocalized, m

A
PR and G

RS
vanishes very

rapidly.
Now the frequency and concentration dependence of Raman scattering predicted by Eq. (5.20) is

considered. For 2D metal-dielectric composites (semicontinuous metal "lms) the critical exponents
s+t+l+4/3. The Drude metal dielectric function (2.1) can be used for frequency u;u

1
, and

Eq. (5.20) results in the enhancement G
RS
&o(p)[a/m

A
(p)]6(u

1
/uq)3/e3@2$

, which is independent of
frequency.

For silver-on-glass percolation "lms, the Anderson localization length m
A

is set m
A
+2a (see Figs.

1}4), which gives the best "t for the moments in Fig. 5, and density of state o(p
c
)&1 [see discussion

after Eq. (2.12)]. Thus the SERS G
RS

achieves the values G
RS
&106 in silver semicontinuous "lms at

the percolation threshold. For 3D composite at u;u
1
, SERS decreases with decreasing frequency

as G
RS
&o(p)(m

A
/a)~5u2

1
u/u3q&106u/u

1
, where the estimates m

A
+2a, o&1 are used and 3D

critical exponents are approximated as l+s+(t#s)/3 [12,20]; the data u
1
"9.1 eV and

uq"0.021 eV for silver dielectric constant [104] are substituted.
The localization radius m

A
of the eigenstates W

n
with eigenvalues K+0 decreases when

concentration shifts from p"p
c

toward p"0 or p"1 since the eigenvalue K"0 shifts from
the center of the K-distribution to its tails, where localization of the eigenstates is stronger
[see discussion at Eq. (2.25) in Section 2]. Therefore, according to Eq. (5.20) Raman scattering
has a minimum at the percolation threshold. As a result, the double maximum dependence
G

RS
(p) takes place as it was observed in experiments and numerical calculations [38,42],

with one maximum below the percolation threshold p
c

and another above the p
c

as it is shown
in Fig. 14.

Results of experimental studies of the SERS dependence on the metal "lling factor p compared to
theoretical calculations are shown in Fig. 15 taken from [42]. One can see that there is good
qualitative agreement between predictions of theory and experimental observations. In particular,
in accordance with theory, there is a dip near the percolation threshold in the SERS dependence
on p.

The intensity of the local Stokes sources I
RS

(r)JDE(r)D4 (provided the Stokes shift of frequency is
small) follows the local "eld distribution. In the peaks (hot spots), Eq. (2.35) gives

I
RS,.!9

JDE(r)D4&E4
0
(a/m

A
)8A

De
.
D

e
$
B

4l@(t`s)

A
De
.
D

eA
.
B

4
. (5.21)

For a semicontinuous Drude metal "lm at p"p
c

and u;u
1
, the peak intensity is estimated

as I
RS,.!9

JDE(r)D4/E4
0
&(m

A
/a)~8(u

1
/uq)4<1. If the density of Raman-active molecules is

small enough, then each peak of the local "eld can be due to Raman scattering from a
single molecule. The distribution of the local Raman signal in silver semicontinuous "lm is shown
in Fig. 16.

Consider now hyper-Raman scattering when n photons of frequency u are converted in one
hyper-Stokes photon of frequency u

)RS
"nu!X, where X is the Stokes frequency shift corre-

sponding to the frequency of molecule oscillations (electronic or vibrational). Following the general
approach, described in the beginning of this section (see Ref. [38]), the surface enhancement of
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Fig. 14. The enhancement factor G
RS

for Raman scattering from a silver semicontinuous "lm as a function of the metal
concentration p and the wavelength, j.

Fig. 15. Normalized SERS AM "G
RS

(p)/G
RS

(p"p
c
) as a function of the metal concentration, *p"p!p

c
, on a silver

semicontinuous "lm. The solid curve represents theoretical calculations; the points are experimental data.

hyper-Raman scattering (SEHRS) G
)RS

is equal to

G
)RS

"

SDp
)RS

(r)D2DE
)RS

(r)D2DE(r)D2nT
Dp

$
D2DE

0,)RS
D2DE

0
D2n

"

SDe
)RS

(r)D2DE
)RS

(r)D2DE(r)D2nT
De
$
D2DE

0,)RS
D2DE

0
D2n

, (5.22)

where E
)RS

(r) is the local "eld excited in the system by the uniform probe "eld E
0,)RS

oscillating
with u

)RS
; p

)RS
(r) and e

)RS
(r) are the local conductivity and dielectric constant at the frequency

u
)RS

. At n"1 formula (5.22) describes the conventional SERS.
To estimate G

)RS
it is taken into account that the spatial scales for the "eld maxima l

3
[see

Eq. (2.34)] at the fundamental frequency u and hyper-Stokes frequency u
)RS

are signi"cantly
di!erent. Therefore the average in Eq. (5.19) might be decoupled and approximated as
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Fig. 16. Distribution of the local enhancement of Raman scattering on a silver semicontinuous "lm at the percolation
threshold for di!erent wavelengths: (a) j"0.36lm, (b) j"0.5lm, (c) j"1.5lm, (d) j"10 lm, (e) j"20lm.
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SDe
)RS

(r)D2DE
)RS

(r)D2DE(r)D2nT&SDe
)RS

(r)E
)RS

(r)D2TSDE(r)D2nT"SDe
)RS

(r)E
)RS

(r)D2TM
2n

DE
0
D2n, where

M
2n

(u), given by Eq. (2.27), is the 2nth moment of the local "eld E(r). It follows from Eq. (4.17) that
the second moment of the current SDe

)RS
(r)E

)RS
(r)D2T is estimated as e

$
De
.
(u

)RS
)DM

2
DE

0,)RS
D2, where

the moment M
2
(u

)RS
) is the second moment of the "eld E

)RS
(r). Substitution of these results in

Eq. (5.19) gives

G
)RS

&

De
.
(u

)RS
)D

e
$

M
2
(u

)RS
)M

2n
(u) , (5.23)

where the moment M
2

is taken at frequency u
)RS

. Now the expressions for moments M
2

and
M

2n
given by Eq. (2.43) are substituted in the above equation and it is taken into account that for

pKp
c

the density of states in Eq. (2.43) is about unity o&1. Thus the following formula for
enhancement of hyper-Raman scattering is obtained:

G
)RS

&(m
A
/a)2d~4(1`n)A

De
.
(u

)RS
)D

e
$

B
(t`2s)@(t`s)

A
De
.
(u

)RS
)D

eA
.
(u

)RS
) B

]A
De
.
(u)D
e
$
B

(2l(n~1)`s)@(t`s)

A
De
.
(u)D

eA
.
(u) B

2n~1
, (5.24)

where n52. For a Drude metal and frequencies u;u8
1
, u

)RS
;u8

1
the metal dielectric constant

can be approximated as De
.
(u

)RS
)D&De

.
(u)D&(u

1
/u)2, eA

.
(u)/De

.
(u)D&uq/u and Eq. (5.24)

acquires the form

G
)RS

&(m
A
/a)2d~4(1`n)A

u
1

u B
2(2l(n~1)`3s`t)@(t`s)

A
u
uqB

2n
, (5.25)

which holds in the vicinity to the percolation threshold. For 2D composites where the critical
exponents are t+s+l+4/3 Eq. (5.24) simpli"es to

G
)RS

&(a/m
A
)4nA

u
1

u B
2(n`1)

A
u
uqB

2n
&(a/m

A
)4nA

u
1

u B
2

A
u

1
uq B

2n
, (5.26)

which for n"2 in silver semicontinuous "lms is estimated as G
)RS

&1013(a/m
A
)8j2, where the

wavelength j is given in microns. As above for Raman scattering, the local enhancement in the hot
spots can be larger than the average one by many orders of magnitude.

6. Giant enhancements of optical nonlinearities in metal-dielectric composites

In this section, we consider enhancements in percolation composites for di!erent nonlinear
optical processes nonlinearities, such as Kerr optical e!ect and generation of high harmonics.

6.1. Kerr-type optical nonlinearities

The Kerr-type nonlinearities are third-order optical nonlinearities that result in additional term
in the electric displacement D of the form

D(3)a (u)"e(3)abcd(!u;u,u,!u)EbEcEHd , (6.1)
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where

e(3)abcd (!u;u,u,!u) . (6.2)

is the third-order nonlinear dielectric constant [81,82], and E is an electric "eld at frequency u;
summation over repeated Greek indices is implied. The Kerr optical nonlinearity results in
nonlinear corrections (proportional to the light intensity) for the refractive index and the absorp-
tion coe$cient.

Below macroscopically homogeneous and isotropic composites are considered. Then the third-
order terms in the average electric displacement has, in general, the following form:

SD(3)(r)T"aDE
0
D2E

0
#b E2

0
EH
0

, (6.3)

where E
0

is the amplitude of the external (macroscopic) electric "eld at frequency u, E2
0
,(E

0
)E

0
),

a and b are some constants [not to be confused with the tensor components in Eq. (6.1)]. Note that
the second term in Eq. (6.3) for the nonlinear displacement of an isotropic "lm can result in change
of the polarization of the incident light [81]. Eq. (6.3) simpli"es for the case of linear and circular
polarization of the incident light [81]. For the linear polarization the complex vector E

0
reduces

to a real vector. Then the expressions DE
0
D2E

0
and E2

0
E

0
in Eq. (6.3) become the same and the

equation can be rewritten as

SD(3)(r)T"e(3)
%

DE
0
D2E

0
, (6.4)

where the nonlinear dielectric constant e(3)
%

is a scalar now. For the sake of simplicity, we consider
below the linearly polarized incident wave. Eq. (6.4), being rewritten in terms of the nonlinear
average current S j(3)(r)T and the e!ective Kerr conductivity p(3)

%
"!iue(3)

%
/4p, takes the following

form:

S j(3)(r)T"p(3)
%

DE
0
D2E

0
. (6.5)

This form of the Kerr nonlinearity is used in the discussion below.
First the case when the nonlinearities in metal grains p(3)

.
and dielectric p(3)

$
are close to each

other p(3)
.
+p(3)

$
+p(3) is considered. For example it can be due to molecules uniformly covering

a semicontinuous "lm. [The composites, where Dp(3)
.

D<Dp(3)
$

D, are discussed below at Eq. (6.21).]
When p(3)

.
+p(3)

$
+p(3) the current in the composite is given by

j(r)"p(1)(r)E@(r)#p(3)DE@(r)D2E@(r) , (6.6)

where E@(r) is the local #uctuating "eld. When current is given by Eq. (6.6) the current conservation
law given by Eq. (2.3) takes the following form:

+ )Ap(1)(r)C!+/(r)#E
0
#

p(3)

p(1)(r)
E@(r)DE@(r)D2DB"0 , (6.7)

where E
0

is the applied electric "eld, and !+/(r)#E
0
"E@(r) is the local "eld. It is convenient to

consider the last two terms in the square brackets in Eq. (6.7) as a renormalized external "eld

E
%
(r)"E

0
#E

&
(r)"E

0
#

p(3)

p(1)(r)
E@(r)DE@(r)D2 , (6.8)
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where the "eld

E
&
(r)"

p(3)

p(1)(r)
E@(r)DE@(r)D2 (6.9)

may change over the "lm but its averaged value SE
&
(r)T is collinear to E

0
. Then the average current

density S j(r)T is also collinear to E
0

in macroscopically isotropic "lms considered here. Therefore,
the average current can be written as

S jT"
E
0

E2
0

(E
0
) S jT)"

E
0

E2
0

1
APE

0
) j(r) dr , (6.10)

where A is the total area of the "lm, the integration is over the "lm area and E2
0
,(E

0
)E

0
).

Expressing the current j(r) in Eq. (6.10) in terms of the nonlocal conductivity matrix de"ned by
Eq. (5.1) gives

S jT"
E
0

E2
0

1
AP[E

0
RK (r, r

1
)E

%
(r
1
)] dr dr

1
, (6.11)

where the integrations are over the entire "lm. Now this equation is integrated over the coordinates
r and the symmetry of the matrix of nonlocal conductivity given by Eq. (5.5) is used. This results in
the expression

S jT"
E
0

E2
0

1
AP( j

0
(r) )E

%
(r)) dr , (6.12)

where j
0
(r) is the current induced at the coordinate r by the constant external "eld E

0
. Now we can

substitute in Eq. (6.12) the renormalized external "eld E
%
(r) from Eq. (6.8) and integrate over the

coordinate which gives for the average current

S jT"E
0Cp(1)

%
#

Sp(3)(E(r) )E@(r))DE@(r)D2T
E2

0
D , (6.13)

where p(1)
%

and E(r) are the e!ective conductivity and local #uctuating "eld, respectively, obtained in
the linear approximation, i.e., for p(3),0. Comparison of Eqs. (6.13) and (6.5), allows to "nd the
equation for the e!ective Kerr conductivity

p(3)
%

"

Sp(3)(E(r) )E@(r))DE@(r)D2T
E2

0
DE

0
D2

. (6.14)

Let us stress out that this result does not depend on the `weaknessa of the nonlinearity, it holds
even for strong nonlinear case Dp(3)E2D<p(1)

%
. For the case of weak nonlinearities the local "eld E@(r)

in Eq. (6.14) can be replaced by the linear local "eld E(r) resulting in the following equation for the
Kerr conductivity

p(3)
%

"

Sp(3)E2(r)DE(r)D2T
E2

0
DE

0
D2

, (6.15)

which gives the e!ective nonlinear conductivity in terms of the linear local "eld.
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In the absence of metal grains the e!ective nonlinear Kerr conductivity p(3)
%

coincides with the
Kerr conductivity p(3) of the dielectric. Therefore the enhancement of the Kerr nonlinearity G

K
is

given by the following equation:

G
K
"

SE2(r)DE(r)D2T
E2

0
DE

0
D2

"M
2,2

, (6.16)

where M
2,2

is the fourth moment of the local "eld [see Eq. (2.26)]. Therefore, the enhancement
of the Kerr nonlinearity G

K
is expressed in terms of the local "eld E(r) found in the linear

approximation.
Above it has been assumed that the nonlinear Kerr conductivity p(3) is the same in metal and

dielectric. When p(3)
.
Op(3)

$
the above derivations can be repeated and the following result emerges

for the e!ective Kerr conductivity

p(3)
%

"pp(3)
.

SE2(r)DE(r)D2T
.

E2
0
DE

0
D2

#(1!p)p(3)
$

SE2(r)DE(r)D2T
$

E2
0
DE

0
D2

, (6.17)

where the angular brackets S2T
.

and S2T
$

stand for the averaging over the metal and dielectric
grains, respectively. Formula (6.17) for enhancement of the cubic nonlinearity in percolating
composites was previously obtained by Aharony [8], Stroud and Hui [9] and Bergman [11].
Similar formula was independently obtained by Shalaev et al. to describe the Kerr enhancement in
aggregates of metal particles [22}24]. The general equation Eq. (6.13) was derived in Ref. [43].

According to Eq. (6.16) the value of the Kerr enhancement G
K

is proportional to the fourth
power of the local "eld averaged over the sample. This is similar to the case of surface-enhanced
Raman scattering with the enhancement factor G

RS
given by Eq. (5.19). Note, however, that G

K
is

complex, whereas G
RS

is a real positive quantity. Because the enhancement for Raman scattering
is determined by the average of DED4, which is phase insensitive, the upper limit for the enhancement
is realized in this case.

The enhancement of the Kerr nonlinearity can be estimated analytically using the methods
developed in Section 2. We consider "rst the case when p(3)(r) in the dielectric component is of the
same order of magnitude or larger than in the metal component. (The opposite case of almost linear
dielectric Dp(3)

$
D;Dp(3)

.
D will be considered below.) Then the Kerr enhancement G

K
is estimated as

G
K
&Dp(3)

%
/Sp(3)(r)TD"De(3)

%
/Se(3)(r)TD&DM

2,2
D

&o(m
A
/a)d~8A

De
.
D

e
$
B

(2l`s)@(t`s)

A
De
.
D

eA
.
B

3
, (6.18)

where Eq. (2.43) is used for the moment M
2,2

of the local "eld. For u;u
1

the Kerr enhancement
for 2D composites (semicontinuous metal "lms) is estimated as G

K
&o(m

A
/a)d~8(u

1
/uq )3, where

the Drude formula (2.1) is used for the metal dielectric constant e
.
. For silver-on-glass semicon-

tinuous "lms, Anderson localization length m
A
+2a and density of states o+1, the Kerr enhance-

ment is estimated as G
K
&105}106.

In Fig. 17 the results of numerical simulations for G
K

are shown as a function of the metal "lling
factor p, for d"2. The plot has a two-peak structure, as in the case of Raman scattering. However,
in contrast to G

RS
, the dip at p"p

c
is much stronger and at p"p

c
is proportional (as simulations
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Fig. 17. Average enhancement of the Kerr optical nonlinearity G
K
"DM

2,2
D in silver semicontinuous "lms as a function

of the metal concentration p for three di!erent wavelengths. The nonlinear Kerr permittivity e(3) is the same for metal and
dielectric components.

show) to the loss factor i. This implies that at p"p
c
, the enhancement is actually given by

G
K
&iM

2,2
, where M

2,2
was found as above. This result might be a consequence of the special

symmetry of a self-dual system at p"p
c
. Formally, it could happen if the leading term in the power

expansion of M
2,2

over 1/i cancels out because of the symmetry [see the discussion following
Eq. (2.32)]. When this symmetry is somehow broken, e.g., by slightly moving away from the point
p"p

c
, the enhancement G

K
increases and becomes G

K
&DM

2,2
D&G

RS
&M

4,0
, as seen in Fig. 17.

The fact that the minimum at p"p
c
is much less for SERS than for the Kerr process is probably

related to the fact that the latter is a phase sensitive e!ect.
As shown in Section 2, the local "eld maxima are concentrated in the dielectric gaps when

De
.
D<e

$
. Therefore the enhancement estimate in Eq. (6.18) is valid when the Kerr nonlinearity is

located mainly in these gaps (it can be due to the dielectric itself or due to adsorbed molecules).
Consider now the case when the Kerr nonlinearity is due to metal grains as in recent experiment

[16,140]. Provided that e@
.
+!e

$
, the local electric "eld are equally distributed in metal and

dielectric components. Therefore the Kerr enhancement is still given by Eq. (6.18) where one should
set De

.
D/e

$
"1. The situation changes dramatically when De

.
D<e

$
since now the local "eld are

concentrated in the dielectric gaps between the conducting clusters achieving the values E
.

given
by Eq. (2.35). The total current J

'
of the electric displacement #owing in the dielectric gap between

two resonate metal clusters of size l
3
can be estimated as J

'
"aE

.
e
%
ld~2
3

, where aE
.

is the voltage
drop across the gap, e

%
is the e!ective dielectric constant of the composite. Because of the current

continuity, the same current should #ow in the adjacent metal clusters. In the metal cluster the
current is concentrated in a percolating channel [12,64]. The electric "eld in the metal channel,
which spans over the cluster, can be estimated as E

*/
&J

'
/(e

.
ad~1), where ad~1 stands for the

cross-section of the channel. Then the nth moment of the local electric "eld in a metal cluster of size
l
3

is equal to SEn
*/

T"En
*/
Lad~1/ld

3
, where Lad~1 is the volume of the conducting channel,

L"a(e
.
/e

%
)l~d`2
3

is the e!ective length of the conducting channel. Now let us take into account
that only the fraction i"eA

.
/De

.
D;1 of metal clusters of size l

3
are excited by the external electric
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Fig. 18. Average enhancement of the Kerr optical nonlinearity G.%5!-
K

"DM.%5!-
2,2

D in silver semicontinuous "lms as
a function of the metal concentration p for three di!erent wavelengths. The nonlinear Kerr permittivity e(3) is in the metal
component only.

