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Enhancement of nonlinear processes near rough nanometer-structured surfaces obtained
by deposition of fractal colloidal silver aggregates on a plain substrate
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In this paper we extend our previous results concerning the enhancement of nonlinear optical responses near
rough self-affine metal surfaces to different objects in a wider spectral range and also beyond the quasistatic
limit. In our previous wor E. Poliakovet al., Phys. Rev. B57, 14 901(1998 ] we studied local and averaged
enhancement factors for the second- and third-harmonic generation and degenerate four-wave mixing for
nonlinear molecules adsorbed on nanostructured self-affine metal surfaces in the quasistatic approximation in
the spectral range from 0.4 to 148m. In the present work, we study the same nonlinear effects for surfaces
formed by deposition on a plane substrate of fractal clusters rather than individual nanoparticles. The spectral
range is extended to 10m. We have calculated the enhancement factors for the above nonlinear process with
the account of retardation and performed numerical calculations for significantly larger samples. Our numerical
results indicate that the enhancement factors increase with the wavelength &#d@um. The enhancement
of the degenerate four-wave mixing can reach, for example, the valuéainiie far-infrared spectral region
(the maximum enhancement reported by us earlier for this process-Ww&¥ nearx =1.8 um).
[S0163-182609)10539-3

The optical properties of rough nanometer-structured mecal constants of silver in the range af=0.2—1.8um to
tallic surfaces(RNSMS with fractal geometry recently at- estimate the values of the enhancement factors for different
tracted a lot of attentioh:® The strong enhancement of local nonlinear processes. Our results have indicated that the en-
electromagneti¢EM) fields near RNSMS in a wide spectral pancement of a nonlinear signal can reach the values of 10
range can lead to the possibility of performing linear and;,4 135 for the second- and third-order process, respec-

nonlinear spectroscopic measurements of single moleculqﬁlely near\ =1.8 um. However, the value o, is, typi-
, . . 3 m ]

adsorbed on a RNSM® The collective nature of the EM ; :
energy localization(as opposed to the “single-scattering” cally, much largetfor example A, ~70 um for silvep. This

regime of localization near sharp needles, Japeovides that prompts that even larger enhancements can be reached when

the enhancement can take place in a wide spectral region, nétapproacheam. It is known _that the dielectric f“T‘C“O” of
just at a particular resonance frequency. It turns out that fof©0d conductors, such as silver, are well described by the
any wavelength from~0.5 um to at least~10 um, the Dru_de formula in the regioR> N\, W_here)\p_:27rc/_wp and
fractal RNSMS possesses several collective resonant modés IS the plasmon frequency, and, in particular, in the spec-
(surface modes Typically, for each frequency, some of the tral region where experimental constants of metals are not
resonant modes are localized and some are delocalized. THi§ually measured. In this paper, we report the results of nu-
chaotic behavior of the localization length was referred to agnerical calculations fok’s up to 10um.

inhomogeneous localizatidif But, on average, the localiza- I our previous pape? we performed calculations for
tion length of the modes thaire localizedtends to decrease samples generated in the so-called restricted solid-on-solid
with the wavelengthy.%° In addition, the quality factor of model. In this model one assumes that single metal nanopar-
the resonances increases within most metals, as a conse- ticles are deposited on a plain substrate from a solution. Here
quence of the Drude formula, up to the maximum wave-we use an alternative model in which the individual nanopar-
length\,= 27/ 7y, wherevy is the Drude relaxation constant. ticles are allowed first to aggregate in the solution and form
Therefore, ag approaches ,, the EM field near a RNSMS fractal clustergcluster-cluster aggregates with the fractal di-
becomes localized in hot spots of progressively smaller sizéiensionD~1.8) and only later are deposited on the sub-
and higher intensity. The locations of these “hot spots” arestrate. An image of a rough surface formed by this deposition
wavelength dependent, contrary to what one would expect iprocess is shown in Ref. 3. We also used larger clusters with
the single-scattering regime. N=5000 elementary unit&ompared tdN~ 1000 in the pre-

