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Percolation-enhanced nonlinear scattering from metal-dielectric composites
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It is shown that large percolation-enhanced nonlinear scattering occurs in metal-dielectric random €cOmpos-
ites near the percolation threshold. The enhancement is due to giant local electric field fluctuations that are
extremely inhomogeneous and consist of spatially separated sharp peaks, ‘‘hot’” spots, where the local field is
greater by many orders of magnitude than the applied field. [$1063-651X(99)00106-3]

PACS number(s): 78.20.—e, 05.70.Jk, 72.15.Gd

The local fields can experience strong enhancement in the
visible and infrared spectral ranges, for metal-dielectric com-
posites comprising metal particles that are characterized by
dielectric constant &,,=¢,,+i¢,, , with the negative real part,
&,,<0, and the small imaginary part, £;/|e.|<1. In a sim-
plest case of a spherical metal particle, the local electric field
*(2g,4+¢€,)"", and it is strongly enhanced at the plasmon
resonance, when &,,(w)=—2¢g, (g, is the permittivity of a
dielectric substrate) [1]. In general, the local field E(r) en-
hancement is due to the collective plasmon resonances in
ensembles of metal particles [1-3]. Nonlinear optical pro-
cesses of the nth order are proportional to E"(rx) and, there-
fore, the enhancement can be especially large.

In this paper we consider percolation-enhanced nonlinear
scattering (PENS) from a random metal-dielectric film (also
referred to as a semicontinuous metal film) at the metal fill-
ing factor p close to the percolation threshold p.. Specifi-
cally, we study the enhanced nonlinear scattering resulting in
a field oscillating at frequency 7, when a percolating metal-
dielectric film is illuminated by an electromagnetic wave of
frequency w. At the percolation, an infinite metal cluster
spans over the entire sample and the metal-dielectric transi-
tion occurs in a semicontinuous metal film [1]. Optical exci-
tations of the self-similar fractal clusters formed by metal
particles near p_ result in giant, scale-invariant, local-field
fluctuations that make possible PENS. Linear Rayleigh scat-
tering from semicontinuous metal films has been considered
in a recent paper [4]. It was shown that while Rayleigh scat-
tering is strongly enhanced, it is still only a small correction
to the specular reflection and transmission. In contrast, below
we show that PENS with a broad angular distribution can be
a leading optical process.

For simplicity, we assume that a semicontinuous film is
illuminated by the light propagating normal to the film, with
the wavelength A larger than any intrinsic spatial scale in the
film, including the skin depth, A>agv/|¢,,|, where a; is the
grain size. (All distances hereafter are given in units aq=1.)
The gaps between metal grains are filled by the dielectric
substrate so that a semicontinuous metal film can be thought
of as a two-dimensional array of metal and dielectric grains
that are randomly distributed over the plane. For an incident
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wave of frequency w, we consider nth harmonic generation
(nHG) in a percolating film. We assume that a semicontinu-
ous metal film is covered by a layer possessing the nonlinear
conductivity o™ that results in nHG. The local electric field
E,(r) induced in the film by the external field Ef,?) generates
in the layer the nw current c™E,E” ! [5]. This nonlinear
current, in turn, interacts with the film and generates “‘seed’’
new electric  field, with the amplitude E®
= a'(")E'a‘,_ 'E, /0™, where o is the linear conductivity of
the nonlinear layer at frequency nw. The electric field E®
can be thought of as an inhomogeneous external field excit-

E’E,

1.0x106

5.0x10°

0.0

@

-1.0x10¢

-5.0x10°

(b)

FIG. 1. Distribution of the x component of the ‘‘nonlinear’’
local field Re[ E*(r) E,(r)]. The applied field E=1, E”=0.
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ing the film at nw frequency. The nHG current j™ induced
in the film by the “‘seed”’ field E can be found in terms of
the nonlocal conductivity tensor f‘,(r,r' ) introduced in [3]
that relates the applied (external) field at point ' to the cur-
rent at point r,

i9w= [ 2B ar, M

where Eg’i is the conductivity tensor at frequency nw and
the integration is over the entire film area [3]. The Greek
indices take values {x,y} and summation over repeated indi-
ces is implied. It is the current j™ that eventually generates
the nonlinear scattered field at the frequency nw.

Using the numerical technique described in detail in [3],
we calculate the local-field spatial distribution. For example,
in Fig. 1 we show the normalized real part of the 3w local
field Re[EX(D)E (D) V/|E@)? in a 24 silver-on-glass film at
p=p.and A=1.5 um. For the silver dielectric constant we
use the Drude formula &,,(@)=¢&,—(w, o) [1+io, /o],
where the interband-transition contribution £,=5.0, the
plasma frequency @, =9.1 €V, and the relaxation frequency
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©,=0.021 eV [6]. As seen in Fig. 1, the fluctuating 3w
fields form a set of sharp peaks, looking up and down, and
having the magnitudes ~ 10°. Such huge fluctuations of the
local fields are anticipated to trigger the PENS at the fre-
quency 3w. The larger the number 7 of the harmonic, the
stronger the corresponding nw local field fluctuates. There-
fore we speculate that the enhancement factor for PENS be-
comes progressively larger for higher harmonics.