"eld. Then the following estimate is obtained for the moments M.%5
n

"SDEDnT
.%5

/En
0
"iSEn

*/
T/En

0
of the electric "eld in the metal component

M.%5
n

&A
De
.
D

eA
.
B

n~1

A
De
.
D

e
$
B

*(d~1)(n~2)l~t(n~1)+@(t`s)
, (6.19)

where the expression (2.34) is used for the size l
3

of the resonant clusters. The corresponding
enhancement G.%5

K
of the Kerr nonlinearity is estimated as

G.%5
K

&M.%5
4

&A
De
.
D

eA
.
B

3

A
De
.
D

e
$
B

*2(d~1)l~3t+@(t`s)
. (6.20)

For two-dimensional systems (d"2), where t+s+l+4/3, Eq. (6.19) gives G.%5
K

&M.%5
4

&

(De
.
D/eA

.
)3(e

$
/De

.
D)1@2.

Computer simulation results for enhancement of the Kerr nonlinearity G.%5
K

for silver semicon-
tinuous "lm are shown in Fig. 18 as a function of the metal concentration p. From Figs. 17 and 18
it follows that G.%5

K
;G

K
as expected. Near the percolation threshold, we can compute the Kerr

enhancements G.%5
K

and G
K

quantitatively. For the 2D case, where t+s+l, Eqs. (6.18) and
(6.19) give

G
K

G.%5
K

&A
De
.
D

e
$
B

2
. (6.21)

Since in optic and infrared spectral ranges De
.
D<e

$
, the Kerr nonlinearity enhancement is much

larger when the `seeda nonlinearity is located in the dielectric gaps, where the local "elds are much
larger than in metal. It follows from Eq. (6.21) and also from Fig. 18 that the Kerr enhancement
G.%5

K
may become less than one. This means that local electric "elds in the metal component can be

smaller than the external "eld on average. For semicontinuous silver "lms on a glass substrate it
occurs for wavelength j'10lm as one can see in Fig. 18.
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Note also that enhancement for nearly degenerate four-wave mixing G
FWM

, such as coherent
anti-Stokes Raman scattering (CARS) and optical phase conjugation (OPC) process, is estimated
as G

FWM
&DG

K
D2 and can be very large on average and, especially, in the hot spots [15].

6.2. Percolation-enhanced nonlinear scattering from metal-dielectric xlms

Nonlinear optical processes of the nth order are proportional to En(r) and, therefore, the strong
spatial #uctuations of the `nonlineara "eld source, JEn(r), can result in giant nonlinear scattering
from a composite material.

In this subsection we consider percolation-enhanced nonlinear scattering (PENS) from a ran-
dom metal-dielectric "lm (also referred to as a semicontinuous metal "lm) at the metal "lling factor
p close to the percolation threshold, p"p

c
. Speci"cally, the enhanced nonlinear scattering, which is

due to local "eld oscillation at frequency nu, is studied; while a percolation metal-dielectric "lm is
illuminated by an em wave of frequency u.

At the percolation, an in"nite metal cluster spans over the entire sample and the metal-dielectric
transition occurs in a semicontinuous metal "lm [12,64]. Optical excitations of the self-similar
fractal clusters formed by metal particles near p

c
result in giant, scale-invariant, "eld #uctuations

that makes the considered here PENS di!er from the known phenomena of surface polariton
excitations and harmonic generation from smooth and rough metal surfaces (see [115}119,60,
120}123] and references therein).

It was shown in Section 4 that while Rayleigh scattering is strongly enhanced it is still only
a small correction to the specular re#ection and transmission. In contrast, below it will be shown
that PENS with a broad angular distribution can be a leading optical process.

For simplicity, it is assumed that a semicontinuous "lm is illuminated by the light propagating
normal to the "lm, with the wavelength j larger than any intrinsic spatial scale in the "lm. The gaps
between metal grains are "lled by the dielectric substrate so that a semicontinuous metal "lm can
be thought of as a two-dimensional array of metal and dielectric grains that are randomly
distributed over a plane. For an incident wave of frequency u, nth harmonic generation (nHG) is
considered in a semicontinuous metal "lm.

It is assumed that a semicontinuous metal "lm is covered by a layer possessing the
nonlinear conductivity p(n) that results in nHG (e.g., it can be a layer of nonlinear organic
molecules, semiconductor quantum dots, or a quantum well on top of a percolation "lm).
The local electric "eld Eu (r) induced in the "lm by the external "eld E

0
generates in the layer

the nu current p(n)EuEn~1u . (This expression, strictly speaking, holds only for the scalar
nonlinear conductivity and odd n (i.e., n"2k#1), when En~1"(E )E)k. However, for estimates,
the formula can be used in the general case, for arbitrary n.) We would also point out that
in this subsection the external "eld, oscillated at frequency u, is still denoted as E

0
though

the frequency is indicated explicitly for other "elds. The nonlinear current p(n)EuEn~1u , in turn,
interacts with the "lm and generates the `seeda nu electric "eld, with the amplitude
E(n)"p(n)En~1u Eu/p(1), where p(1) is the linear conductivity of the nonlinear layer at frequency nu.
The electric "eld E(n) can be thought of as an inhomogeneous external "eld exciting the "lm
at nu frequency.

The nHG current j(n) induced in the "lm by the `seeda "eld E(n) can be found in terms
of the nonlocal conductivity matrix RK (r, r@) introduced in Section 5.1 by Eq. (5.1). The nonlocal
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conductivity relates the applied (external) "eld at point r@ to the current at point r,

j(n)b (r)"PR(n)ba(r, r@)E(n)a (r@) dr@ , (6.22)

where R(n)ba is the conductivity matrix at frequency nu and the integration is over the entire "lm area
[15]. The Greek indices take values Mx, yN and summation over repeated indices is implied. It is the
current j(n) that eventually generates the nonlinear scattered "eld at frequency nu.

Using the numerical technique described in Section 3.1, the spatial distribution of the local-"eld
can be calculated. For example, in Fig. 3 it is shown the normalized real part of the 3u local "eld
Re[E2(r)E

x
(r)]/DE

0
D3 in a 2D silver-on-glass "lm at p"p

c
and j"1.5lm [104]. As seen in Fig. 3,

the #uctuating 3u "elds form a set of sharp peaks, looking up and down, and having the
magnitudes &104}106. Such huge #uctuations of the local "elds are anticipated to trigger the
PENS at frequency 3u. The larger the number n of the harmonic, the stronger the #uctuation of the
corresponding nu local "eld. Therefore, PENS becomes progressively more pronounced for higher
harmonics.

By using the standard approach of the scattering theory [65] adopted to semicontinuous metal
"lms in [44] (see Section 4.1) and assuming that the incident light is unpolarized, the integral
scattering is obtained in all directions but the specular one is

S"(4k2/3c)P(S j(n)a (r
1
)j(n)Ha (r

2
)T!DS j(n)TD2) dr

1
dr

2
, (6.23)

where the integrations is over the entire are a A of the "lm, k"u/c and the angular brackets stand
for the ensemble average. As in Section 4.1, it is assumed that the integrand vanishes for distances
r;j, where r"r

2
!r

1
; therefore, the retardation term &exp(ik ) r) is omitted [see discussion

below Eq. (4.6)]. Using Eq. (6.22), the current}current correlator can be rewritten in Eq. (6.23) as

PS j(n)a (r
1
)j(n)Ha (r

2
)Tdr

1
dr

2
"PSR(n)cb (r1 , r

3
)R(n)Hda (r

2
, r

4
)dcdSE(n)b (r

3
)EH(n)a (r

4
)T

0
T

4
<
i/1

dr
i

, (6.24)

where S2T
0

denotes the averaging over the light polarizations. For further consideration the
spatial uniform `probea "eld E(0)

nu is introduced. This "eld oscillates at frequency nu and is
supposed to be unpolarized. For the unpolarized light the following equation holds
dcd"2SE(0)

nu,cE(0)H
nu,dT0

/DE(0)
nu D2. This expression is substituted in Eq. (6.24). Then integration over the

coordinates r
1
, r

2
, and averaging over independent polarizations of "elds E(0)

nu , E
0

gives the
following equation for the current}current correlation function:

PS j(n)a (r
1
)j(n)Ha (r

2
)Tdr

1
dr

2

"

1
DE(0)

nu D2PSp
nu (r

3
)pH

nu (r
4
)(E

nu(r
3
) )EH

nu (r
4
))(E(n)(r

3
) )E(n)H(r

4
))Tdr

3
dr

4
, (6.25)

where E
nu (r) is the local nu "eld excited in the "lm by `probea "eld E(0)

nu ,p
nu (r) is the "lm linear

conductivity at frequency nu.
In macroscopically homogeneous and isotropic "lms considered here, the current correlator

given by Eq. (6.25) does not depend on direction of the probe "eld E(0)
nu . Therefore the "eld E(0)

nu can
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be chosen now to be collinear with external "eld E
0
. In macroscopically isotropic "lms, considered

here, the average nonlinear current S j(n)T is parallel to the external "eld E
0
. If the probe "eld E(0)

nu is
aligned with E

0
the square of the nonlinear current is equal to DS j(n)TD2"DSE(0)

nu ) j(n)TD2/DE(0)
nu D2. Then

using Eq. (6.22) the second term in the right-hand side of Eq. (6.23) can be rewritten as

DS j(n)TD2"
1

ADE(0)
nu D2 K PE(0)

nu,bR(n)ba(r1 , r
2
)E(n)a (r

2
) dr

1
dr

2 K
2

, (6.26)

where the integrations are over the entire "lm area A. Integration over coordinate r
1

in Eq. (6.26)
gives for the average nonlinear current the following expression:

DS j(n)TD2"
DSp

nu(E
nu )E(n))TD2

DE(0)
nu D2

. (6.27)

The substitution of Eqs. (6.25) and (6.27) in Eq. (6.23) results in

S"
8pk2

3cDE(0)
nu D2 K

p(n)

p(1) K
2
ASDpE

nu D2DEu D2DEu D2(n~1)TP
=

0

g(n)(r)rdr , (6.28)

where g(n)(r) is the nonlinear correlation function de"ned as

g(n)(r)"
Sp

nu(r
1
)pH

nu (r
2
)[E

nu (r
1
) )EH

nu(r
2
)][E(n)(r

1
) )E(n)H(r

2
)]T!DSp

nu (E(n) )E
nu )TD2

SDp
nuE

nu D2DE(n)D2T
, (6.29)

which depends on the distance r"Dr
1
!r

2
D between points r

1
and r

2
for macroscopically

homogeneous and isotropic "lms.
Thus obtained PENS S is compared with the nu signal I

nu from the nonlinear layer on
a dielectric "lm with no metal grains on it, I

nu"(ce2
$
/2p)ADp(n)/p(1)D2DE(0)u D2DE(0)u D2(n~1). The enhance-

ment factor for PENS, G(n)"S/I
nu is expressed in terms of the local dielectric constant e

nu at
frequency nu as

G(n)"
(ka)4

3
SDe

nuE
nu D2DEu D2DEu D2(n~1)T

e2
$
DE(0)

nu D2DE
0
D2DE

0
D2(n~1)

n2

a2P
=

0

g(n)(r)rdr . (6.30)

Note that for a homogeneous (p"0 and p"1) surface g(n)(r)"0 and, therefore, G(n)"0, so that
the scattering occurs in the re#ected direction only. Besides the small factor (ka)4, which is similar
to that in the standard linear Rayleigh scattering, the enhancement G(n) for PENS is proportional
to the 2(n#1) power of the local "eld E: G(n)&SDED2(n`1)T. For highly #uctuating local "elds,
this factor can be very large (see Fig. 20). To understand the origin of the giant PENS the "eld
#uctuations are considered below in more detail.

A metal-dielectric transition occurring at the percolation threshold to some extent is similar to
a second-order phase transition [64]. In this case one could anticipate that local "eld #uctuations
are rather large and have long-range correlations near the percolation threshold p

c
[8,9,11,12].

What might be more surprising is that the "eld #uctuations in the optical spectral range discussed
above are quite di!erent from those for a second-order phase transition.

The local electric "eld #uctuations resulting in PENS are of the resonant character and the local
"eld variation can be several orders of magnitude. In accordance with this, the "eld correlation
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Fig. 19. Correlation function g(3)(r), for silver on glass semicontinuous "lm at the percolation threshold p"p
c
. Di!erent

curves correspond to j
1
"0.34lm (solid line and circles, in the inset), j

2
"0.53lm (dashed line and triangles), and

j
3
"0.9lm (point-dashed line and diamonds); the arrows are theoretical estimates for m

%
(j

2
) and m

%
(j

3
). The straight line

illustrates the scaling dependence of g(3)(r) in the tail. The units in which a
0
"1 are used.

function g(3)(r), shown in Fig. 19 for the silver on glass semicontinuous "lm, drops very rapidly for
r'a, and has a negative minimum, regardless of the magnitude of the local "eld correlation length
m
%
; the anticorrelation occurs because the "eld maxima have di!erent signs, as seen in Fig. 3. The

power-low decrease of g(3)(r), which is typical for critical phenomena, occurs in the tail only
(see inset in Fig. 19).

The correlation function g(3)(r) deviates from the power-law (the straight line in Fig. 19) for
distances r larger than "eld correlation length m

%
introduced in Section 2.3. The value of m

%
can be

estimated from Eq. (2.41) as m
%
(j)K5, 20 and 30 (in a units) for j"0.34, 0.53 and 0.9lm

respectively, which is in agreement with the calculations shown in the inset of Fig. 19 [45]. For
a typical size of a metal grain in a semicontinuous "lm aK2}20nm, the intrinsic spatial scale of
the local "eld inhomogeneity m

%
;j, as it has been assumed above. (Note that the quasistatic

approximation does not work often in metal semicontinuous "lms due to the strong skin e!ect in
metal grains as it is discussed in detail in Section 7). The integral of g(3)(r) in Eq. (6.30) is estimated
as one, for all frequencies. Based on the above consideration the dimensionless integral
a~2:=

0
g(n)(r)rdr is supposed to be of the order of one for all n.

From the spatial behavior of g(n)(r) and the "eld distribution shown in Fig. 3, one anticipates that
in contrast to harmonic generation from `conventionalametal surfaces the PENS is characterized
by a broad-angle distribution, with the integral (over all directions) scattering much larger than the
coherent scattering in the re#ected direction.

The di!usive scattering of the second harmonic from the metal-dielectric "lm has been observed
in experiments with C

60
-coated semicontinuous silver "lms [124]. The di!usely scattered second

harmonic generation was also observed from thin but continuous silver "lms [125] on which
surface plasmon mode was excited in the Kretschmann geometry. This e!ect had no proper
theoretical description. We believe that the di!usive scattering of 2u "eld can be attributed to the
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anomalous #uctuations of local electric "elds on the roughness features with spatial scale a
much smaller than wavelength j of the incident light. Then the scattering observed in the
experiment [125] is similar to the considered here PENS from percolation "lms.

To estimate PENS quantitatively note that the typical size l
3
(u)&aJDe

.
(u)D of the local

"eld maxima [see discussion at Eq. (2.42)] increases with decreasing frequency. Thus for a Drude
metal l

3
(u)Ju~1 when u;u

1
. Since the spatial scales for the "eld E

nu and Eu are di!erent the
average S(DeE

nu D2DEu D2DEu D2(n~1))2T in Eq. (6.30) might be decoupled and approximated roughly
as S(De

nuE
nu D2DEu D2DEu D2(n~1))2T&SDe

nuE
nu D2TSDEu D2nT&De

nue
$
DM

2,nuM
2n

DE(0)
nu D2DE

0
D2n, where

Eq. (4.17) is used for the average SDe
nuE

nu D2T,M
2,nu and M

2n
are the spatial moments of the local

"elds E
nu and Eu correspondingly. This decoupling is substituted in Eq. (6.30). It is also taken

into account that the integral there is of the order of unity as discussed above. Then Eq. (6.30)
simpli"es to

G(n)

(ka)4
KCK

e
.
(nu)
e
$
KM2,nuM

2n
, (6.31)

where C is an adjustable pre-factor. Finally, using Eq. (2.45) for the moments M
2,nu and M

2n
and

assuming that in this equation the localization length m
A
&a and the density of states o&1 the

PENS factor G(n) for the nth harmonic is estimated as follows:

G(n)

(ka)4
KC

De
.
(nu)D5@2De

.
(u)D3(n~1@2)

en`1
$

eA
.
(nu)eA

.
(u)2n~1

, (6.32)

where C is an adjustable pre-factor. In transition to the second relation in Eq. (6.32) the generated
frequency nu is assumed as nu(u

1
so that e@

.
(nu) is negative; otherwise, G(n)KC(ka)4M(2n)u since

the local nu "elds are not enhanced for e@
.
(nu)'0. For the Drude metal and u, nu;u

1
,

Eq. (6.32) can be simpli"ed as

G(n)&C(ka)4
1

en`1
$
A
u

1
uq B

2n

A
u

1
u B

2
, (6.33)

i.e., PENS increases with increasing the order of a nonlinear process and decreases toward the
infrared part of the spectrum as G(n)Jj~2, in contrast to the well known law j~4 for Rayleigh
scattering. It is interesting to note that PENS is inversely proportional to the wavelength squared
for high-harmonic scattering, independent of the order of optical nonlinearity.

In Fig. 20 the numerical results for the PENS factors G(n) are compared with predictions of the
scaling formula (6.32), where the pre-factor CK10~3 is used (note that C is small because the
above used decoupling is, of course, the upper estimate). For a very large spectral interval, there is
good agreement between the developed scaling theory and numerical calculations. The PENS
e!ect appears to be really huge, e.g., the enhancement for the "fth harmonic generation is
G(5)/(ka)4&1021, for j"1.5lm.

To summarize, large "eld #uctuations in random metal-dielectric composites near percolation
result in a new physical phenomenon, percolation-enhanced nonlinear scattering (PENS), which is
characterized by giant enhancement and a broad-angle distribution.
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Fig. 20. The PENS factor G(n) for n-harmonic generation in a silver semicontinuous "lm at p"p
c
. Numerical

calculations for n"2, 3, 4 and n"5 are represented by v, m, j, and #, respectively.

7. Electromagnetic properties of metal-dielectric crystals and composites:
beyond the quasistatic approximation

We consider now electromagnetic properties of metal-dielectric materials irradiated by a high-
frequency electromagnetic "eld under conditions when the skin e!ect in metal grains is strong. Two
di!erent classes of metal-dielectric systems will be analyzed, percolation composites [12,102] and
arti"cial electromagnetic crystals [62,63]. The electromagnetic crystals are three-dimensional
periodic structures of metal inclusions in a dielectric host. They are similar to the well known
photonic crystals composed of periodic structures of dielectric particles. At high frequencies, when
metal periodic stuctures can sustain plasmon excitations, they can also be referred to as plasmonic
crystals.