If there is nonlinearity of the host metal, or in molecules vious work?. Each elementary unit is considered to be a
adsorbed on the surface, the existence of these zones of highhere of the size-8 nm, and the characteristic lateral di-
intensity EM fields leads to enhancement of local and avermension of the samples used in the present work jsni
age nonlinear optical responses, as was predictednd the maximum vertical height about 120 nm. The results
theoretically®~*° and observed experimentaf§-?* In our ~ presented here are averaged over four random samples. Note
recent numerical calculatio$we used experimental opti- that unlike the self-affine films obtained in the restricted
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solid-on-solid model, the samples studied here are character- The physical meaning of Eq¢l) and (2) is transparent.
ized by the appearance of “holes” or empty spaces of dif-The first equation couples the linear dipole moments to each
ferent sizes(see the image in Ref.)3Such samples more other and to the incident wave. The local fields at the inci-
closely resemble the experimental surfaces that were studietént frequencyw induce nonlinear dipole moments that os-
recently using the near-field microscdpy®and (SERS.*®  cillate at the generated frequenay, and are further coupled
To obtain the optical properties, we used the coupledio each other via dipole radiation fields by Eg). The term
dipole method? with intersections of the neighboring F; plays the role of the incident field for the nonlinear di-
spheres:?® But contrary to our previous work, we did not poles and is oscillating at the generated frequengy Note
restrict the dipole-dipole interaction to the quasistatic limitthat in the case of a degenerate nonlinear prot®ssoth
and we used fully retarded dipole fields. linear and nonlinear dipoles interact at the same frequency
The coupled-dipole equations that couple the linear anénd the coupling constants in both E@$) and (2) are the
nonlinear dipole momentsl;(w) and diNL(wg) of the ith  same:a(w)=a(wy); therefore the interaction of nonlinear
monomer to the incident wave have the fofeee Refs. 12 dipoles cannot be disregarded in the spectral region where
and 22 for more detail the interaction of linear dipoles is known to be strong.
In the numerical simulations the samples were considered
- to be placed on a surface of a dielectric prism and irradiated
B+ 2, Wii(“’)di(“’)}’ @ by an evanescent incident wave due to the total internal re-
flection of the incident laser beam from the inner surface of
the prism. This setup is the same as in several near-field
. ) optical microscopy experiments that detected the existence
and spectral dependence of the regions of EM energy
wherew and wy are the frequencies of the linear and gen-|ocalization! = Correspondingly, the incident wave has the
erated signalsE(”)=E(® exp(k-r;) is the amplitude of the form
incident plane wave at the location of théh monomer,
a(w) is the frequency-dependent polarizability of a mono-
mer, W;; () is the fully retarded dipole radiation field pro- EO=F, exr{f(_z\/mﬂxn sing)|, (6)
duced by a dipole at th¢th site oscillating with the fre- C
guency w at theith site, andF; is described below. We
calculateda(w) using the Lorenz-Lorentz formula with the
radiative correction introduced by Drafifeand with the use
of the model of intersecting nearest-neighbor
nanoparticles:?® The dielectric function of silver was ob-
tained from the Drude formula(w)Zeo—wS/w(w-l—iy)

with the following parameters for silvereo=5, X\, One of the possible definitions for the nonlinear enhance-

=2mc/w,=136 nm, andy/w,=0.002. ment factor utilizes the idea of work that would be done by a
The generated signal frequenay, and the free term for \yeak probe field oscillating at thgeneratedfrequencyw,

the equation coupling the nonlinear dipoles to each ofier, 4 the nonlinear dipoles. This definition is convenient be-

depend on the specific nonlinear process. In genkratan  c4yse it allows one to express the enhancement factors in

be expressed in terms of the finear dipole momek(®) or  terms of linear local fields only. The general formula for an
corresponding local electric fieldgj(w)=a “(w)di(®w).  enhancement facta® is?2

For the processes considered below,

di(w)=a(w)

AN (wg) = a(wg)| Fi+ X Wij(wg)d (o)

where 6 is the angle of incidence for the laser begsst to
/4 in the calculationsandn= 1.58 is the refractive index of
the prism, thez axis is perpendicular to the prism surface and
the x axis is parallel to the propagation direction of the eva-
nescent wave.

wg=2w, Fi:a(Ei'Ei)ni+b(ni'Ei)Ei+C(Ei'ni)2ni 2

<E, di“L<wg>~E§°>*<wg>>
! on the surface

(second-harmonic generation  (3) G= @
NL .E(O)*
wy=3w, F=a(E-E)E; (third-harmonic generation <E. A (wg)- By (w9)>_ _ ‘
(4) in dilute solutio
wg=, Fi=a(E;-Ef)E +b(E;-E)Ef There are few conventions adopted in the above definition.