By using the standard approach of the scattering theory
adopted for semicontinuous metal films in [4] and assuming
that the incident light is unpolarized, we obtain that the in-
tegral scattering in all directions but the specular one, ie.,
the diffusive scattering, is

S=(4k*13c) f [0 &* (02)) = ()P 1dry iy,
@
where the integration is over the entire area A of the film,
k= w/c, and the angular brackets stand for the ensemble av-
erage. As in [4], we assume that the integrand vanishes in

distances r<\, where r=r,—r;; therefore, we omit the term
~exp(ik-r). By substituting Eq. (1) in Eq. (2), we obtain

4

f (P00 (x2))drydr, = f (S53(r1 )28 (r2.,10) By ERP (e EL P () D] s, ®3)

where {- -

-} denotes the averaging over the light polarizations. For the unpolarized light we have the expression Oys

=2{EQ) ED/|EDI%, where E(9 is the amplitude of the uniform *‘probe’” field at the frequency nw. We substitute this

nw,é.

expression for 8,5 in Eq. (3), integrate over the coordinates ry,T,, and average over independent polarizations of fields E ]

and E . Thus we obtain

(0)

1 .
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|E,

where E,,,,(r) is the local n field excited in the film by *‘probe’ field E{)

and o,,(r) is the film conductivity at frequency

nw?

nw. In the macroscopically homogeneous and isotropic film considered here, the current correlator given by Eq. (4) does not
depend on the direction of the probe field E" . Therefore, we can choose now the field E to be collinear with external field,
Ef,O)HEf‘?) . The average nonlinear current (j(")) is aligned with Eff,)) and, therefore, the square of the nonlinear current can be

10}

written as |(j™)|2=|(E®- j™)|%/|E®)|2. Using Egq. (1) for j, we find

(RIS

By substituting Egs. (4) and (5) in Eq. (2), we obtain

am|?

o

g 8 k>
3c|ES)?

where g(")(r) is the nonlinear correlation function defined as

AT j Eﬁ?,ng’i(rl ) EQ(rp)drydr,
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which depends only on the distance r=|r;—r,| between
points r; and r, for macroscopically homogeneous and iso-
tropic films. We compare this PENS with the nw signal I,,,,
from a nonlinear layer on a dielectric film with no metal
grains on it, I,,=(ce32mA|a™1a VP EQ P ED2-D
By expressing the enhancement factor for PENS, G™®
=$/1,,, in terms of the local dielectric constant &, at the
frequency nw, we obtain

=(kao)4 (IS"wEnwlzlelzlEmlz("‘1)) n_2
3 83|E§%|2|E$)[2|E$)|2(n—1) a%

G

X fowg(")(r)rdr. 8)

Note that for a homogeneous (p=0 and p=1) surface
g™(r)=0 and, therefore, G™ =0, so that the scattering oc-
curs in the reflected direction only. Besides the small factor
(kag)*, which is similar to that in the standard Rayleigh
scattering, the enhancement G™ for PENS is proportional to
the 2(n+1) power of the local field. For highly fluctuating
local fields, this factor can be very large (see Fig. 1). To
understand the origin of the strong fluctuations, we consider
below the local field distribution it more detail.

Because A>ayv|e,|, we can introduce a potential ¢(r)
for the local electric field, and the field distribution problem
reduces to solving the equation representing the current con-
servation law, V- (e(r)[ — V&(r) +E@(r)])=0. Being dis-
cretized, this relation acquires the form of Kirchhoff’s equa-
tions defined on a square lattice [1]. Kirchhoff’s equations, in
turn, can be written in the matrix form, with the local dielec-
tric constants as the matrix elements of the Hamiltonian,
which we refer to hereafter as Kirchhoff’'s Hamiltonian
(KH). The off-diagonal elements of the KH are H;;= —¢;
and the diagonal elements are H;;= 2 ;g;;, where j refers to
nearest neighbors of i. The dielectric constants &;; take val-
ues &, and e,4, with probabilities p, and (1—p,), respec-
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FIG. 2. Correlation function g‘>)(r) for silver on glass semicon-
tinuous film at the percolation threshold p=p . Different curves
correspond to A;=0.34 um (solid line and circles, in the inset),
A,=0.53 um (dashed line and triangles), and A;=0.9 um (point-
dashed line and diamonds); the arrows are theoretical estimates for
£,(\,) and £,(\3). The straight line illustraies the scaling depen-
dence of g**)(r) in the tail. The units ag=1 are used.
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tively. In this form, the KH is of Anderson’s type, with both
on- and off-diagonal correlated disorder [7]. We consider
first the case when —&,~g,~1 and the loss factor «
=gl /|e,|<1. Now we express the fluctuating potential
¢(r) in terms of the eigenvalues A, and eigenfunctions ¥,
of the real part H' of the non-Hermitian KH, H=H'+iH",
where H”x k is small since k<<1. Then, the problem for-
mally maps the Anderson quantum-mechanical problem, and
the eigenfunctions ¥, are all localized (see Fig. 1) in the
considered 2d case [7]. Then we neglect the overlapping of
the eigenstates in calculating the moments M,