Since metals have nonzero losses at the optical frequencies, most studies on photonic crystals are
focused on dielectric structures. Nevertheless, metallic 3D structures, can "nd applications in the
microwave range and, under some conditions, in the optical spectral range as well. Below the
interaction of a cubic metal lattice with an electromagnetic "eld is considered.

Metal-dielectric percolation composites and 3D electromagnetic crystals are quite
di!erent objects at "rst glance. Still it is shown in this section that electromagnetic
properties of random composites and electromagnetic crystals can be understood in terms
of the e!ective dielectric constant and magnetic permeability, provided that the wavelength
of an incident wave is much larger than an intrinsic spatial scale of the system. The wavelength
inside a metal component can be very small. Most interesting e!ects are expected in the limit
of the strong skin e!ect. Thus the consideration goes beyond the quasistatic approximation
employed in the previous sections. It is important that methods for calculating the e!ective
dielectric constant and magnetic permeability are essentially the same for composites and
electromagnetic crystals. Moreover, the results for the e!ective parameters are also, to a large
extent, similar.
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7.1. Metal-dielectric composites

The propagation of electromagnetic waves in percolation composites with wavelength j less
than the percolation length m

1
, may be accompanied by strong scattering [see discussion in Section

6]. On the other hand, the wave propagation at j<m
1

can be described by Maxwell's equations
with e!ective dielectric constant e

%
and e!ective magnetic permeability k

%
. It will be discussed

below (a) what sense have the e!ective parameters e
%

and k
%

when the skin e!ect is strong and (b)
how to express e

%
and k

%
in terms of dielectric constants e

.
and e

$
, magnetic permeabilities k

.
and

k
$
, and size a of metal grains in a composite.
In order to calculate the e!ective parameters the approach suggested in Refs. [107,126,127] is

developed further.
When we are interested in the e!ective dielectric constant e

%
and e!ective magnetic permeability

k
%
the consideration can be restricted to the optically thin systems of sizeL;j/JDe

%
k
%
D, which are

still homogeneous from the percolation point of view (L<m
1
). Suppose that a percolation

composite is placed inside of a resonator, where electromagnetic waves are excited. The e!ective
parameters can be determined from the condition that the composite in the resonator results in
the "eld change exactly like a geometrically equivalent homogeneous system with parameters
e
%

and k
%
.

Let the electric or magnetic dipole mode be excited in the resonator. The e!ective dielectric
(magnetic) constant e

%
(k

%
) can then be determined from a change in the characteristic frequency of

the electric (magnetic) dipole oscillations. In the case of the electric dipole mode the system
interacts with the electric component of an electromagnetic "eld, while in the magnetic dipole mode
it interacts with the magnetic "eld. Note that in real experiments the e!ective parameters e

%
and

k
%

are measured using the same procedure [82, Section 90]. It is assumed, for simplicity, that the
shape of the composite placed in a resonator is spherical. Then the electric and magnetic "elds
excited in the geometrically equivalent homogeneous system with the e!ective parameters e

%
and

k
%

are uniform and will be denoted as E
0

and H
0
. It will be shown in this section how to obtain

self-consistent equations for the parameters e
%
, k

%
and "elds E

0
and H

0
.

The change in the "eld when a composite is placed inside of the resonator, is determined by
superposition of the "elds scattered from individual metal and dielectric particles that have
dielectric constants e

.
and e

$
respectively. The interaction between the particles is taken into

account in the self-consistent approximation known as the e!ective medium theory [12,49].
In this theory, the interaction of a given metal or dielectric particle with the rest of the system is
found by replacing the latter by a homogeneous medium with the e!ective parameters e

%
and k

%
.

Assuming that the composite grains are spherical in shape, the electric "elds E
*/,.

and E
065,.

,
excited by electric "eld E

0
, are calculated inside and outside of a metal grain of size a. Thus the

following equation (see [82, Section 59; 107,127]) is obtained for the electric "eld inside the
metal grain:

E
*/,.

(r)"E
*/,.0

#4pL(r) , (7.1)

where

E
*/,.0

"

3e
%

2e
%
#e8

.

E
0

, (7.2)
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e8
.

is the renormalized dielectric constant of metal de"ned as

e8
.
"e

.

2F(k
.
a)

1!F(k
.
a)

, F(x)"
1
x2

!

cotx
x

, (7.3)

where k"u/c is the wave vector in a free space, k
.
"kJe

.
k
.
, and a is the radius of a metal grain.

The skin (penetration) depth d is equal to d"1/Im k
.
. When metal conductivity p

.
is a real

quantity (microwave and radio frequency) the skin depth d"c/J2pk
.
p
.
u. In the Cartesian

coordinate system with the `za axis directed along the "eld E
0
, the local electric "eld L in Eq. (7.1) is

determined by the equation

curl L(r)"
1
4p

curl E
*/,.

(r)"
ik
4p

B
E

, (7.4)

where the loop "eld

B
E
"!3iE

0

ake
.
e
%
sin(k

.
r)F(k

.
r)

(2e
%
#e8

.
) sin(k

.
a)(F(k

.
a)!1)G

y
r
,!

x
r
, 0H (7.5)

is a rotational magnetic induction arising in a metal particle from the skin e!ect. Therefore the
inside electric "eld consists of curl-free part E

*/,.0
and the rotational part L(r) that depends on the

coordinate. The "eld outside the metal particle equals

E
065,.

"E
0
#a3

e
%
!e8

.
2e

%
#e8

.

+A
E
0
) r

r3 B , (7.6)

i.e., it also depends on the renormalized dielectric function e
.
. The local wavelength inside

a dielectric grain j
$
"j/Je

$
is assumed to be much larger than the grain size: j

$
<a. Then

the electric "elds inside and outside a dielectric particle are given by the well known equations
(see [82, Section 8])

E
*/,$

"E
0

3e
%

2e
%
#e

$

(7.7)

and

E
065,$

"E
0
#a3

e
%
!e

$
2e

%
#e

$

+A
E

0
) r

r3 B . (7.8)

Similar equations can be obtained for the magnetic "eld excited by uniform magnetic "eld
H

0
inside and outside a metal (dielectric) particle:

H
*/,.

"H
*/,.0

#4pM , (7.9)

where

H
*/,.0

"

3k
%

2k
%
#k8

.

H
0

, (7.10)

A.K. Sarychev, V.M. Shalaev / Physics Reports 335 (2000) 275}371 335



and the renormalized metal magnetic permeability k8
.

equals

k8
.
"k

.

2F(k
.
a)

1!F(k
.
a)

, (7.11)

where the function F is de"ned in Eq. (7.3). Note that the renormalized metal magnetic permeabil-
ity k8

.
is not equal to one, even if metal is nonmagnetic and the seed magnetic permeability k

.
"1.

The local magnetic "eld M in Eq. (7.9) satis"es equations that are similar to Eqs. (7.4) and (7.5),
namely

curl M"

1
4p

curl H
*/,.

"!

ik
4p

D
H

, (7.12)

D
H
"3iH

0

akk
.
k
%
sin(k

.
r)F(k

.
r)

(2k
%
#k8

.
) sin(k

.
a)(F(k

.
a)!1)G

y
r
,!

x
r
, 0H , (7.13)

where D is the electric displacement induced in the metal particle by high-frequency magnetic "eld
H

0
. The displacement D can be written as D"i(4p/u) j, where the eddy electric currents j are

known as Foucault currents. The "eld H
*/,.0

is a potential part, while M is a rotational (solenoidal)
part of the local magnetic "eld. The magnetic "eld outside the metal particle is irrotational
(curl-free) and equals

H
065,.

"H
0
#a3

k
%
!k8

.
2k

%
#k8

.

+A
H

0
) r

r3 B . (7.14)

It is supposed, for simplicity, that the dielectric component of the composite is nonmagnetic, i.e.,
the dielectric magnetic permeability k

$
"1. Then the magnetic "elds inside and outside a dielectric

particle are equal to

H
*/,$

"H
0

3k
%

2k
%
#1

(7.15)

and

H
065,$

"H
0
#a3

k
%
!1

2k
%
#1

+A
H

0
) r

r3 B (7.16)

respectively. The e!ective parameters e
%
and k

%
are determined by the self-consistent condition that

the scattered "elds should vanish, when averaged over all inclusions, i.e., SE
065

T"pE
065,.

#

(1!p)E
065,$

"E
0

and SH
065

T"pH
065,.

#(1!p)H
065,$

"H
0
, where S2T stands for the volume

averaging. Substituting here the scattered electric and magnetic "elds from Eqs. (7.6), (7.8) and
(7.14), (7.16) results in the following system:

p
e
%
!e8

.
2e

%
#e8

.

#(1!p)
e
%
!e

$
2e

%
#e

$

"0 , (7.17)

p
k
%
!k8

.
2k

%
#k8

.

#(1!p)
k
%
!1

2k
%
#1

"0 (7.18)
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that gives the e!ective dielectric constant e
%

and magnetic permeability k
%

in terms of metal
concentration p and e8

.
, e

$
, k8

.
. Eqs. (7.17) and (7.18) are similar to equations of the traditional

e!ective medium theory [12]. The skin e!ect results in renormalization of the dielectric con-
stant and magnetic permeability of the conducting component; speci"cally, the metal dielectric
constant e

.
and magnetic permeability k

.
are replaced by e8

.
and k8

.
given by Eqs. (7.3)

and (7.11), respectively. This fact has a substantial e!ect on the frequency dependence of
the e!ective parameters. For example, it is commonly accepted that the e!ective conductivity
p
%
"!iue

%
/(4p) of a composite is dispersion-free, when the conductivity of metal component

p
.

is frequency independent and large in comparison with frequency, p
.
<u (which is typical

for the microwave and far-infrared ranges). Thus the traditional e!ective medium theory
predicts that p

%
"p

.
(3p!1)/2 for the metal concentration p su$ciently above the per-

colation threshold. Eq. (7.17) gives the same result for the e!ective conductivity p
%

but the
metal conductivity is renormalized according to Eq. (7.3), which results in the following formula
p
%
"p

.
F(k

.
a)(3p!1)/(1!F(k

.
a)). It follows from this expression that the e!ective conductivity

has a dispersive behavior, provided that the skin e!ect in metal grains becomes important
[107,127]. In the limit of very strong skin e!ect d;a the e!ective conductivity decreases with
frequency as p

%
&p

.
(d/a)&p

.
/Ju. Another interesting result is that percolation composites

exhibit magnetic properties, even if they are absent in each component, i.e., if k
.
"k

$
"1 (see also

discussion in Refs. [126,128,129]). In this case the real part k@
%
of the e!ective magnetic permeability

k
%

is less than one and it decreases with frequency. The imaginary part kA
%

of the e!ective
permeability has its maximum at frequencies such that d&a.

It will be shown now that the e!ective parameters e
%

and k
%

determine propagation of an
electromagnetic wave in the metal-dielectric composites. In the e!ective medium approximation,
used here, the "eld is supposed to be the same in particular type of the grains. Therefore, the
average electric "eld is equal to

SET"pE
*/,.

#(1!p)E
*/,$

"pE
*/,.0

#4pSLT#(1!p)E
*/,$

, (7.19)

where Eq. (7.1) is used in transition to the second equality. When Eqs. (7.2) and (7.7) are substituted
in Eq. (7.19), and Eq. (7.17) is taken into account, Eq. (7.19) simpli"es to

SET"E
0
#4pSLT , (7.20)

where S2T denotes, as above, the volume average. Therefore, the irrotational part of the local
"eld, being averaged over the volume, gives the "eld E

0
, while the second term in Eq. (7.20) results

from the skin e!ect in metal grains. The above consideration being repeated for the average
magnetic "eld SHT [see Eqs. (7.9), (7.10) and (7.15)] results in

SHT"pH
*/,.

#(1!p)H
*/,$

"H
0
#4pSMT , (7.21)

where the rotational "eld M in metal grains is given by Eq. (7.12); the "eld M equals zero in
dielectric grains. Again the average irrotational part of the local magnetic "eld gives H

0
, while the

term 4pSMT represents the average rotational (curl) magnetic "eld.
Consider now the average electric displacement SDT induced in the system by electrical "eld E

0
.

The displacement can be written as

SDT"e
.
pE

*/,.0
#4pe

.
SLT#(1!p)e

$
E

*/,$
. (7.22)
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It follows from Eq. (7.2) for E
*/,.0

and Eq. (7.4) for L that the sum e
.
pE

*/,.0
#4pe

.
SLT in

Eq. (7.22) can be written as

e
.
pE

*/,.0
#4pe

.
SLT"e

.
pA

3e
%

2e
%
#e8

.

E
0
#

4p
< PL d<B

" e
.
pA

3e
%

2e
%
#e8

.

E
0
#i

k
2<P[r]B

E
] d<B"p

3e
%
e8
.

2e
%
#e8

.

E
0

, (7.23)

where the integration is over volume <"4pa3/3 of a metal particle, and the "eld B
E

is given by
Eq. (7.5). Substituting Eqs. (7.23) and (7.7) in Eq. (7.22) gives

SDT"e
%
E

0
, (7.24)

where Eq. (7.17) has been used. Therefore, the average electric displacement is proportional to the
irrotational part of the local "eld averaged over the system and the coe$cient is exactly equal to the
e!ective dielectric constant. When the above consideration is repeated for the magnetic "eld it
results in an equation for the average magnetic induction SBT, namely:

SBT"k
%
H

0
. (7.25)

Eqs. (7.20) and (7.21) can be considered as de"nitions for "elds E
0

and H
0
. Indeed, if the local "elds

were known in the composite the "elds E
0

and H
0

would be found from Eqs. (7.20) and (7.21). Then
Eqs. (7.24) and (7.25) can be used to "nd the e!ective dielectric constant e

%
and e!ective magnetic

permeability k
%

of a composite. Eqs. (7.24) and (7.25) replace the usual constitutive equations
SDT"e

%
SET and SBT"k

%
SHT, which hold in the quasistatic case only.

We now proceed with derivation of equations for the macroscopic electromagnetism in metal-
dielectric composites. Eq. (7.24) gives the average electric displacement excited by the electric "eld
E
0
, but the local magnetic "eld also excites eddy electric currents (Foucault currents). An addition

of the electric displacement D
H

given by Eq. (7.12) with the average displacement given by Eq. (7.24)
gives the full electric displacement

SDT
&
"e

%
E

0
#

i4p
k

Scurl MT , (7.26)

where it is still assumed that the system is much smaller than the wavelength j. Note that the
second term in Eq. (7.26) disappears when the skin e!ect vanishes, i.e., when Dk

.
DaP0. Similarly,

the average full magnetic induction SBT
&

equals

SBT
&
"k

%
H

0
!

i4p
k

Scurl LT , (7.27)

where the vector L is given by Eq. (7.4). Now the Maxwell equations are averaged over a macro-
scopical volume < whose size L is much larger than the percolation correlation length m

1
but

much smaller than the wavelength j, m
1
;L;j. The volume < is supposed to be centered in the

point r. The frequency domain is used. Thus the following Maxwell equations are obtained:

Scurl ET"ikSBT
&
"ikk

%
H

0
#4pScurl LT , (7.28)

Scurl HT"!ikSDT
&
"!ike

%
E

0
#4pScurl MT , (7.29)
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where Eqs. (7.26) and (7.27) are substituted for the electric and magnetic inductances respectively.
The order of the curl operation and the volume average in Eqs. (7.28) and (7.29) can be changed as it
is done usually for derivation of the macroscopic Maxwell equations (see [130, Chapter 6, Section
6.6]). For example, Scurl ET can be written as Scurl ET"curl[SET(r)], where the di!erentiation in
l.h.p. is over the position r of the volume <. Note that the "elds E

0
and H

0
de"ned by Eqs. (7.20)

and (7.21) are also functions of r. Then the Maxwell equations (7.28) and (7.29) acquire the form

curl E
0
(r)"ikk

%
H

0
(r) , (7.30)

curl H
0
(r)"!ike

%
E

0
(r) , (7.31)

i.e., they have the form typical for the macroscopic electromagnetism, describing, for example,
propagation of electromagnetic waves in a composite media.

It is important that all quantities in Eqs. (7.20), (7.21), (7.24), (7.25), (7.30) and (7.31) are well
de"ned and do not depend on the assumptions made in the course of their derivation. Thus the
vector M in Eq. (7.21) can be determined as a magnetic moment of the eddy currents per unit
volume, so that

SMT"!i
k

8p<P[r]D
H
] d<"

1
2c<P[r]j

H
] d< , (7.32)

where the integration now is over macroscopical volume <. This de"nition of vector M is in
agreement with Eq. (7.12), but it is not required now that the eddy currents j

H
are the same in all

metal particles. In a similar way the vector L is de"ned as the spatial density of the `electric
moments of magnetic eddy currentsa

SLT"i
k

8p<P[r]B
E
] d<, (7.33)

where the integration is still over the volume < and B
E
"!(i4p/k) curl E, with E being the local

electric "eld. Note that the vector SLT has no direct analog in the classical electrodynamics since
there is no such thing as loop magnetic currents in atoms and molecules. After de"ning vectors
L and M, Eqs. (7.20), (7.21), (7.24), (7.25), (7.30) and (7.31) form a complete system of equations that
determine the e!ective parameters and electrodynamic wave propagation in metal-dielectric
composite media. Various approximations, such as the e!ective medium theory, can still be very
useful in actual calculations of the e!ective parameters.

7.2. Electromagnetic crystals

In this subsection the method, discussed above, is used to calculate the e!ective dielectric
constant and magnetic permeability of metal-dielectric crystals, known also as electromagnetic
crystals. In these arti"cial crystals the metal component is assembled in a periodic lattice. Two
limiting cases of the electromagnetic crystals are considered: a cubic lattice of unconnected metal
spheres and three-dimensional conducting wire mesh con"gurated in a cubic lattice.

7.2.1. Cubic lattice of metal spheres
The local electromagnetic "elds and e!ective parameters are considered for a system of metal

spheres of radius a that are embedded in a dielectric host (a vacuum, for example) at sites of a cubic
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lattice with period L'2a. The wavelength j of an incident electromagnetic wave is assumed to be
much larger than the lattice period L. Consider "rst the electric "eld distribution in the lattice cell
centered at a metal sphere. The electric "eld outside the metal grain can be expanded in multipole
series; for simplicity, the dipole approximation is used [131,132], which holds in the limitL<a. In
this approximation the outside "eld E

065
has constant and dipole components only, namely

E
065

(r)"E
1
#Ba3+A

E
1
) r

r3 B , (7.34)

where E
1

is some electric "eld aligned with the electric "eld of the incident wave and B is an
unknown coe$cient. Provided that the external "eld E

065
is speci"ed, the electric "eld E

*/
inside

the metal grain can be found unambiguously by solving the Maxwell equations at the boundary
conditions E

*/
]n"E

065
]n and e

.
E
*/
) n"e

$
E

065
) n imposed at the metal surface (n"r/r is the

normal unit vector directed outward the metal sphere). Thus the internal "eld E
*/

is given by
Eqs. (7.1), (7.2), (7.4), and (7.5), where the "eld E

0
is replaced by E

1
. The pre-factor B in Eq. (7.34)

is also found by matching the "elds E
*/

and E
065

at the surface of a metal grain; this gives
B"(e

$
!e8

.
)/(2e

$
#e8

.
) as in Eq. (7.6), where the renormalized metal dielectric constant e8

.
is given

by Eq. (7.3).
When the local electric "eld E(r) is known for one lattice cell, the e!ective dielectric constant of

an electromagnetic crystal can be found following the procedure described above. The homogeniz-
ation procedure can be divided into "ve steps (I)}(V):

(I) First, the average electric "eld is calculated as

SET"
1
<PE(r) d<"

1
<APE

*/
(r) d<#PE

065
(r) d<B , (I)

where the "rst integration is over the volume <"L3 of the lattice cell, and the "elds E
*/

and
E
065

are integrated inside and outside of the metal grain, respectively. Note that in the considered
dipole approximation, when E

065
has the form of Eq. (7.34), the integration of the dipole term in

Eq. (7.34) gives zero, if the crystal possesses inversion symmetry. It will be assumed that this is
the case and, therefore, the second integral in Eq. (I) equals <~1:E

065
(r) d<"E

1
(1!p), where

p"(4/3)pa3/< is the volume concentration of metal ("lling factor).
(II) Second, the eddy magnetic induction, de"ned as

B
E
(r)"!i curl(E(r))/k , (II)

is calculated. In the considered case of a crystal composed from metal spheres, the magnetic
induction B

E
(r) is equal to zero outside the metal sphere and is given by Eq. (7.5) for the points

r inside the sphere.
(III) Third, the moment SLT"<~1:L d<"ik/(8p<):r]B

E
d< of the eddy magnetic induction

B
E

is calculated. Then the average, curl-free local electric "eld E
0

from Eq. (7.20) equals

E
0
"SET!4pSLT . (III)

For the considered metal-sphere crystal, the calculated electric "eld E
0

equals

E
0
"[p3e

$
/(2e

$
#e8

.
)#(1!p)]E

1
, (7.35)

where e8
.

is given by Eq. (7.3).
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(IV) The average electric displacement is de"ned as

SDT"
1
<Pe(r)E(r) d< , (IV)

where the local dielectric constant takes values e
.

and e
$

inside and outside a metal grain,
respectively. For the metal-sphere crystal, the average electric displacement equals

SDT"Cp
3e

$
e8
.

2e
$
#e8

.

#(1!p)e
$DE

1
, (7.36)

where the renormalized metal dielectric constant e8
.

is given by Eq. (7.3).
(V) Finally, the e!ective dielectric constant is determined from Eq. (7.33) as a coe$cient between

SDT and E
0
, namely, SDT"e

%
E

0
.

Then it follows from Eqs. (7.35) and (7.36) that the e!ective dielectric constant e
%

for the
metal-sphere crystal equals

e
%
"e

$

(1#2p)e8
.
#2(1!p)e

$
(1!p)e8

.
#(p#2)e

$

, (7.37)

The above consideration (I)}(V) repeated for the magnetic "eld de"nes the e!ective magnetic
permeability k

%
for a cubic crystal composed of metal spheres as follows:

k
%
"

(1#2p)k8
.
#2(1!p)

(1!p)k8
.
#(p#2)

, (7.38)

where k8
.

is the renormalized metal magnetic permeability given by Eq. (7.11); it is still supposed,
for simplicity, that neither a dielectric host nor metal spheres have magnetic properties, i.e.,
k
$
"k

.
"1.

In the quasistatic case, when the skin e!ect is negligible, Eqs. (7.37) and (7.38) give the well known
Maxwell}Garnett formulae for the e!ective parameters. It has been demonstrated that the
Maxwell}Garnett approximation, which emerges from the dipole approximation, gives very
accurate results for the e!ective properties of various metal-dielectric periodic composites, even at
large "lling factors p(0.5 [61,131,132]. Then it is reasonable to conjecture that in a nonquasistatic
case Eqs. (7.37) and (7.38) hold for this concentration range. For a large "lling factor p, the local
"elds and e!ective parameters of the electromagnetic crystals can be de"ned using the Rayleigh
technique developed by McPhedran and co-workers [131,132]. Again, provided that the internal
"eld has been found, the e!ective parameters e

%
and k

%
can be calculated from the procedure

described by Eqs. (I)}(V).
Consider now a strong skin e!ect when the absolute value of the wave vector k

.
in metal

particles tends to in"nity, i.e., Dk
.
DaPR. Let us also suppose that Im(k

.
)aP#R, that is the electric

and magnetic "elds fall exponentially in a metal grain, being con"ned mainly to the skin depth
d"1/Im(k

.
). Recall that for the positive values of the metal conductivity p

.
(which is typical for

most metals for the radio, microwave and far-infrared frequencies u) the skin depth d is equal to
d"c/J2pp

.
u and the wave vector k

.
"(1#i)/d. Then as follows from Eqs. (7.3) and (7.11) the

renormalized metal dielectric constant e8
.

and the magnetic permeability k8
.

are approximated as

e8
.
+2ik

.
a/(ka)2 (7.39)
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and

k8
.
+2i/(k

.
a) , (7.40)

from which it follows that De8
.
D<1 and Dk8

.
D;1 when Dk

.
Da&a/d<1. Substitution of these

estimates in Eqs. (7.37) and (7.38) gives

e
%
"e

$
(1#2p)/(1!p) , (7.41)

and

k
%
"2(1!p)/(p#2) , (7.42)

for the e!ective parameters of the metal-sphere crystal in the case of strong skin e!ect. Thus
obtained e

%
and k

%
do not depend on the metal properties at all. The e!ective refractive index

n"Je
%
k
%
"Je

$
2(1#2p)/(p#2) is of the order of one for almost all "lling factors. The e!ective

surface impedance f"Jk
%
/e

%
determines re#ection at the interface of a system, e.g., the normal

re#ection at the interface with a vacuum equals R"(f!1)/(f#1). It follows from Eqs. (7.41) and
(7.42) that the e!ective surface impedance f can be estimated as

f"(1!p)S
2

e
$
(1#2p)(p#2)

, (7.43)

and it is also independent of the metal properties and almost linearly decreases with increasing the
"lling factor p. The re#ection coe$cient is given by

RK(n!1)/(n#1)#9pn/2(1#n)2 , (7.44)

where n"Je
$

is the refractive index for a dielectric host. The re#ection coe$cient R is real and it
increases almost linearly up to the value of the "lling factor p

c
+0.524 corresponding to the

close-packed metal spheres in the cubic lattice.
It follows from Eqs. (7.41)}(7.114) that losses in the crystal are negligible. Electromagnetic "eld

slips without loss between the metal grains and the electromagnetic crystal is essentially transpar-
ent. Note that the dipole approximation used for obtaining Eqs. (7.41)}(7.114) does not hold
when the "lling factor p approaches the close-packing limit p

c
since the direct contact between the

metal spheres becomes important. When the spheres are in contact, the crystal properties are close
to those in mesh wire electromagnetic crystals (see below). The distance b between the spheres,
when this crossover takes place, can be estimated by equating the absolute values of the e!ective
conductance of a metal sphere DR

.
D&De8

.
Dua and the capacitive conductance DR

#
D&e

$
ua2/b

between the metal grains (where the renormalized metal dielectric constant is given by Eq. (7.39),
for the strong skin e!ect). Thus the estimate (b/a)(e

$
ka/JDe

.
D;1 could be suggested for the

proximity b between the metal spheres when Eq. (7.114) is violated and an electromagnetic crystal
becomes opaque.

7.2.2. Wire mesh electromagnetic crystal
We consider now electromagnetic properties of three-dimensional metal wire mesh con"gurated

in a cubic lattice. This electromagnetic crystal can be thought of as an opposite limit to the above
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considered case of unconnected metal spheres. It is worthwhile to consider "rst a two-dimensional
array of metal cylinders assembled in a square lattice with period L. The direction of the incident
electromagnetic wave is supposed to be perpendicular to the cylinders. Then there are two basic
polarizations TE (transverse electric) and TM (transverse magnetic) polarizations. For TE polar-
ization, considered "rst, the electric "eld of an incident wave is perpendicular to the direction of the
cylinders. The problem of the local electric "eld in a lattice cell with a metal cylinder in the center is
a two-dimensional analog of the electric "eld distribution considered above for a cell of metal-
sphere crystals. Therefore, the following expression can be written in the dipole approximation for
the electric "eld outside the cylinder [cf. Eqs. (7.34)]

E
065

(r)"E
1

1Ba2+A
E
1
) r

r2 B , (7.45)

where E
1

is a vector aligned with the electric "eld of the incident wave, B is a numerical coe$cient,
r is a two-dimensional vector in the plane perpendicular to the cylinders. The electric "eld inside
the cylinder E

*/
, which matches the outside "eld E

065
given by Eq. (7.45), can be written as [82,

Section 59]:

E
*/

(r)"A curl curl[J
0
(k

.
r)E

1
] , (7.46)

where A is another coe$cient and J
0

is the Bessel function of the zeroth order. As in the case of
a sphere, the coe$cients A and B are found from the boundary conditions E

*/
]n5E

065
]n and

e
.

E
*/
)n5e

$
E

065
) n imposed at the surface of the cylinder, where n"r/r is a unit normal vector

directed outward the metal cylinder, namely

B"

e
$
!e8

.
e
$
#e8

.

(7.47)

and

A"

2e
$

(e
$
#e8

.
)k2

.
J
0
(k

.
a)[1!F(k

.
a)]

, (7.48)

where the renormalized metal dielectric constant e8
.

and function F
1

are given by

e8
.
"e

.
F
1
(k

.
a)/[1!F

1
(k

.
a)] , (7.49)

and

F
1
(x)"J

1
(x)/xJ

0
(x) , (7.50)

respectively, with J
1

being the "rst-order Bessel function. Given the electric "eld in the lattice cell,
the e!ective dielectric constant of the wire mesh crystal can be found from the procedure (I)}(V)
outlined above:

(I) The electric "eld averaged over the cell is equal to

SET"
1
L2AP

r:a

E
*/

dr#P
r;a

E
065

drB"E
1C

2pe
$
F(k

.
a)

(e
$
#e8

.
)[1!F(k

.
a)]

#(1!p)D , (7.51)

where p"pa2/L2 is the "lling factor.
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(II) The magnetic induction generated by the electric "eld inside the metal cylinder is as follows:

B
E
(r)"G0, 0,!E

1

2ie
$
k
.
rF(k

.
r)J

0
(k

.
r)

(e
$
#e8

.
)[1!F(k

.
a)]J

0
(k

.
a)

sin(/)H , (7.52)

where / is a polar angle, so that the vector r equals r"Mr cos/, r sin/, 0N.
(III) The average curl-free local "eld is given by

E
0
"SET!

ik
L2P

r:a

r]B
E
(r) dr"E

1C
2pe

$
(e
$
#e8

.
)
#(1!p)D . (7.53)

(IV) The average electric displacement is as follows:

SDT"
1
L2A P

r:a

e
.

E
*/

dr#P
r;a

e
$
E

065
drB"E

1C
2pe

$
e8
.

(e
$
#e8

.
)
#(1!p)e

$D . (7.54)

Finally, the e!ective dielectric constant of the mesh crystal is given by

e
%M

"

DSDTD
DE

0
D
"e

$

2pe8
.
#(1!p)(e

$
#e8

.
)

2pe
$
#(1!p)(e

$
#e8

.
)

. (7.55)

Now recall that this result holds for the TE polarization, when the electric "eld of an incident wave
is perpendicular to the cylinder axes. Therefore, the e!ective dielectric constant is denoted as e

%M
. In

the case of strong skin e!ect the renormalized metal permittivity is large, De8
.
D<1 [see Eq. (7.39)];

then the e!ective dielectric constant takes the following asymptotic form:

e
%M

"e
$
(1#p)/(1!p) , (7.56)

which is independent of the metal properties [cf. Eq. (7.41)].
Now the e!ective magnetic properties are considered. It is still assumed that the metal and

dielectric components are nonmagnetic, i.e. k
.
"k

$
"1. For the TE polarization the magnetic

"eld is parallel to the cylinders. The local magnetic "eld outside the cylinder is uniform and is
denoted as H

1
. The "eld inside the cylinder is equal to H

1
J
0
(k

.
r)/J

0
(k

.
a), where J

0
is the Bessel

function of the zeroth order. Again, the procedure (I)}(V) allows to "nd the e!ective magnetic
permeability.

(I) The average magnetic "eld is given by

SHT"H
1
[2pF

1
(k

.
a)#(1!p)] , (7.57)

where the function F is de"ned in Eq. (7.50).
(II) The `Foucaulta electric displacement D

H
is circular, i.e., in the cylindrical coordinates it has

only the `/a component

D
H,(

(r)"i
k
.
J
1
(k

.
r)

kJ
0
(k

.
a)

H
1.

(7.58)

(III) The average curl-free magnetic "eld H
0

is given by H
1
.
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(IV) Since neither metal nor dielectric host possesses intrinsic magnetism, the average magnetic
induction SBT coincides with the average magnetic "eld SHT given by Eq. (7.57), and (V) the
e!ective magnetic permeability k

%@@
"DSBTD/DH

0
D is as follows:

k
%@@
"2pF(k

.
a)#(1!p) . (7.59)

Since for the considered TE polarization of the magnetic "eld in the incident wave is parallel to the
axes of the cylinders the e!ective permeability is denoted as k

%@@
. In the limit of strong skin e!ect

(a Im k
.
P#R), the e!ective permeability k

%@@
is given by

k
%,

"(1!p) . (7.60)

In the same limit, the e!ective refractive index n
%
"Je

%M
k
%@@

takes the following form:

n
%
"Je

$
(1#p) . (7.61)

This result for n
%

coincides with the e!ective refractive index obtained in Ref. [131] from quite
di!erent considerations. We would like to stress out that the di!erence between the refractive index
n
%
and the value Je

%M
discussed in Ref. [131], arises naturally in the discussed approach as a result

of the e!ective magnetic properties of electromagnetic crystals. Thus the ratio n
%
/Je

%M
"Jk

%@@
is

not equal to one.
The most interesting results are obtained for the TM polarization, where the electric "eld of the

incident wave is parallel to the cylinders while the magnetic "eld is perpendicular. In the
long-wavelength limit considered throughout the paper (when the wavelength j is much larger
than the size L of the lattice cell) the local electric "eld in the cell can be found as above in the
dipole approximation. In this approximation the local TM electric "eld has a circular symmetry.
Then the electric "eld in the cell is obtained from the Maxwell's equations as follows (recall that
a square cell is considered):

E(r)"E
1
J
0
(k

.
r), r(a

E(r)"E
1CJ0

(k
.
a)!k

.
aJ

1
(k

.
a) logA

r
aBD, r'a& DyD(L/2& DxD(L/2 ; (7.62)

where r"Mx, yN is a two-dimensional vector in the plane perpendicular to the cylinder and
E
1
"M0, 0,E

1
N is a vector aligned with the cylinder axis and proportional to the amplitude of the

electric "eld in the incident wave.
The homogenization procedure (I)}(V) allows to "nd the e!ective dielectric constant e

%@@
for the

TM polarization. (I) The average electric "eld is given by

SET"E
1G(1!p)J

0
(k

.
a)#

J
1
(k

.
a)

4ak
.
C8p!(ak

.
)2(2p!6#p)#2(ak

.
)2 logA

2a2

L2BDH .

(7.63)

(II) The circular magnetic induction B
E

generated by the local electric "eld has only the `/a
component in the cylindrical coordinates:

B
E,(

(r)"!iE
1
k
.
J
1
(k

.
r)/k, r(a ,

B
E,(

(r)"!iE
1
k
.
aJ

1
(k

.
a)/(kr), r'a& DyD(L/2& DxD(L/2 . (7.64)
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(III) The average curl-free electric "eld E
0

is as follows:

E
0
"E

1GJ0
(k

.
a)#

1
4
k
.
aJ

1
(k

.
a)C4!p#2 logA

2a2

L2BDH . (7.65)

(iv) The electric displacement averaged over the cell is given by

SDT"E
1Ge$(1!p)J

0
(k

.
a)#J

1
(k

.
a)C

2k
.
p

ak2
!

e
$
k
.
a

4 A2p!6#p!2 logA
2a2

L2BBDH ,

(7.66)

and (V) the e!ective dielectric constant e
%@@
"DSDTD/DE

0
D is as follows:

e
%
"

4e
$
(1!p)#e

.
F

1
(k

.
a)G8p#(ak)2e

$C6!2p!p#2 logA
2a2

L2BDH
4#(k

.
a)2F

1
(k

.
a)C4!p#2 logA

2a2

L2BD
(7.67)

where the function F
1

is de"ned in Eq. (7.50). For the important case of thin cylinders, when the
radius a of the cylinders is much less than the lattice period L [i.e. when log(L/a)<1], the above
expression can be simpli"ed as follows:

e
%@@
"e

$
!p

2e
.
F
1
(k

.
a)

(ak
.
)2F

1
(k

.
a) logA

L

a B!1
. (7.68)

This equation in turn can be rewritten as e
%@@
"e

$
#e8

.
p, where e8

.
is the renormalized metal

dielectric constant for the TM polarization. It is interesting to note that this renormalized metal
dielectric constant e8

.
coincides with the renormalized dielectric constant for the conducting-stick

composites considered in Ref. [107].
In the case of strong skin e!ect when a Im k

.
P#R, Eq. (7.68) simpli"es further to the

expression

e
%@@
"e

$
!

2p

(ak)2 logA
L

a B
"e

$
!

u2

u2
1

(7.69)

that does not depend on the metal conductivity. Here the `plasma frequencya is given by

u2
1
"

2c2p

a2 logA
L

a B
"

2pc2

L2 logA
L

a B
. (7.70)

It follows from Eq. (7.69) that the e!ective dielectric constant becomes negative for the frequency
u smaller than the renormalized plasma frequency u8

1
"u

1
/Je

$
. Therefore, the incident TM
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electromagnetic wave decays exponentially in the electromagnetic crystal for u(u8
1
. The negative

values of the e!ective dielectric constant in metal-dielectric composites containing conducting
sticks were predicted theoretically [107,133] and obtained experimentally [134,135]. The cuto!
frequency in Eq. (7.70) was "rst suggested in [63], where it was related to the e!ective plasma
frequency of the electron gas in an electromagnetic crystal.

The problem of the e!ective magnetic permeability k
%M

for the TM polarization, when the
magnetic "eld of the incident wave is perpendicular to the axis of the cylinders, coincides with the
problem of the e!ective dielectric constant e

%M
for the TE polarization. Thus the distribution of

the local magnetic "eld in the lattice cell can be found from Eq. (7.45)}(7.50) by the replacement
H(r)PE(r), e8

.
Pk8

.
, e

.
P1 and e

$
P1. The e!ective magnetic permeability k

%M
can also be

obtained from e
%M

by using the above replacement

k
%M

"

2pk8
.
#(1!p)(1#k8

.
)

2p#(1!p)(1#k8
.
)

, (7.71)

where it is assumed again that neither metal nor dielectric possess intrinsic magnetism.
Consider now a three-dimensional conducting wire mesh con"gurated in the cubic lattice. Let us

suppose, for simplicity, that the wires are su$ciently thin and, therefore, the "lling factor p is small.
Then the e!ect of the intersections of the wires can be neglected since these e!ects give corrections
of the order of p2. Thus the following expression are obtained for the e!ective dielectric constant
e
%
"e

%@@
#2e

%M
!2e

$
and for the magnetic permeability k

%
"k

%@@
#2k

%M
!2. The quantities

e
%@@

, e
%M

, k
%@@

and k
%M

are given by Eqs. (7.67), (7.55), (7.59), and (7.71) respectively, where the
"lling factor should be changed from p to p/3, which corresponds to three metal cylinders in
a lattice cell.