=(|E(r)/E©|"), assuming that {|¥,|| ¥ |}~ 8,,, . Thus we

obtain M,~ [p(A)/|A+ibk|"dA~«k™ "+ (k—0), for n
=2, where p(A) is the density of the eigenstates of KH of
H' and ibk is a small correction to the eigenvalue ‘A due to
k#0 (b~1). The fluctuations tend to infinity [M,
~(|&n|/en)" 1 — ] when losses vanish in the system. For
the large contrast |g,|/e,>1 the moments become even
larger, M,~(|&nlle) ™ (|eqllen)" " [3].

It follows from the above consideration that the eigen-
states ¥, with A,~0 are in resonance with external field
and are excited indeed. Correspondingly, the local-field fluc-
tuations are of the resonant character, and the field correla-
tion function g®(r), shown in Fig. 2 for a silver-glass semi-
continuous film, drops very rapidly for r>1 and has a
negative minimum. The anticorrelation occurs because the
field maxima have different signs, as seen in Fig. 1. The
power-low decrease of g‘®)(r), which is typical for critical
phenomena, occurs in the tail only (see the inset in Fig. 2).
The correlation function g®(r) departs from the power-law
(the straight line in Fig. 2), for r larger than field correlation
length £,, which was estimated in [3,4] as &,~|e,|/
Vegen. This estimate gives &,~5, 20, and 30 (in a, units),
for A=0.34, 0.53 and 0.9 pm, respectively, which is in
agreement with our numerical results (inset in Fig. 2). The
integral of g®)(r) in Eq. (8) is about unity, for all frequen-
cies. Based on the above consideration we estimate that
ag *fog™(ryrdr~1 for all n.

To estimate PENS given by Eq. (8) quantitatively we take
into account that the spatial scale £,(w) for the field fluctua-
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FIG. 3. PENS factor G\ for n-harmonic generation in a silver
semicontinuous film at p=p .. Numerical calculations for n=2, 3,
4, and 5 are represented by @, A, W, and +, respectively. The
solid lines describe G found from Eqg. (6).
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tions at the fundamental frequency o is significantly larger
than £,(nw) at the generated frequency nw. Therefore, we
can decouple the average (Is,,wEm|2|Ew[z| E,,,IZ(""”> in Eq. (8)
and  approximate it by (10sBael|EgIEL D)
~{|&nwEnol NED|?"M,,. The second moment of the
current {|e,,E,0|?) we estimated as {|eyoEnul?)
~|EQ|e,,(nw)|*?e1e" (nw) according to [4]. Then Eq.
(8) takes the form

G™ 2lSM(nw)lsnlsm(w)ls(zn—l)/z

~Cn
(kag)* sZHs:;(nw)e;:,(w)z"_l

O]

where C is an adjustable prefactor. For the Drude metal and
w, no<w,, we can simplify Eq. (9) as

1 ({0,\*" w,\?
G<">~C(kao)48n+1(-w—") (;}’i) (10)
d T,

i.e., PENS increases with increasing the order of a nonlinear
process and decreases toward the infrared part of the spec-
trum as G™ o\ "2, in contrast to the well-known law \~*
for Rayleigh scattering. It is interesting to note that PENS is
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inversely proportional to the wavelength squared for high-
harmonic scattering, independently of the order of optical
nonlinearity.

In Fig. 3 we compare the numerical results for the PENS
factors G with the predictions of the scaling formula (9),
where we used C=10"3 (note that C is small because the
decoupling used above is, of course, the upper estimate). For
a very large spectral interval, there is good agreement be-
tween the developed scaling theory and numerical calcula-
tions. The PENS effect appears to be really huge, e.g., the
enbancement for the fifth harmonic generation is
GO(kag)*~10%, for A=1.5 um. Note that the diffusive
scattering was observed in experiments on second-harmonic
generation from semicontinuous silver films [8].

To summarize, large-field fluctuations in random metal-
dielectric composites near percolation result in the
percolation-enhanced nonlinear scattering (PENS), which is
characterized by giant enhancement and a broad-angle distri-
bution.
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