Below it is supposed that the metal conductivity is real (i.e., the dielectric constant is purely
imaginary) and, therefore, there is no internal resonances in metal wires. This situation is typical for
simple nonstructured wires for the frequencies up to the far-infrared. We will not consider here
the plasmon resonance in a metal wire, which occurs in the optical spectral range when e@

.
"!e

$
.

In the absence of the resonances and at the "lling factor p;1, the e!ective dielectric constant is
approximated as e

%
Ke

%@@
and the magnetic permeability as k

%
K1. The dependence of the real e@

%
(j)

and the imaginary eA
%
(j) parts of the e!ective dielectric constant on the wavelength j is shown in

Figs. 21 and 22, respectively. The behavior of e
%
(j) changes dramatically when the ratio of the skin

depth d and the wire radius a decrease. The losses are very signi"cant when d/a'0.1. Under this
condition the imaginary part eA

%
of the e!ective dielectric constant is larger than the real part,

eA
%
'e@

%
. On the other hand, the e!ective dielectric constant e

%
is almost real when the skin e!ect is

strong. It becomes large in magnitude and negative in sign with decreasing the frequency below the
cuto! frequency u8

1
. This means that the crystal re#ects completely incident em waves, while losses

are negligible.
To understand the physical meaning of the negative dielectric constant, let us take into account

the fact that the electric "eld of an incident wave excites not only the current in metal wires but also
the circular magnetic induction B

E
around the wires as it is sketched in Fig. 23 [see also Eq. (7.64)].

Thus, the energy of the incident wave reversibly converts to the energy of the circular magnetic "eld
that concentrates around the wires. This "eld in turn generates an electric "eld, which is phase-
shifted by p with respect to the external "eld. When this secondary "eld is larger than the primary
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Fig. 21. The real part of the e!ective dielectric constant e@
%
(j) in the cubic lattice of metal wires. The period of the lattice

¸ equals ¸"1 cm, the diameter of the wire 2a"1mm. Figs. a}c correspond to di!erent magnitudes of the skin e!ect at
wavelength j"1 cm.

electric "eld (which occurs at the strong skin e!ect) the average electric "eld is opposite to the
external "eld, so that the e!ective dielectric constant is negative.

The above equations describe the `macroscopica electromagnetism in metal-dielectric media.
The equations hold on scales much larger than the spatial scale of inhomogeneity, e.g., the size of
a metal grain. In the derivation of the macroscopic equations the Foucault currents are taken into
account that are excited in metal grains or wires by the high-frequency (HF) magnetic "eld and the
eddy currents of the magnetic induction induced by the HF electric "eld. The latter has no analogy
in the classical electrodynamics since an electric "eld does not generate the magnetic induction
in atoms and molecules. The theory gives macroscopic Maxwell equations describing the wave
propagation in metal-dielectric media that include the e!ective dielectric constant and magnetic
permeability. The theory also provides the unambiguous procedure for calculation of the e!ective
parameters.

In the case of periodic metal-dielectric structures, known as electromagnetic crystals, the explicit
equations are obtained for the e!ective dielectric constant and magnetic permeability. Thus the
cubic lattice of thin conducting wires appears to have a negative dielectric constant and negligible
losses, when the skin e!ect is strong. The negative values of the dielectric constant result from
the eddy currents of the magnetic induction induced by the high-frequency electric "eld inside and
around the metal wires. Such electromagnetic crystals have properties that are similar to bulk
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Fig. 22. The imaginary part of the e!ective dielectric constant eA
%
(j) in the cubic lattice of metal wires. The period of the

lattice ¸ is given by ¸"1 cm, the wire diameter is 2a"1mm. Figs. a}c correspond to di!erent skin e!ects at wavelength
j"1 cm.

Fig. 23. Circular magnetic "eld exited in the cubic wire lattice by external electric "eld.

metal in the optical and near-infrared spectral ranges, e.g., surface plasmons can be excited at the
boundaries and also at defects inside a crystal. Another interesting high-frequency property of
electromagnetic crystals is the e!ective magnetism that can be observed, even in systems where
neither metal nor dielectric possesses inherent magnetism.
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7.3. Optical properties of metal semicontinuous xlms beyond the quasistatic approximation

The formalism developed in Sections 2}4 cannot be used to describe the optical properties of
semicontinuous "lms in the important case of a strong skin e!ect in the metal grains. In an attempt
to expand the theoretical treatment beyond the quasistatic approximation, an approach has
recently been proposed that is based on the full set of Maxwell's equations [39,96,97]. This
approach does not use the quasistatic approximation because the "elds are not assumed to be curl
free inside the physical "lm. Although that theory was proposed with metal-insulator thin "lms
in mind, it is in fact quite general and can be applied to any kind of inhomogeneous "lm under
appropriate conditions. For reason that will be explained below the above theory is called the
`generalized Ohm's lawa. We present here this new theory.

Below we restrict ourselves to the case where all the external "elds are parallel to the plane of the
"lm. This means that an incident wave, as well as the re#ected and transmitted waves, are traveling
in the direction perpendicular to the "lm plane. The consideration is focused on the electric and
magnetic "eld magnitudes at certain distances away from the "lm and relate them to the currents
inside the "lm. We assume that inhomogeneities on a "lm are much smaller in size than the
wavelength j (but not necessarily smaller than the skin depth), so that the "elds away from the "lm
are curl-free and can be expressed as gradients of potential "elds. The electric and magnetic
induction currents averaged over the "lm thickness obey the usual two-dimensional continuity
equations. Therefore the equations for the "elds (e.g., +]E"0) and the equations for the currents
(e.g., + ) j"0) are the same as in the quasistatic case. The only di!erence is that the "elds and the
averaged currents are now related by new constitutive equations and that there are magnetic
currents as well as electric currents.

To determine these new constitutive equations, we "nd the electric and magnetic "eld distribu-
tions inside the conductive and dielectric regions of the "lm. The boundary conditions completely
determine solutions of Maxwell's equations for the "elds inside a grain when the frequency is "xed.
Therefore, the internal "elds, which change very rapidly with position in the direction perpendicu-
lar to the "lm, depend linearly on the electric and magnetic "eld away from the "lm. The currents
inside the "lm are linear functions of the local internal "elds given by the usual local constitutive
equations. Therefore, the currents #owing inside the "lm also depend linearly on the electric and
magnetic "elds outside the "lm. However, the electric current averaged over the "lm thickness now
depends not only on the external electric "eld, but also on the external magnetic "eld. The same is
true for the average magnetic induction current. Thus we have two linear equations that connect
the two types of the average internal currents to the external "elds. These equations can be
considered as generalization of the Ohm's law to the nonquasistatic case and they are denoted as
generalized Ohm's law (GOL) [97]. The GOL forms the basis of a new approach to calculating the
electromagnetic properties of inhomogeneous "lms.

7.3.1. Generalized Ohm's law (GOL) and basic equations
We base the below consideration on the results of Refs. [39,96,97]. In contrast to the traditional

consideration, it is not assumed that the electric and magnetic "elds inside a semicontinuous metal
"lm are curl-free and z-independent, where the z coordinate is perpendicular to the "lm plane.

Let us consider "rst a homogeneous conducting "lm with a uniform conductivity p
.

and
thickness d and assume constant values of the electric "eld E

1
and magnetic "eld H

1
at some
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Fig. 24. The scheme used in a theoretical model. Electromagnetic wave of wavelength j is incident on a thin
metal-insulator "lm with thickness d. It is partially re#ected and absorbed, and the remainder is transmitted through
the "lm.

reference plane z"!d/2!l
0

behind the "lm, as shown in Fig. 24. Under these conditions the
"elds depend only on the z-coordinate, and Maxwell's equations for a monochromatic "eld can be
written in the following form:

d
dz

E(z)"!

iu
c

k(z)[n]H(z)] , (7.72)

d
dz

H(z)"!

4p
c

p(z)[n]E(z)] , (7.73)

with boundary conditions

E(z"!d/2!l
0
)"E

1
, H(z"!d/2!l

0
)"H

1
, (7.74)

where E
1

and H
1

are parallel to the "lm plane. Here the conductivity p(z) is equal to the metal
conductivity p

.
inside the "lm (!d/2(z(d/2), and to p

$
"!iu/4p outside the "lm

(z(!d/2 and z'd/2), and similarly, the magnetic permeability k(z) is equal to the "lm
permeability k

.
inside the "lm and to 1 outside the "lm; the unit vector n"M0, 0, 1N is perpendicu-

lar to the "lm plane. When solving Eqs. (7.72) and (7.73) it is taken into account that the electric and
magnetic "elds are continuous at the "lm boundaries. In this way the "elds E(z) and H(z) are
determined everywhere. Then electric j

E
and magnetic j

H
current #owing in-between the two planes

at z"!d/2!l
0

and at z"d/2#l
0

are calculated as

j
E
"!

iu
4pCP

~d@2

~d@2~l0

E(z) dz#P
d@2

~d@2

e
.

E(z) dz#P
d@2`l0

d@2

E(z) dzD , (7.75)

j
H
"

iu
4pCP

~d@2

~d@2~l0

H(z) dz#P
d@2

~d@2

k
.

H(z) dz#P
d@2`l0

d@2

H(z) dzD , (7.76)
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where e
.
"4i pp

.
/u is the metal dielectric constant. Below it is supposed, for simplicity, that the

magnetic permeability k
.
"1. Since the Maxwell equations are linear the local "elds E(z) and H(z)

are linear functions of the boundary values E
1

and H
1

de"ned at the plane z"!d/2!l
0
:

E(z)"a(z)E
1
#c(z)[n]H

1
] , (7.77)

H(z)"b(z)H
1
#d(z)[n]E

1
] . (7.78)

Note that n is the single constant vector in the problem, which allows us to build polar [n]H
1
]

and axial [n]E
1
] vectors in Eqs. (7.77) and (7.78). By substituting Eqs. (7.77) for E(z) and (7.78) for

H(z) in Eqs. (7.75) and (7.76) correspondingly we express the currents j
E

and j
H

in terms of the
boundary (surface) "elds E

1
and H

1
as

j
E
"sE

1
#g

1
[n]H

1
] , (7.79)

j
H
"mH

1
#g

2
[n]E

1
] . (7.80)

In contrast to the usual constitutive equations, the planar electric current j
E
, which #ows between

the planes z"!d/2!l
0

and z"d/2#l
0
, depends not only on the external electric "eld E

1
but

also on the external magnetic "eld H
1
. The same is true for the magnetic induction current j

H
.

These equations constituted the GOL. The Ohmic parameters s, m, g
1

and g
2

have the dimension
of surface conductivity (cm/s) and depend on the frequency u, the metal dielectric constant e

.
, the

"lm thickness d and the distance l
0

between the "lm and the reference plane z"!d/2!l
0
. Below

the "lms are supposed to be invariant under re#ection through the plane z"0. In this case
g
1
"g

2
"g as it is shown in [96], and the Ohmic the parameter g can be expressed in terms of

parameters s and m as

g"!

c
4p

#SA
c
4pB

2
!ms . (7.81)

Then the GOL equations (7.79) and (7.80) take the following form:

j
E
"sE

1
#g[n]H

1
] , (7.82)

j
H
"mH

1
#g[n]E

1
] , (7.83)

where the Ohmic parameter g is given by Eq. (7.81). The Ohmic parameters s and m can be
expressed in terms of the "lm refractive index n"Je

.
and "lm thickness d in the following way:

s"
c

8np
[e~*dkn(n cos(adk)!i sin(adk))2!e*dkn (n cos(adk)#i sin(adk))2] , (7.84)

m"

c
8np

[e~*dkn(i cos(adk)#n sin(adk))2!e*dkn (!i cos(adk)#n sin(adk))2] , (7.85)

where k"u/c; we still assume, for simplicity, that e"1 outside the "lm (z(!d/2, z'd/2) and
introduce dimensionless parameter a,l

0
/d (see [96,97]). The skin (penetration) depth d is equal to

d"1/k Im n in these notations. In the microwave spectral range metal conductivity is real and
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dielectric constant e
.

is purely imaginary so that the skin depth d"c/J2pp
.
u; on the other hand

the dielectric constant is negative for a typical metal in the optical and infrared spectra ranges,
therefore d+1/kJDe

.
D in this case.

We now turn to the case of laterally inhomogeneous "lms. Then the currents j
E

and j
H

de"ned by
Eqs. (7.75) and (7.76), as well as the "elds E

1
and H

1
are functions of the two dimensional vector

r"Mx, yN. From Maxwell's equations it follows that the "elds and currents are connected by some
linear relations:

j
E
(r)"sE

1
#g[n]H

1
] , (7.86)

j
H
(r)"mH

1
#g[n]E

1
] , (7.87)

where s, m and g are some integral operators now. The metal islands in semicontinuous "lms
usually have an oblate shape so that the grain diameter D is much larger than the "lm thickness
d (see, e.g., [84]). When the thickness of a conducting grain d (or skin depth d) and distance l

0
are

much smaller than the grain diameter D, the relation of the "elds E
1

and H
1

to the currents
becomes fully local in Eqs. (7.86) and (7.87). The local Ohmic parameters s"s(r), m"m(r),
and g"g(r) given by Eqs. (7.81), (7.84) and (7.85) are determined by the local refractive index
n(r)"Je(r), where e(r) is a local dielectric constant. Eqs. (7.86) and (7.87) are the local GOL for
semicontinuous "lms. For binary metal-dielectric semicontinuous "lms the local dielectric constant
is equal to either e

.
or e

$
. The electric j

E
and magnetic j

H
currents given by Eqs. (7.86) and (7.87) lie

in between the planes z"!d/2!l
0

and z"d/2#l
0
. These currents satisfy the two-dimensional

continuity equations

+ ) j
E
(r)"0, + ) j

H
(r)"0 , (7.88)

which follow from the three-dimensional continuity equations when the z-components of E
1

and
H

1
are neglected at the planes z"$(d/2#l

0
). This is possible because these components are

small, in accordance with the fact that the average "elds SE
1
T and SH

1
T are parallel to the "lm

plane. Since we consider semicontinuous "lms with an inhomogeneity scale much smaller than the
wavelength j, the "elds E

1
(r) and H

1
(r) are still the gradients of potential "elds when considered as

functions of x and y in the "xed reference plane z"!d/2!l
0
, i.e.,

E
1
(r)"!+u

1
(r), H

1
(r)"!+t

1
(r) . (7.89)

By substituting these expressions in the continuity Eq. (7.88) and taking into account the GOL
(7.86) and (7.87), the system of two basic equations for the electric u

1
and magnetic t

1
potentials

are obtained

+ ) (s+u
1
#g[n]+t

1
])"0, + ) (m+t

1
#g[n]+u

1
])"0 , (7.90)

where all variables are functions of the coordinates x and y in the reference plain. The above
equations must be solved under the following conditions:

S+u
1
T"SE

1
T, S+t

1
T"SH

1
T , (7.91)

where the constant "elds SE
1
T and SH

1
T are external (given) "elds. Here and below S2T denotes

an average power coordinates **x++ and **y++.
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The essence of the generalized Ohm's law can be summarized as follows. The entire physics of
a three-dimensional inhomogeneous layer, which is described by the full set of Maxwell's equa-
tions, has been reduced to a set of quasistatic equations in a (two-dimensional) reference plane. Part
of the price for this achievement is the introduction of coupled electric/magnetic "elds and currents
and dependence on one adjustable parameter, namely, the distance l

0
to the reference plane.

Comparison of numerical calculation and GOL approximation for the metal "lm with periodic
corrugation [97] show that GOL results are not sensitive to the distance l

0
in general. The original

choice l
0
"0.25D [96] [i.e., parameter a"D/4d in Eqs. (7.84) and (7.85)] allows to reproduce most

of the computer simulations except those where a surface polariton is excited in the corrugated "lm.

7.3.2. Diagonalization of GOL equations
To simplify the system of the basic equations (7.90) the electric and magnetic "elds on both sides

of the "lm are considered [39,97]. Namely, the electric and magnetic "elds are considered at
a distance l

0
behind the "lm E

1
(r)"E(r,!d/2!l

0
), H

1
(r)"H(r,!d/2!l

0
), and at a distance

l
0

in front of the "lm E
2
(r)"E(r, d/2#l

0
), H

2
(r)"H(r, d/2#l

0
). Recall that r"Mx, yN is

two-dimensional vector in a plane perpendicular to `za axis. The components of the "elds aligned
with `za are still neglected. Then second Maxwell's equation curl H"(4p/c) j can be written as
{H dl"(4p/c)(n

1
) j

E
)D, where the integration is over the rectangular contour, which has sides

d#2l
0

and D so that the sides d#2l
0

are perpendicular to the "lm and sides D are in the planes
z"$(d/2#l

0
); vector n

1
is perpendicular to the contour. When DP0 this equation takes the

following form:

H
2
!H

1
"!

4p
c

[n]j
E
]"!

4p
c

(s[n]E
1
]!gH

1
) , (7.92)

where the current j
E

is given by the GOL Eq. (7.86). The same procedure being applied to the "rst
Maxwell equation curl H"ikH gives

E
2
!E

1
"!

4p
c

[n]j
H
]"!

4p
c

(m[n]H
1
]!gE

1
) , (7.93)

where the GOL equation (7.87) has been substituted for the electric current j
H
. Then electric "eld

E
1

can be expressed from Eq. (7.92) in terms of the magnetic "elds H
1

and H
2

as

[n]E
1
]"

g
s

H
1
!

c
4ps

(H
2
!H

1
) , (7.94)

magnetic "eld H
1

can be expressed from Eq. (7.93) in terms of the electric "elds E
1

and E
2

as

[n]H
1
]"

g
m

E
1
!

c
4pm

(E
2
!E

1
) . (7.95)

Substituting the r.h.s. of Eq. (7.94) in the GOL Eq. (7.87) and substituting Eq. (7.95) in the GOL
Eq. (7.86) results in

j
E
"sE

1
#gA

g
m

E
1
!

c
4pm

(E
2
!E

1
)B , (7.96)
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j
H
"mH

1
#gA

g
s

H
1
!

c
4ps

(H
2
!H

1
)B . (7.97)

Finally the relation (7.81) between the Ohmic parameters s, m and g allows us to rewrite the above
equations as

j
E
"uE, j

H
"wH , (7.98)

where E"(E
1
#E

2
)/2, H"(H

1
#H

2
)/2 and parameters u and w are given by the following

equations:

u"!

c
2p

g
m

, w"!

c
2p

g
s

. (7.99)

Thus the GOL is diagonalized by introducing new "elds E and H so that Eqs. (7.98) have the same
form as constitutive equations of the macroscopic electrodynamics. The only di!erence is that the
local conductivity p is replaced by parameter u and magnetic permeability k is replaced by
parameter !i4pw/u.

It follows from Eqs. (7.99) and (7.81), (7.84), (7.85) that the new Ohmic parameters u and v are
expressed in terms of the local refractive index n"Je(r) as

u"!i
c
2p

tan(Dk/4)#n tan(dkn/2)
1!n tan(Dk/4) tan(dkn/2)

(7.100)

w"i
c
2p

n tan(Dk/4)#tan(dkn/2)
n!tan(Dk/4) tan(dkn/2)

(7.101)

where the parameter a"D/4d is substituted as it is discussed at the end of the previous section. The
refractive index n in the above equations takes values n

.
"Je

.
and n

$
"Je

$
for metal and

dielectric regions of the "lm, respectively. In the quasistatic limit, when the optical thickness of
metal grains is small dkDn

.
D;1, while the metal dielectric constant is large in magnitude, De

.
D<1,

the following estimates hold:

u
.
K!i

ue
.

4p
d, w

.
Ki

u
4p

(d#D/2) (d/d;1) (7.102)

for the metal grains. In the opposite case of strong skin e!ect, when the skin depth (penetration
depth) d"1/k Im n

.
is much smaller than the grain thickness d and the electromagnetic "eld does

not penetrate in metal grains, the parameters u
.

and w
.

take values

u
.
"i

2c2
pDu

, w
.
"i

uD
8p

(d/d<1) . (7.103)

For the dielectric region, when the "lm is thin enough so that dkn
$
;1, and e

$
&1 Eqs. (7.100) and

(7.101) give

u
$
"!i

ue@
$

8p
D, w

$
"i

u
4p

(d#D/2) , (7.104)
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where the reduced dielectric constant e@
$
"1#2e

$
d/D is introduced. Note that in the limit of

strong skin e!ect the Ohmic parameters u
.

and w
.

are purely imaginary and the parameter u
.

is of
inductive character, i.e., it has the sign opposite to the dielectric parameter u

$
. In contrast, the

Ohmic parameter w remains essentially the same w&iDu/8p for dielectric and for metal regions
regardless of the value of the skin e!ect.

Potentials for the "elds E
2
(r) and H

2
(r) can be introduced for the same reason as potentials for

the "elds E
1
(r) and H

1
(r) [see discussion accompanying Eq. (7.89)]. Therefore, the "elds E(r) and

H(r) in Eqs. (7.98) can in turn be represented as gradients of some potentials:

E"!$/@, H"!$t@ . (7.105)

By substituting these expressions in Eqs. (7.98) and then in the continuity Eqs. (7.88), we obtain the
following equations:

+ ) [u(r)+u@(r)]"0 , (7.106)

+ ) [w(r)+t@(r)]"0 , (7.107)

which can be solved independently for the potentials u@ and t@. The above equations are solved
under the following conditions:

S+u@
1
T"SET,E

0
, S+t@

1
T"SH

1
T,H

0
, (7.108)

where the constant "elds E
0

and H
0

are external (given) "elds that are determined by the incident
wave. When the "elds E, H and currents j

E
, j

H
are found from a solution of Eqs. (7.106), (7.107) and

(7.108), the local electric and magnetic "elds in the plane z"!l
0
!d/2 are given by the equations

E
1
"E#

2p
c

[n]j
H
], H

1
"H#

2p
c

[n]j
E
] (7.109)

that follow from Eqs. (7.92) and (7.93) and de"nitions of the "elds E and H. Note that the "eld E
1
(r)

can be measured in a near "eld experiment. (For a comprehensive review see, e.g., [137].) The
e!ective parameters u

%
and w

%
are de"ned in a usual way

S j
E
T"u

%
E

0
,u

%
(SE

1
T#SE

2
T)/2 , (7.110)

S j
H
T"w

%
H

0
,w

%
(SH

1
T#SH

2
T)/2 . (7.111)

These expressions are substituted in Eqs. (7.92) and (7.93), which are averaged over the Mx, yN
coordinates to obtain equations

[n](SH
2
T!SH

1
T)]"

2p
c

u
%
(SE

1
T#SE

2
T) , (7.112)

[n](SE
2
T!SE

1
T)]"

2p
c

w
%
(SH

1
T#SH

2
T) , (7.113)

for the averaged "elds that determine the optical response of an inhomogeneous "lm.
Let us suppose that the wave enters the "lm from the right half-space (see Fig. 24), so that its

amplitude is proportional to e~*kz. The incident wave is partially re#ected and partially transmitted
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through the "lm. The electric "eld amplitude in the right half-space, away from the "lm, can be
written as e[e~*kz#re*kz], where r is the re#ection coe$cient and e is the polarization vector. Then
the electric component of the electromagnetic wave well behind the "lm acquires the form ete~*kz,
where t is the transmission coe$cient. It is supposed for simplicity that the "lm has no optical
activity. Therefore wave polarization e remains the same before and after the "lm. At the planes
z"d/2#l

0
and z"!d/2!l

0
the average electric "eld equals SE

2
T and SE

1
T, respectively.

Now the wave away from the "lm is matched with the average "elds in the planes z"d/2#l
0

and z"!d/2!l
0
, i.e., SE

2
T"e[e~*k(d@2`l0 )#re*k(d@2`l0 )] and SE

1
T"e te*k(d@2`l0 ). The same

matching but with magnetic "elds gives SH
2
T"[n]e][!e~*k(d@2`l0 )#re*k(d@2`l0 )] and

SH
1
T"![n]e]te*k(d@2`l0 ) in the planes z"d/2#l

0
and z"!d/2!l

0
, respectively. Substitu-

tion of these expressions for the "elds SE
1
T, SE

2
T, SH

1
T and SH

2
T in Eqs. (7.112) and (7.113) gives

two scalar, linear equations for re#ection r and transmission t coe$cients. Solution to these
equations gives the re#ectance,

R,DrD2"K
2p
c

(u
%
#w

%
)

A1#
2p
c

u
%BA1!

2p
c

w
%BK

2

, (7.114)

transmittance

¹,DtD2"K
1#A

2p
c B

2
u
%
w
%

A1#
2p
c

u
%BA1!

2p
c

w
%BK

2

(7.115)

and absorbance

A"1!¹!R (7.116)

of the "lm. Therefore, the e!ective Ohmic parameters u
%

and w
%

determine completely the optical
properties of an inhomogeneous "lms.

Thus the problem of the "eld distribution and optical properties of the metal-dielectric "lms
reduces to uncoupled quasistatic conductivity problems [Eq. (7.107)] to which extensive theory
already exists. Thus numerous analytical as well as numerical methods developed in the percola-
tion theory can be used to "nd the e!ective parameters u

%
and w

%
of the "lm (see Section 3).

Let us consider now the case of the strong skin e!ect in metal grains and trace the evolution of
the optical properties of a semicontinuous metal "lm when the surface density p of the metal is
increasing. When p"0 the "lm is purely dielectric and the e!ective parameters u

%
and w

%
coincide

with the dielectric Ohmic parameters given by Eqs. (7.104). By substituting u
%
"u

$
and w

%
"w

$
in Eqs. (7.114), (7.115) and (7.116) and assuming that the dielectric "lm has no losses and
it is optically thin (dke

$
;1), we obtain the re#ectance R"d2(e

$
!1)2k2/4, transmittance

¹"1!d2(e
$
!1)2k2/4, and the absorbance A"0 that coincide with the well known results for

a thin dielectric "lm [82,130].
It is not surprising that the "lm without losses has zero absorbance. When the ratio of the

penetration length (skin depth) d"1/k Im n
.

is negligible in comparison with the "lm thickness
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d and Dn
.
D<1 the losses are also absent in the limit of full coverage, when the metal concentration

p"1. In this case the "lm is a perfect metal mirror. Indeed substituting the Ohmic parameters
u
%
"u

.
and w

%
"w

.
from Eqs. (7.103) in Eqs. (7.114), (7.115) and (7.116) we obtain for the

re#ectance R"1, while the transmittance ¹ and absorbance A are both equal to zero. Note that
the optical properties of the "lm do not depend on the particle size D for the metal concentration
p"0 and p"1 since properties of the dielectric and continuous metal "lms do not depend on the
shape of the metal grains.

We consider now the "lm at the percolation threshold p"p
c
with p

c
"1/2 for a self-dual system

[12,20]. A semicontinuous metal "lm may be thought of as a mirror, which is broken into small
pieces with typical size D much smaller than the wavelength j. At the percolation threshold the
exact Dykhne formulas u

%
"Ju

$
u
.
, w

%
"Jw

$
w

.
hold [100]. Thus the following equations for

the e!ective Ohmic parameters are obtained from Eqs. (7.104) and (7.103)

2p
c

u
%
(p

c
)"Je@

$
,

2p
c

w
%
(p

c
)"i

Dk
4 S1#

2d
D

. (7.117)

From this equation it follows that Dw
%
/u

%
D&Dk;1 and the e!ective Ohmic parameter w

%
can be

neglected in comparison with u
%
. By substituting the e!ective Ohmic parameter u

%
(p

c
) given by

Eq. (7.117) in Eqs. (7.114), (7.115) and (7.116) the optical properties at the percolation are obtained

R(p
c
)"e@

$
/(1#Je@

$
)2 , (7.118)

¹(p
c
)"1/(1#Je@

$
)2 , (7.119)

A(p
c
)"2Je@

$
/(1#Je@

$
)2 ; (7.120)

recall that the reduced dielectric function e@
$
"1#2e

$
d/D. When metal grains are oblate enough so

that e
$
d/D;1 and e@

$
P1 the above expressions simplify to the universal result

R"¹"1/4, A"1/2 . (7.121)

Thus, there is e!ective adsorption in semicontinuous metal "lms even for the case when neither
dielectric nor metal grains absorb light energy. The mirror broken into small pieces e!ectively
absorbs energy from the electromagnetic "eld. The e!ective absorption in a loss-free "lm means
that the electromagnetic energy is stored in the system and that the amplitudes of the local
electromagnetic "eld increase up to in"nity. In any real semicontinuous metal "lm the local "eld
saturates due to non-zero losses, but the signi"cant "eld #uctuations take place over the "lm when
losses are small, as discussed below.

To "nd the optical properties of semicontinuous "lms for arbitrary metal concentration p the
e!ective medium theory can be implemented and this had been originally developed to provide
a semi-quantitative description of the transport properties of percolating composites [12].
The e!ective medium theory being applied to Eqs. (7.106), (7.110) and (7.107), (7.111) results in the
following equations for the e!ective parameters:

u2
%
!*p u

%
(u

.
!u

$
)!u

$
u
.
"0 , (7.122)

w2
%
!*pw

%
(w

.
!w

$
)!w

$
w
.
"0 , (7.123)
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where the reduced concentration *p"(p!p
c
)/p

c
(p

c
"1/2) is introduced. It follows from

Eq. (7.123) that for the considered case of strong skin e!ect, when the Ohmic parameters w
.

and
w
$

are given by Eqs. (7.103) and (7.104), the e!ective Ohmic parameter Dw
%
D;c for all metal

concentrations p. Therefore, the parameter w
%

is negligible in Eqs. (7.114) and (7.115). For further
simpli"cation the Ohmic parameter u

$
can be neglected in comparison with u

.
in the second term

of Eq. (7.122) [cf. Eqs. (7.103) and (7.104)]. Then introduction of the dimensionless Ohmic
parameter u@

%
"(2p/c)u

%
allows to rewrite Eq. (7.122) as

u@2
%
!2i

j*p
pD

u@
%
!e@

$
"0 . (7.124)

Right at the percolation threshold p"p
c
"1/2, when the reduced concentration *p"0,

Eq. (7.124) gives the e!ective Ohmic parameter u@
%
(p

c
)"Je@

$
that coincides with the exact

Eq. (7.117) and results in re#ectance, transmittance and absorbance given by Eqs. (7.118), (7.119)
and (7.120), respectively. For concentrations di!erent from the percolation threshold, Eq. (7.124)
gives

u@
%
"i

j *p
pD

#S!A
j *p
pD B

2
#e@

$
,

(7.125)

which becomes purely imaginary for D*pD'pDJe@
$
/j. Then Eqs. (7.118), (7.119) and (7.120) result

in the zero absorbance A"1!R!¹"1!Du@
%
D2/D1#u@

%
D2!1/D1#u@

%
D2"0 (recall that the

e!ective Ohmic parameter w
%

is neglected). In the vicinity of a percolation threshold, namely, for

D*pD(pD/jJe@
$

(7.126)

the e!ective Ohmic parameter u@
%

has a nonvanishing real part and, therefore, the absorbance

A"

2S!A
j *p
pD B

2
#e@

$

1#e@
$
#2S!A

j *p
pD B

2
#e@

$

(7.127)

is nonzero and has a well-de"ned maximum at the percolation threshold; the width of the
maximum is inversely proportional to the wavelength. The e!ective absorption in almost loss-free
semicontinuous metal "lm means that local electromagnetic "elds strongly #uctuate in the system
as was speculated above. The spectral width for the strong #uctuations should be the same as the
width of the absorption maximum, i.e. it is given by Eq. (7.126).

Note that the e!ective parameters u
%

and w
%

can be determined experimentally by measuring
the amplitude and phase of the transmitted and re#ected waves using, for example, a waveguide
technique (see, Ref. [136] and references therein), or by measuring the "lm re#ectance as function of
the "elds E

1
and H

1
. In this case, a metal screen placed behind the "lm can be used to control the

values of these "elds [138,139].

7.3.3. Numerical simulation of local electric and magnetic xelds
To "nd the local electric E(r) and magnetic H(r) "elds Eqs. (7.106) and (7.107) should be

solved. Consider the "rst equation (7.106), which can be conveniently rewritten in terms of the
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dimensionless `dielectric constanta

e8"4piu(r)/ud (7.128)

as follows

+ ) [e8 (r)+/(r)]"E , (7.129)

where /(r) is the #uctuating part of the potential /@(r) so that +/@(r)"+/(r)!E
0
, S/(r)T"0, and

E"+ ) [e8 (r)E
0
]. Recall that the `externala "eld E

0
is de"ned by Eq. (7.108). For the metal-dielectric

"lms considered here local dielectric constant e8 (r) equals (e8
.
") 4piu

.
/ud and (e8

$
") e@

$
D/2d for

the metal and dielectric regions, respectively. The external "eld E
0

in Eq. (7.129) can be chosen real,
while the local potential /(r) takes complex values since the dielectric constant e8

.
is complex

e8
.
"e8 @

.
#ie8 A

.
.

In the quasistatic limit when the skin depth d is much larger than the "lm thickness d the
dielectric constant e8

.
coincides with the metal dielectric constant e

.
as it follows from Eq. (7.102).

Recall that the real part of the metal dielectric constant e@
.

becomes negative, e@
.
(0, for the

frequency u(u8
1
, where u8

1
is given by Eq. (2.2). This allows to model the metal grains as

inductances ¸ for frequencies u8
1
'u<uq while the dielectric gaps can be represented by

capacitances C (see discussion at the beginning of Section 3). In the opposite case of the strong skin
e!ect, the Ohmic parameter u

.
is inductive according to Eq. (7.103) for all spectral ranges

regardless of the metal properties. Then, the percolation metal-dielectric "lm represents a set of
randomly distributed ¸ and C elements for all spectral ranges when the skin e!ect is strong in the
metal grains. Note that Ohmic parameter w takes the same sign and rather close absolute values for
metal and dielectric grains according to Eqs. (7.102), (7.103) and (7.104). A "lm can be thought as
a collection of C elements in `wa space. Therefore, the resonance phenomena are absent in
a solution of Eq. (7.107). The #uctuations of the potential t@ can indeed be neglected in comparison
with the u@ #uctuations. For this reason we concentrate attention on the properties of the `electrica
"eld E(r)"!+/@(r)"!+/(r)#E

0
when considering the #uctuation of the local "elds. The "eld

E(r) can be found from the solution of Eq. (7.129).
Since Eq. (7.129) has the same form as Eq. (2.4) it can be discretized on a square lattice in the

same way. Then numerical methods discussed in Section 3 can be used to "nd the local "eld
distribution. The real space renormalization method described in Section 3.1 was employed to
solve Eq. (2.5) and calculate the potentials /

i
in the lattice. This gives the local "eld E(r) and electric

current j
E
(r) in terms of the average "eld E

0
. The e!ective Ohmic parameter u

%
is determined by

Eq. (7.110) that can be written as S j
E
T"u

%
E

0
. The e!ective dielectric constant e8

%
equals 4piu

%
/ud.

In the same manner the "eld H(r), the magnetic current j
H
(r) and the e!ective parameter w

%
can be

found from Eq. (7.107) and its lattice discretization. Note that the same lattice should be used to
determine the "elds E(r) and H(r). The directions of the external "elds E

0
and H

0
may be chosen

arbitrarly when the e!ective parameters u
%

and w
%

are calculated since the e!ective parameters do
not depend on the direction of the "eld for a "lm, which is isotropic as a whole.

Though the e!ective parameters do not depend on the external "eld the local electric E
1
(r) and

magnetic H
1
(r) "elds do depend on the incident wave. The local "elds E

1
(r) and H

1
(r) are de"ned in

the reference plane z"!d/2!l
0

(see Fig. 24). Note that the "eld E
1
(r) can be measured in a

typical near "eld experiment (see, e.g., Ref. [137]). For the calculations below the electric and
magnetic "elds of the incident electromagnetic wave have been chosen in the form S E

1
T"M1, 0, 0N
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Fig. 25. Distribution of local em "eld intensities (a) DE
1
(r)D2/DSE

1
TD2 and (b) DH

1
(r)D2/DSH

1
TD2 in a semicontinuous silver

"lm at the percolation threshold for j"1lm and d/d"4.5, where d is the skin depth and d is the thickness of the "lm.

and SH
1
T"M0,!1, 0N in the plane z"!l

0
!d/2. This choice corresponds to the wave vector of

the incident wave as k"(0, 0,!k), i.e., there is only a transmitted wave behind the "lm (see
Fig. 24). It follows from the average of Eqs. (7.109), which can be written as SE

1
T"E

0
#

(2p/c)w
%
[n]H

0
] and SH

1
T"H

0
#(2p/c)u

%
[n]E

0
], that the "elds E

0
and H

0
are given by

E
0
"

SE
1
T!

2p
c

w
%
[n]SH

1
T]

1#A
2p
c B

2
u
%
w

%

, H
0
"

SH
1
T!

2p
c

u
%
[n]SE

1
T]

1#A
2p
c B

2
u
%
w

%

. (7.130)

These values of the "elds E
0

and H
0

are used to calculate the local "elds E(r) and H(r). The local
electric E

1
(r) and magnetic H

1
(r) "elds are restored then from the "elds E(r) and H(r) by using

Eq. (7.109).
The local electric and magnetic "elds have been calculated in silver-on-glass semicontinuous "lm

as functions of the surface concentration p of silver grains. The typical glass dielectric constant is
about e

$
"2.2. The dielectric function for silver was chosen in the Drude form (2.1). The following

parameters were also used in Eq. (2.1): the interband-transition contribution e
"
"5, the plasma

frequency u
1
"9.1 eV, and the relaxation frequency uq"0.021 eV [104]. The metal grains are

supposed to be oblate. The ratio of the grain thickness d ("lm thickness) to the grain diameter D has
been chosen (D/d") 3, the same as that used in Ref. [96]. To consider skin e!ect of di!erent
strength (i.e. di!erent interactions between the electric and magnetic "elds), we vary the size d of
silver particles in a wide range, d"1}100nm. The size of metal grains in semicontinuous metal
"lms is usually of the order of few nanometers but it can be increased signi"cantly by using a proper
method of preparation [108]. For microwave experiments [39] the "lms were prepared by
lithography method so that the size of metal particle could vary in a large range.

The space distribution of the electric and magnetic "elds was calculated at two sets of parameters
as illustrated in Figs. 25}28. In Figs. 25 and 26 we show the electric and magnetic "eld distributions
for j"1lm and two di!erent thicknesses d of the "lm, d"5 nm and d"50 nm. The "rst thickness
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Fig. 26. Distribution of local em "eld intensities (a) DE
1
(r)D2/DSE

1
TD2 and (b) DH

1
(r)D2/DSH

1
TD2 in a semicontinuous silver

"lm at the percolation threshold for j"1lm and d/d"0.45.

Fig. 27. Distribution of local em "eld intensities (a) DE
1
(r)D2/DSE

1
TD2 and (b) DH

1
(r)D2/DSH

1
TD2 in a semicontinuous silver

"lm at the percolation threshold for j"10lm and d/d"4.5.

Fig. 28. Distribution of local em "eld intensities (a) DE
1
(r)D2/DSE

1
TD2 and (b) DH

1
(r)D2/DSH

1
TD2 in a semicontinuous silver

"lm at the percolation threshold for j"10lm and d/d"0.45.
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Fig. 29. Computer simulation of (a) absorptance A, (b) re#ectance R and (c) transmittance ¹ for a silver-on-glass
semicontinuous "lm as functions of metal concentration p and "lm thickness d (lm) at j"1lm.

(Fig. 25) corresponds to a weak skin e!ect since the dimensionless thickness is small, D,d/d"0.2
[where d"1/(k Im n

.
) is the skin depth]. In this case we observe the giant "eld #uctuations

of the local electric "eld; the magnetic "eld also strongly #uctuates over the "lm but the "eld peaks
are small compared to the electric "eld. This is because the "lm itself is not magnetic, k

$
"k

.
"1,

and the interaction of the magnetic "eld with the electric "eld through the skin e!ect is relatively
small.

In Fig. 26 we show results for a signi"cant skin e!ect, when the "lm thickness d"50 nm
and the dimensionless thickness exceeds one, D"2.2. It is interesting to note that the ampli-
tude of the electric "eld is roughly the same as in Fig. 25a, despite the fact that the
parameter D increased by one order of magnitude. In contrast, the local magnetic "eld in
Fig. 26b is strongly increased in this case so that the amplitude of magnetic "eld in peaks is
of the same order of magnitude as the electric "eld maxima. This behavior can be
understood by considering the spatial moments of the local magnetic "eld as shown in the next
subsection.

In Figs. 27 and 28 we show results of the calculations for the local electric and magnetic "elds at
j"10lm, when the metal dielectric constant De

.
D&104. We see that in this case the local magnetic

"eld can even exceed the electric "eld. It is interesting to note that the giant local "eld #uctuations
were observed "rst in the microwave experiment [39] for the metal-dielectric "lms with strong skin
e!ect. Later the local "eld peaks were obtained in the optic near "eld experiments [46,58] as it is
discussed in Section 3.2.

The local "elds being given, the e!ective parameters u
%

and w
%

can be found and thus the
e!ective optical properties of the "lm. In Figs. 29 and 30 we show the re#ectance, transmittance
and absorbance as functions of silver concentration p, for wavelengths j"1lm and j"10lm
respectively. The absorbance in these "gures has an anomalous maximum in the vicinity of
the percolation threshold that corresponds to the behavior predicted by Eqs. (7.127). This
maximum had been detected "rst in the experiments [85,88}90]. The maximum in the absorption
corresponds to strong #uctuations of the local "elds. We have estimated in Eqs. (7.126)
the concentration range *p centered at the percolation threshold p

c
(where the giant local "eld

#uctuations occur) as *pJ1/j. Indeed, the absorbance shrinks at transition from Fig. 29 to
Fig. 30, when wavelength j increases ten times. In Fig. 31 we compare the experimental results for
gold semicontinuous "lm [85,88}90] with calculations based on the GOL approximation. In
particular calculations the dynamic e!ective medium given by Eqs. (7.122) and (7.123) had been
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Fig. 30. Computer simulation of (a) absorptance A, (b) re#ectance R and (c) transmittance ¹ for a silver-on-glass
semicontinuous "lm as functions of metal concentration p and "lm thickness d (lm) at j"10lm.

Fig. 31. Experimental and calculated coe$cients A (absorptance), R (re#ectance), and ¹ (transmittance) for a gold-glass
"lm as functions of metal concetration p at a wavelength j"2.2lm. Solid circles show the experimental results [89,90],
solid lines our calculations. The frequency-dependent complex conductivity of gold was taken to be p

dc
/(1!iuq), where

p
dc
"0.7]1017 s~1 and q"3]10~15 s, in accordance with Ref. [90]. The thickness of the gold grains was d"20 nm,

and the value of the parameter a was taken to be 3.

used [96]. One observes that the theory indeed reproduces maximum of absorptance in the vicinity
of the percolation threshold.

7.3.4. Spatial moments of the local electric and magnetic xelds
The results obtained in the previous subsection allow to "nd spatial moments of the local

electric E
1

distributed in the reference plane z"!d/2!l
0

(see Fig. 24) behind the "lm.
The electric "eld E

1
is expressed in terms of the "elds E and H by means of Eq. (7.109). The

#uctuations of the local magnetic current j
H
(r)"w(r)H(r) can be neglected in the "rst Eq. (7.109)

as it is discussed after Eq. (2.2). Therefore, the moments ME
n,m

"SDE
1
(r)DnEm

1
(r)T/(DSE

1
TDnSE

1
Tm),

where Em
1
,(E

1
)E

1
)m@2, are approximately equal to the moments M

n,m
of the "eld E(r) estimated

in Eq. (2.43).

364 A.K. Sarychev, V.M. Shalaev / Physics Reports 335 (2000) 275}371



Consider the moments ME
n,m

for arbitrarily strong skin e!ect assuming that the metal dielectric
constant e

.
is negative, large in absolute value and can be approximated by Drude formula (2.1).

The Drude formula Eq. (2.1) is substituted in Eq. (7.100) to obtain the Ohmic parameter u
.

in the
limit u;u

1
and u<uq ; then the Ohmic parameter u

.
is substituted in Eq. (7.128) to obtain

e8
.

and "nally the moment ME
n,m

is obtained from Eq. (2.43) as

ME
n,m

&oC
u

1
uq A

a
m
A
B

2
Jf

0
(x)D

n`m~1
, (7.131)

f
0
(x)"

4 tanh(x)3C1#
D
4d

tanh(x)D
xMtanh(x)#x [1!tanh(x)2]N2

, (7.132)

where x"d/2d"du
1
/2c is the ratio of the "lm thickness d to the skin depth d+c/u

1
. It follows

from these equations that the moments of the local electric "eld are independent of the frequency in
the wide frequency band u

1
<u'uq that include, for example, in the case of the silver semicon-

tinuous "lms optical and infrared spectral ranges [cf. Fig. 5a]. When skin e!ect increases the
function f

0
in Eq. (7.131) increases monotonically from f

0
(0)"1 to f

0
(R)"D/(2d). When the shape

of the metal grains is "xed and they are very oblate, i.e., D/d<1 the moments ME
n,m

increases
signi"cantly with increasing the parameter x.

Let us consider now the far-infrared, microwave and radio frequency ranges, where the metal
conductivity p

.
acquires its static value, i.e., it is positive and does not depend on frequency. Then

it follows from Eqs. (7.103), (7.104) and (7.128) that Eq. (2.43) for the "eld moments acquires the
following form:

ME
n,m

&A
2pp

.
u B

(n`m~1)@2
(7.133)

in the limit of the strong skin e!ect. Since typical metal conductivity is much lager than frequency
u in the microwave and radio bands the moments remain large at these frequencies.

We proceed now to #uctuations of the local magnetic "eld H
1
(r) in the reference plane

z"!d/2!l
0
. The #uctuations of the "eld H(r) can still be neglected. Then it follows from the

second Eq. (7.109) that moments MH
n,m

"SDH
1
(r)DnHm

1
(r)T/(DSH

1
DnSH

1
Tm) of the local magnetic "eld

are estimated as

MH
n,0

,MH
n
K(2p/c)nSD j

E
(r)DnT/DSE

1
TDn , (7.134)

where the conditions DSE
1
TD"DSH

1
TD, discussed in connection with Eq. (7.130), is used. Thus the

external electric "eld induces electric currents in a semicontinuous metal "lm and these currents,
in turn, generate the strongly #uctuating local magnetic "eld.

To estimate the moments SD j
E
(r)DnT of the electric current density in semicontinuous metal "lms

the approach suggested by Dykhne [100] was generalized for the nonlinear case [40]. Since in the
considered case the electric current j

E
is connected to the local "eld E via the "rst equation (7.98),

the following equation SD j
E
DnT"a(u

.
, u

$
)SDE(r)DnT can be written, where the coe$cient a(u

.
, u

$
) is

a function of variables u
.

and u
$
.

Let us consider now the concentration corresponding to the percolation threshold p"p
c
and set

the percolation value as p
c
"1/2. It is also supposed that statistical properties of the system do not
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change when inter-replacing the metal and the dielectric. If all conductivities are increased by
a factor k then the average nonlinear current SD j

E
DnT also increases by a factor DkDn. Therefore, the

coe$cient a(u
.
, u

$
) increases by DkDn times as well. Then the coe$cient a(u

.
, u

$
) has important

scaling properties, namely, a(ku
.
, ku

$
)"DkDna(u

.
, u

$
). By taking k"1/u

.
the following equation is

obtained:

a(u
.
, u

$
)"Du

.
Dna

1
(u

.
/u

$
) . (7.135)

Now we perform the Dykhne transformation

jH"[n]E] , (7.136)

EH"[n]j
E
] , (7.137)

It is easy to verify thus that the introduced "eld EH is still potential, i.e., +]EH"0, whereas the
current jH is conserved, i.e., + ) jH"0. The current jH is coupled to the "eld EH by the Ohm's law
jH"uHEH, where the `conductivitya uH takes values 1/u

.
and 1/u

$
. Therefore, the following

equation SD jHDnT"a(1/u
.
,1/u

$
)SDEHDnT holds, from which it follows that a(1/u

.
,1/u

$
)a(u

.
, u

$
)"1.

Since we suppose that at the percolation threshold p
c
"1/2 statistical properties of the system do

not change when inter-replacing the metal and the dielectric the arguments in the "rst function can
be changed to obtain a(1/u

$
,1/u

.
)a(u

.
, u

$
)"1. This equation, in turn, can be rewritten using

Eq. (7.135) as Du
.
/u

$
Dna2

1
(u

.
/u

$
)"1. Thus we "nd that a

1
(u

.
/u

$
)"Du

$
/u

.
Dn@2, and the "nal result is

given by a(u
.
, u

$
)"Du

.
u
$
Dn@2, i.e., the following generalization of the Dykhne's formula is valid:

SD j
E
DnT"Du

$
u
.
Dn@2SDEDnT . (7.138)

This expression for SD j
E
DnT is substituted in Eq. (7.134), which takes the following form:

MH
n,m

"CA
2p
c B

2
Du

$
u
.
DD

n@2
ME

n,m
. (7.139)

In optical and infrared spectral ranges it is possible to simplify this equation as it has been done for
Eq. (7.134). Using again the Drude formula (2.1) for the metal dielectric constant and assuming that
uq;u;u

1
the following estimate is obtained:

MH
n,m

"Ce@$
x tanhx

(2d/D)#x tanhxD
n@2

ME
n,m

, (7.140)

where the moment ME
n,m

is given by Eq. (7.134) and x"d/2d"du
1
/2c has the same meaning as in

Eq. (7.134). It follows from Eq. (7.140) that spatial moments of the local magnetic "eld MH
n,m

are of
the same order of magnitude as moments of the local electric "eld ME

n,m
in the limit of the strong

skin e!ect, i.e., when x<1.
We can estimate the moments of the local electric and magnetic "elds from Eqs. (7.134) and

(7.140) for silver-on-glass semicontinuous "lm with u
1
"9.1 eV, and uq"0.021 eV. Thus the

moments of the local electric "eld are equal to ME
n,m

&(4]102)n~1, so that the "eld #uctuations are
huge and they are in agreement with the numerical results shown in Figs. 25}28. For su$cient
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Fig. 32. Microwave localization. Electric "eld distribution in a macroscopic copper-dielectric "lm for j"2.5 cm at metal
concentration p"0.6. Thickness of the copper spots d"0.04mm.

strong skin e!ect (x'1) the moments of local magnetic "eld MH
n,m

&ME
n,m

, which is also in
agreement with computer results.

At frequencies much smaller than the relaxation rate uqK3.2]1013 s~1 the silver conductivity
acquires its static value u2

1
/4puqK1018 s~1. In this case the moments are given by Eq. (7.133).

Thus for wavelength j"3 cm (u/2p"l"10GHz) the moments are MH
n,m

&ME
n,m

&(104)n. Thus
we conclude that the local electric and magnetic "eld strongly #uctuate in a very large frequency
range from the optical down to the microwave and radio spectral ranges. The #uctuations become
even stronger for the microwave and radio bands. This is because for the strong skin e!ect (when
the penetration depth is much smaller than the size of a metal grain), losses are small in comparison
with the electromagnetic "eld energy accumulated around the "lm. This opens a fascinating
possibility to observe the Anderson localization of the surface plasmons in microwave experiments
with localization length in a centimeter scale.

Strong #uctuations of local electric "eld (see Fig. 32) was obtained in the microwave spectral
range in the experiment [39]. In this experiment the local "eld was investigated in the macroscopic
copper-dielectric "lms prepared by the lithographic method. The samples are composed of round
spots made of copper foil and arranged on a plastic substrate. The diameter a of the spots was given
by a"2 mm and thickness d was given by d"0.04mm. The microwave properties of the "lms
were studied at the wavelength j"2.5 cm so that the skin depth dK1.0lm was much less than the
metal thickness d<d. In the case of regular (periodical) arrangement of the spots the absorptance
A was less than A(5% for any surface concentration p of the copper. For random arrangement
of the spots a wide absorption band was observed around the percolation threshold p

c
where absorptance A achieves 40%. The local "eld #uctuations shown in Fig. 32 as well as e!ective
absorptance in almost loss-free "lm allow us to speculate that the Anderson localization of the
surface plasmons was observed in the experiment [39].

Acknowledgements

The studies described in this article were performed in close collaboration of authors with
a number of excellent researchers, namely, Profs. Bergman, Boccara, Brouers, Clerc, Gadenne,

A.K. Sarychev, V.M. Shalaev / Physics Reports 335 (2000) 275}371 367



Lagarkov, Rivoal, Drs. Antonov, Gresillon, Panina, Rosanov, Vinogradov, and Mr. Shubin. Useful
discussions with Profs. Aharony, Boyd, Dykhne, Maradudin, Moskovits, Sheng, Soukoulis,
Yablonovich, Ying, Drs. Safonov, Markel and Mr. Podolskiy are also highly appreciated.
Work was supported in part by NSF (DMR-9810183), PRF, NATO, and RFFI (98-02-17628).

References

[1] L. de Arcangelis, S. Redner, H.J. Herrmann, J. Phys. Lett. 46 (1985) L585.
[2] P.M. Duxbury, P.L. Leath, P.D. Beale, Phys. Rev. B 36 (1987) 367.
[3] B. Khang, G.G. Bartrouni, S. Redner, L. de Arcangelis, H.J. Herrmann, Phys. Rev. B 37 (1988) 7625.
[4] A.P. Vinogradov, A.V. Goldenshtein, A.K. Sarychev, Zh. Tekh. Fiz. 59 (1989) 208 (English trans. in Sov. Phys.

Tech. Phys. 34 (1989) 125); V.A. Garanov, A.A. Kalachev, A.M. Karimov, A.N. Lagarkov, S.M. Matytsin, A.B.
Pakhomov, B.P. Peregood, A.K. Sarychev, A.P. Vinogradov, A.M. Virnic, J. Phys. 3 (1991) 3367; A.P. Vinogradov,
V.A. Garanov, A.A. Kalachev, S.M. Matytsin, I.I. Oblakova, A.B. Pakhomov, A.K. Sarychev, Zh. Tekh. Fiz. 62
(1992) 44 (English trans. in Sov. Phys. Tech. Phys. (1992)).

[5] H.J. Herrmann, S. Roux (Eds.), Statistical Models for the Fracture of Disordered Media, Elsevier Science
Publisher B.V. (North-Holland), Amsterdam, 1990; P. Meakin, Science 252 (1991) 226; P.M. Duxbury, P.L. Leath,
Phys. Rev. B 49 (1994) 12,676; and references therein.

[6] K.K. Bardhan, R.K. Chakrabarty, Phys. Rev. Lett. 72 (1994); U.N. Nandi, K.K. Bardhan, Europhys. Lett. 31
(1995) 101; K.K. Bardhan, Physica A 241 (1997) 267.

[7] A.K. Sarychev, F. Brouers, Phys. Rev. Lett. 73 (1994) 2895.
[8] A. Aharony, Phys. Rev. Lett. 58 (1987) 2726.
[9] D. Stroud, P.M. Hui, Phys. Rev. B 37 (1988) 8719.

[10] V.M. Shalaev, M.I. Shtockman, Sov. Phys. JETP 65 (1987) 287 (trans. from Zh. Eksp. Teor. Fiz. 92 (1987) 509);
A.V. Butenko, V.M. Shalaev, M.I. Shtockman, Sov. Phys. JETP 67 (1988) 60 (trans. from Zh. Eksp. Teor. Fiz. 94
(1988) 107).

[11] D.J. Bergman, Phys. Rev. B 39 (1989) 4598.
[12] D.J. Bergman, D. Stroud, Solid State Phys. 46 (1992) 14.
[13] P.M. Hui, in: K.K. Bardhan, B.K. Chakrabarty, A. Hansen (Eds.), Nonlinearity and Breakdown in Soft Condensed

Matter, Lecture Notes in Physics, Vol. 437, Springer, Berlin, 1996.
[14] V.M. Shalaev, Phys. Rep. 272 (1996) 61.
[15] V.M. Shalaev, A.K. Sarychev, Phys. Rev. B 57 (1998) 13,265.
[16] Hongru Ma, Rongfu Xiao, Ping Sheng, J. Opt. Soc. Am. B 15 (1998) 1022.
[17] D. Stroud, Super-lattice Microstruct. 23 (1998) 567.
[18] D. Bergman, O. Levy, D. Stroud, Phys. Rev. B 49 (1994) 129; O. Levy, D. Bergman, Physica A 207 (1994) 157;

O. Levy, D.J. Bergman, D.G. Stroud, Phys. Rev. E 52 (1995) 3184.
[19] R.W. Cohen, G.D. Cody, M.D. Coutts, B. Abeles, Phys. Rev. B 8 (1973) 3689.
[20] J.P. Clerc, G. Giraud, J.M. Luck, Adv. Phys. 39 (1990) 191.
[21] C. Flytzanis, Prog. Opt. 29 (1992) 2539 and references therein.
[22] V.M. Shalaev, M.I. Stockman, Sov. Phys. JETP 65 (1987) 287; A.V. Butenko, V.M. Shalaev, M.I. Stockman, Sov.

Phys. JETP 67 (1988) 60; A.V. Butenko et al., Z. Phys. D. 17 (1990) 283; Yu.E. Danilova et al., S.G. Rautian, V.P.
Safonov, P.A. Chubakov, V.M. Shalaev, M.I. Shtockman, JETP Lett. 47 (1988) 243 (trans. from Pis'ma Zh. Eksp.
Teor. Fiz. 47 (1988) 200); Bull. Russian Acad. Sci. 60 (1996) 342; Yu.E. Danilova et al., S.G. Rautian, V.P. Safonov,
P.A. Chubakov, V.M. Shalaev, M.I. Shtockman, 60 (1996) 374.

[23] V.M. Shalaev, M.I. Stockman, R. Botet, Physica A 185 (1992) 181; V.M. Shalaev, V.A. Markel, V.P. Safonov,
Fractals 2 (1994) 201; V.M. Shalaev et al., Physica A 207 (1994) 197; V.M. Shalaev, E.Y. Poliakov, V.A. Markel,
R. Botet, Physica A 241 (1997) 249.

[24] V.M. Shalaev, E.Y. Poliakov, V.A. Markel, Phys. Rev. B 53 (1996) 2437; V.A. Markel, V.M. Shalaev, E.B. Stechel,
W. Kim, R.L. Armstrong, Phys. Rev. B 53 (1996) 2425.

368 A.K. Sarychev, V.M. Shalaev / Physics Reports 335 (2000) 275}371



[25] M.I. Stockman, L.N. Pandey, L.S. Muratov, T.F. George, Phys. Rev. Lett. 72 (1994) 2486; M.I. Stockman, L.N.
Pandey, L.S. Muratov, T.F. George, Phys. Rev. B 51 (1995); M.I. Stockman, L.N. Pandey, T.F. George, Phys. Rev.
B 53 (1996) 2183.

[26] M.I. Stockman, Phys. Rev. Lett. 79 (1997) 4562; M.I. Stockman, Phys. Rev. E 56 (1997) 6494.
[27] V.M. Shalaev, R. Botet, A.V. Butenko, Phys. Rev. B 48 (1993) 6662; D.P. Tsai, J. Kovacs, Z. Wang, M. Moskovits,

V.M. Shalaev, J. Suh, R. Botet, Phys. Rev. Lett. 72 (1994) 4149; V.M. Shalaev, M. Moskovits, Phys. Rev. Lett. 75
(1995) 2451; V.A. Markel, V.M. Shalaev, P. Zhang, W. Huynh, L. Tay, T.L. Haslett, M. Moskovits, Phys. Rev. Lett.
59 (1999) 10,903.

[28] V.M. Shalaev, R. Botet, J. Mercer, E.B. Stechel, Phys. Rev. B 54 (1996) 8235; E.Y. Poliakov, V.M. Shalaev,
V.M. Markel, R. Botet, Opt. Lett. 21 (1996) 1628; V.M. Shalaev, C. Douketis, T. Haslett, T. Stuckless,
M. Moskovits, Phys. Rev. B 53 (1996) 11,193; V.P. Safonov, V.M. Shalaev, V.A. Markel, Y.E. Danilova,
N.N. Lepeshkin, W. Kim, S.G. Rautian, R.L. Armstrong, Phys. Rev. Lett. 80 (1998) 1102.

[29] G.L. Fisher, R.W. Boyd, R.J. Gehr, S.A. Jenekhe, J.A. Osaheni, J.E. Sipe, L.A. Weller-Brophy, Phys. Rev. Lett. 74
(1995) 1871; R.J. Gehr, G.L. Fisher, R.W. Boyd, J.E. Sipe, Phys. Rev. A 53 (1996) 2792; R.W. Boyd, R.J. Gehr,
G.L. Fisher, J.E. Sipe, Pure Appl. Opt. 5 (1996) 505; and references therein.

[30] K.W. Yu, Phys. Rev. B 49 (1994) 9989.
[31] C. Zhang, X. Wu, S. Wu, Phys. Rev. B 54 (1996) 16,349.
[32] R. Rossignol, D. Ricard, K.C. Rustagi, Flytzanis, Opt. Commun. 55 (1985) 1413.
[33] G.R. Olbright, N. Peyghambarian, S.W. Koch, L. Banyai, Opt. Lett. 12 (1987) 413.
[34] D. Stroud, X. Zhang, Physica A 207 (1994) 55; X. Zhang, D. Stroud, Phys. Rev. B 49 (1994) 944.
[35] D.J. Bergman, E. Duering, M. Murat, J. Stat. Phys. 58 (1990) 1.
[36] F. Brouers, S. Blacher, A.K. Sarychev, Fractals in the Natural and Applied Sciences, Chapman & Hall, London,

1995 (Chapter 24).
[37] F. Brouers, A.K. Sarychev, S. Blacher, O. Lothaire, Physica A 241 (1997) 146.
[38] F. Brouers, S. Blacher, A.N. Lagarkov, A.K. Sarychev, P. Gadenne, V.M. Shalaev, Phys. Rev. B 55 (1997) 13,234.
[39] A.N. Lagarkov, K.N. Rozanov, A.K. Sarychev, A.N. Simonov, Physica A 241 (1997) 199.
[40] E.M. Baskin, M.V. Entin, A.K. Sarychev, A.A. Snarskii, Physica A 242 (1997) 49.
[41] V.M. Shalaev, E.Y. Poliakov, V.A. Markel, V.P. Safonov, A.K. Sarychev, Fractals 5 (1997) 63.
[42] P. Gadenne, F. Brouers, V.M. Shalaev, A.K. Sarychev, J. Opt. Soc. Am. B 15 (1998) 68.
[43] V.M. Shalaev, V.A. Markel, E.Y. Poliakov, R.L. Armstrong, V.P. Safonov, A.K. Sarychev, J. Nonlinear Opt. Phys.

Mater. 7 (1998) 131.
[44] F. Brouers, S. Blacher, A.K. Sarychev, Phys. Rev. B 58 (1998) 15,897.
[45] A.K. Sarychev, V.A. Shubin, V.M. Shalaev, Phys. Rev. E 59 (1999) 7239.
[46] S. GreH sillon, L. Aigouy, A.C. Boccara, J.C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V.A. Shubin, A.K.

Sarychev, V.M. Shalaev, Phys. Rev. Lett. 82 (1999) 4520.
[47] A.K. Sarychev, V.A. Shubin, V.M. Shalaev, Physica A 266 (1999) 115.
[48] A.K. Sarychev, V.A. Shubin, V.M. Shalaev, Phys. Rev. B 60 (1999) 23.
[49] D.A.G. Bruggeman, Ann. Phys. (Leipzig) 24 (1935) 636.
[50] X.C. Zeng, D.J. Bergman, P.M. Hui, D. Stroud, Phys. Rev. B 38 (1988) 10,970; X.C. Zeng, P.M. Hui, D.J. Bergman,

D. Stroud, Physica A 157 (1989) 10,970.
[51] D.J. Bergman, in: G. Dal Maso, G.F. Dell'Antinio (Eds.), Composite Media and Homogenization Theory,

Brikhauser, Boston, 1991, p. 67.
[52] O. Levy, D.J. Bergman, J. Phys. C: Condens. Matter 5 (1993) 7095.
[53] H.C. Lee, K.P. Yuen, K.W. Yu, Phys. Rev. B 51 (1995) 9317.
[54] W.M.V. Wan, H.C. Lee, P.M. Hui, K.W. Yu, Phys. Rev. B 54 (1996) 3946.
[55] P.M. Hui, P. Cheung, Y.R. Kwong, Physica A 241 (1997) 301, and references therein.
[56] P.M. Hui, D. Stroud, Phys. Rev. B 49 (1994) 11,729.
[57] G.W. Milton, Appl. Phys. A 26 (1981) 1207; G.W. Milton, J. Appl. Phys. 52 (1980) 5286.
[58] S. Gresillon, J.C. Rivoal, P. Gadenne, X. Quelin, V.M. Shalaev, A.K. Sarychev, Phys. Stat. Sol. A 175 (1999) 337.
[59] S.I. Bozhevolnyi, I.I. Smolyaninov, A.V. Zayats, Phys. Rev. B 51 (1995) 17,916.
[60] S.I. Bozhevolnyi, V.A. Markel, V. Coello, W. Kim, V.M. Shalaev, Phys. Rev. B 58 (1998) 11,441.

A.K. Sarychev, V.M. Shalaev / Physics Reports 335 (2000) 275}371 369



[61] Ping Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, Academic Press,
San Diego, 1995.

[62] D.F. Sievenpiper, M.E. Sickmiller, E. Yablonovitch, Phys. Rev. Lett. 76 (1996) 2480.
[63] J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76 (1996) 4773.
[64] D. Stau!er, A. Aharony, An Introduction to Percolation Theory, 2nd Edition, Taylor and Francis, London, 1994.
[65] H.E. Stanley, Introduction to Phase Transition and Critical Phenomena, Oxford Press, Oxford, 1981; I.L.

Fabelinskii, Molecular Scattering of Light, Plenum, NY, 1968.
[66] P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press, Cambridge,

1995.
[67] A. Aharony, R. Blumenfeld, A.B. Harris, Phys. Rev. B 47 (1993) 5756.
[68] B. Kramer, A. MacKinnon, Rep. Prog. Phys. 56 (1993) 1469.
[69] D. Belitz, T.R. Kirkpatrick, Rev. Mod. Phys. 66 (1994) 261.
[70] M.V. Sadovskii, Phys. Rep. 282 (1997) 225.
[71] K.B. Efetov, Supersymmetry in Disorder and Chaos, Cambridge University Press, Cambridge, UK, 1997.
[72] J.A. Verges, Phys. Rev. B 57 (1998) 870.
[73] A. Elimes, R.A. Romer, M. Schreiber, Eur. Phys. J. B 1 (1998) 29.
[74] T. Kawarabayashi, B. Kramer, T. Ohtsuki, Phys. Rev. B 57 (1998) 11,842.
[75] V.I. Fal'ko, K.B. Efetov, Phys. Rev. B 52 (1995) 17,413.
[76] K. Muller et al., Phys. Rev. Lett. 78 (1997) 215.
[77] M.V. Berry, J. Phys. A 10 (1977) 2083.
[78] A.V. Andreev et al., Phys. Rev. Lett. 76 (1996) 3947.
[79] M. Kaveh, N.F. Mott, J. Phys. A 14 (1981) 259.
[80] I.E. Smolyarenko, B.L. Altshuler, Phys. Rev. B 55 (1997) 10,451.
[81] R.W. Boyd, Nonlinear Optics, Academic Press, New York, 1992.
[82] L.D. Landau, E.M. Lifshits, L.P. Pitaevskii, Electromagnetics of Continuous Media, 2nd Edition, Pergamon,

Oxford, 1984.
[83] P.J. Reynolds, W. Klein, H.E. Stanley, J. Phys. C 10 (1977) L167; A.K. Sarychev, Sov. Phys. JETP 45 (1977) 524.
[84] G.A. Niklasson, C.G. Granquist, J. Appl. Phys. 55 (1984) 3382.
[85] Y. Yagil, P. Gadenne, C. Julien, G. Deutscher, Phys. Rev. 46 (1992) 2503.
[86] T.W. Noh, P.H. Song, Sung-Il Lee, D.C. Harris, J.R. Gaines, J.C. Garland, Phys. Rev. 46 (1992) 4212.
[87] F. Brouers, J.P. Clerc, G. Giraud, Phys. Rev. B 44 (1991) 5299.
[88] P. Gadenne, A. Beghadi, J. Lafait, Opt. Commun. 65 (1988) 17.
[89] P. Gadenne, Y. Yagil, G. Deutscher, J. Appl. Phys. 66 (1989) 3019.
[90] Y. Yagil, M. Yose"n, D.J. Bergman, G. Deutscher, P. Gadenne, Phys. Rev. B 43 (1991) 11,342.
[91] L.C. Botten, R.C. McPhedran, Opt. Acta 32 (1985) 595; M. Gajdardziska-Josifovska, R.C. McPhedran, D.R.

McKenzie, R.E. Collins, Appl. Opt. 28 (1989) 2744; C.A. Davis, D.R. McKenzie, R.C. McPhedran, Opt. Commun.
85 (1991) 70.

[92] J.C. Maxwell Garnett, Philos. Trans. Roy. Soc. London 203 (1904) 385.
[93] A.P. Vinogradov, A.M. Karimov, A.K. Sarychev, Zh. Eksp. Teor. Fiz. 94 (1988) 301 (Sov. Phys. JETP 67 (1988)

2129).
[94] G. Depardieu, P. Frioni, S. Berthier, Physica A 207 (1994) 110.
[95] A.K. Sarychev, D.J. Bergman, Y. Yagil, Physica A 207 (1994) 372.
[96] A.K. Sarychev, D.J. Bergman, Y. Yagil, Phys. Rev. B 51 (1995) 5366.
[97] Levy-Nathansohn, D.J. Bergman, Physica A 241 (1997) 166; Phys. Rev. B 55 (1997) 5425.
[98] X.C. Zeng, P.M. Hui, D. Stroud, Phys. Rev. B 39 (1989) 1063.
[99] F. Brouers, J.P. Clerc, G. Giraud, Phys. Rev. B 47 (1993) 666.

[100] A.M. Dykhne, Zh. Eksp. Teor. Fiz. 59 (1970) 110 (Sov. Phys. JETP 32 (1971) 348).
[101] J. Bernasconi, Phys. Rev. B 18 (1978) 2185.
[102] A. Aharony, Physica A 205 (1994) 330.
[103] D.J. Frank, C.J. Lobb, Phys. Rev. B 37 (1988) 302.
[104] E.D. Palik (Ed.), Hand book of Optical Constants of Solids, Academic Press, New York, 1985.

370 A.K. Sarychev, V.M. Shalaev / Physics Reports 335 (2000) 275}371



[105] V.M. Shalaev, R. Botet, R. Jullien, Phys. Rev. B 44 (1991) 12,216.
[106] B. Hesselbo, D. Phil. Thesis, Oxford University, 1994.
[107] A.N. Lagarkov, L.V. Panina, A.K., A.K. Sarychev, Y.R. Smychkovich, A.P. Vinogradov, MRS Symposium

Proceedings Vol. 195, Pittsburgh, 1990, p. 275; A.N. Lagarkov, A.K. Sarychev, Y.R. Smychkovich, A.P. Vinog-
radov, J. Electromag. Waves Appl. 6 (1992) 1159.

[108] See, e.g., D.J. Semin, A. Lo, S.E. Roak, R.T. Skodje, K.L. Rowlen, J. Chem. Phys. 105 (1996) 5542.
[109] M. Moskovits, Rev. Mod. Phys. 57 (1985) 783.
[110] K. Kneipp, Y. Wang, H. Kneipp, Lt. Perelman, I. Itzkan, R. Dasari, Ms. Feld, Phys. Rev. Lett. 78 (1997) 1667.
[111] S. Nie, S.R. Emory, Science 275 (1997) 1102.
[112] L.A. Lyon, C.D. Keating, A.P. Fox, B.E. Baker, L. He, S.R. Nicewarner, S.P. Mulvaney, M.J. Natan, Anal. Chem.

70 (1998) R341.
[113] R.K. Chang, T.E. Furtak (Eds.), Surface Enhance Raman Scattering, Plenum Press, New York, 1982.
[114] See, e.g., M.A. Tadayoni, N.R. Dando, Appl. Spectrosc. 45 (1991) 1613.
[115] A. Liebsch, W.L. Schaich, Phys. Rev. B 40 (1989) 5401.
[116] R. Murphy, M. Yeganeh, K.J. Song, E.W. Plummer, Phys. Rev. Lett. 63 (1989) 318.
[117] G.A. Reider, T.F. Heinz, in: P. Halevi (Ed.), Photonic Probes of Surfaces: Electromagnetic Waves, Elsevier,

Amsterdam, 1995.
[118] T.Y.F. Tsang, Phys. Rev. A 52 (1995) 4116.
[119] R.A. Watts, T.W. Preist, J.R. Sambles, Phys. Rev. Lett. 79 (1997) 3978.
[120] A.R. McGurn, A.A. Maradudin, V. Celli, Phys. Rev. B 31 (1985) 4866; A.R. McGurn, Surf. Sci. Rep. 10 (1990) 359.
[121] J.A. Sanchez-Gil, A.A. Maradudin, J.Q. Lu, V.D. Freilikher, M. Pustilnik, I. Yurkevich, Rev. B 50 (1994) 15,353.
[122] T.Y.F. Tsang, Opt. Lett. 21 (1996) 245.
[123] B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D.W. Pohl, Phys. Rev. Lett. 77 (1996) 1889.
[124] O.A. Aktsipetrov, O. Keller, K. Pedersen, A.A. Nikulin, N.N. Novikova, A.A. Fedyanin, Phys. Lett. A 179 (1993)

149.
[125] L. Kuang, H.J. Simon, Phys. Lett. A 197 (1995) 257.
[126] A.N. Lagarkov, L.V. Panina, A.K. Sarychev, Zh. Eksp. Teor. Fiz. 93 (1987) 215 (Sov. Phys. JETP 66 (1987) 123).
[127] A.P. Vinogradov, L.V. Panina, A.K. Sarychev, Dokl. Akad. Nauk SSSR 306 (1989) 847.
[128] D. Rousselle, A. Berthault, O. Acher, J.P. Bouchaud, P.G. ZeH rah, J. Appl. Phys. 74 (1993) 475.
[129] L.V. Panina, A.S. Antonov, A.K. Sarychev, V.P. Paramonov, E.V. Timasheva, J. Appl. Phys. 76 (1994) 6365.
[130] J.D. Jackson, Classical Electrodynamics, 3rd Edition, Wiley, New York, 1998.
[131] N.A. Nicorovici, R.C. McPhedran, L.C. Botten, Phys. Rev. Lett. 75 (1995) 1507; Phys. Rev. E 52 (1995) 1135.
[132] R.C. McPhedran, N.A. Nicorovici, L.C. Botten, J. Electromagn. Waves Appl. 11 (1997) 981.
[133] A.N. Lagarkov, A.K. Sarychev, Phys. Rev. B 53 (1996) 6318.
[134] A.N. Lagarkov, S.M. Matytsin, K.N. Rozanov, A.K. Sarychev, Physica A 241 (1997) 58.
[135] A.N. Lagarkov, S.M. Matytsin, K.N. Rozanov, A.K. Sarychev, J. Appl. Phys. 84 (1998) 3806.
[136] M. Golosovsky, M. Tsindlekht, D. Davidov, Phys. Rev. B 46 (1992) 11,439; M. Golosovsky, M. Tsindlekht,

D. Davidov, A.K. Sarychev, Physica C 209 (1993) 337.
[137] V.A. Markel, T.F. George (Eds.), Optics of Nanostructured Materials, Wiley, New York, 2000 (tentatively).
[138] A.A. Kalachev, S.M. Matitsin, K.N. Rosanov, A.K. Sarychev, Method for measuring the complex dielectric

constant of sheet materials, USSR Patent No. 1483394, 1987 (USSR Bull. Izobr. Otkr. No. 20, 1989).
[139] A.A. Kalachev, I.V. Kukolev, S.M. Matitsin, L.N. Novogrudskiy, K.N. Rosanov, A.K. Sarychev, A.V. Selesnev,

in: J.A. Emerson, J.M. Torkelson (Eds.), Optical and Electrical Properties of Polymers, MRS 214, Pittsburg, 1991.
[140] H.B. Liao et al., Appl. Phys. Lett. 72 (1998) 1817.

A.K. Sarychev, V.M. Shalaev / Physics Reports 335 (2000) 275}371 371