First, E®(wg) =E© exp(ky-1;) is the amplitude of the
(degenerate four-wave mixing ~ (5) probe field which is oscillating at the generated frequency

wq rather than the incident frequenay. It can be obtained
Herea,b,c are constants related to nonlinear susceptibilitiesfrom Eq. (6) by replacingw by wq. The summatiorE; is
probably different for different processes, ands are the over all possible locations of nonlinear molecules on the
“preferred direction” vectors for nonlinear molecules that outer surface of the sample. The term in the numerator of Eq.
break the spherical symmetry in order to make the second¥) is calculated when the molecules are placed on the sur-
harmonic generation possible. For simplicity, we assume beface of a RNSMS and the denominator—when the same
low that all the adsorbed molecules have the same “premolecules are in a dilute solution and are irradiated only by
ferred direction,” nj=n which is perpendicular to the the incident wavdEq. (6)]. Finally, the averaging- - -) is
surface plane. over random sample realizations. Note that both the numera-



PRB 60 BRIEF REPORTS 10 741

1010 A=760 nm

108

2.0x10° ¢
108
10* 1.0x10°
102
1 0.0 um
0.6 0.8 1
(a)
(a)
A=1um
8.0x10"° ¢
| T T | 1 1 1 1 |)\|(Mrn)_ 4'0X1015
0911 15 2 3 5 7 10
(b)
1022-GF‘W1¢II TTTT T T T T T T3 0.0 um
1018 - .
1014 - .
1010 - .
b
100 T )
0} .
10 FIG. 2. Distribution of the local enhancement factors at the sur-
1072 F - face of a computer-generated sample for the second-harmonic gen-
» M pm) eration at the wavelength of the incident linear wave760 nm(a)
0705795 1 2 5 10 and for the third-harmonic generation)at=1 um (b). The gener-
() ated signal wavelength is close to 300 nm in both cases. It is as-

sumed that the nonlinear moments at the generated frequency are
FIG. 1. Average enhancement factors for the second-harmonigot coupled.
generation(a), third-harmonic generatiotb), and degenerate four-
wave mixing(c) as functions of the wavelength. E( ie., for the incident evanescent wave propagating in
the negativex direction. Consequently, formul&) can be

tor and the denominator in Edq7) are bilinear in dipole réwritten as
moments or local electric fields, as would be expected for an
enhancement factor. The amplitudes of the probe field are <2 Fi'Er(wg)>
independent of the solution to the coupled-dipole equations. i

Although the definition(7) utilizes the amplitudes of non-
linear dipole moments that must be calculated from &y. <E Fi(o)~ Ei(o)*(wg)>
after Eq.(1) is solved to determine the appropriate free terms '
F,, the similar structure of Eqg1) and (2) allows one to

on the surface

in dilute solutio

. . . . whereF; is related to the linear local fields by one of Egs.
expresss in terms of linear dipole moments only. Using the (3)—(5). Efr(wg)=a_1(wg)di+(wg), and Fi(O) is determined

fact that thiSOIP t|o?os) 0 EqﬁlL) and(_2) can be wnttenAm t.he from the same equations with the local fields substituted by
form di(w) =2 «;;E;” andd; (a:g)—EJ-KLj Fj, wherex;; is the incident fieldsEi(O).

a symmetrical tensor such thakipaﬁz(’cji)ﬁaa it is pos- Now we turn to the results of calculations which are
sible to show thatS;d\'"(w,) - EL* (wg) = =iF;-di (wg),  shown in Figs. 1 and 2. Figure 1 illustrates the wavelength
whered;" () is the solution to the equation obtained from dependence of the averaged enhancement fatéor the

Eqg. (1) by taking the complex conjugate of the free termsecond- and third-harmonic generation and the degenerate
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four-wave mixing. Apart from random fluctuations which are ment for the degenerate four-wave mixing néar 10 um
associated with numerical averaging and are not expected tof 10?2
be seen experimentally, the general trend is the increase of Finally, in Fig. 2 we present the distribution of local fields
enhancement with the wavelength. Note that the spectrain the surface raised to the foufifig. 2(a)] and sixth[Fig.
ranges for different nonlinear processes differ in Figa)d  2(b)] powers, at\ =760 nm and 1um, respectively, which
1(c). This is explained by the fact that according to E8),  roughly corresponds to the local enhancement of the second-
to determine the enhancement factor at a specific inciderdnd the third-harmonic generation when the couplingani-
wavelength\ one needs also to find linear responses at thdinear dipoles via Eq(2) can be neglected. In both cases the
generated wavelengthhy. For the second- and third- generated wavelength is close to 330 rithe surface-
harmonic generation\q is two and three times, respectively, plasmon resonance wavelengihen the coupling is known
smaller thark. On the other hand, the Drude formula used into be smalf*? By comparing Figs. (8) and 2a), we see that
this work to calculatex(\) is accurate only foh>300 nm.  while the average enhancement of the second-harmonic gen-
Therefore the data for the second-harmonic generation stagration is close to unity at =760 nm, the maximuntocal
from A =600 nm and for the third-harmonic generation from enhancement can reach®10t can be probed by placing a
A=900 nm Q4 is in both cases equal to 300 nm which cor- single molecule in the surface region where the EM energy is
responds to the lower bound of the spectyum highly concentrated at a given wavelength. As was shown in
As one could expect, the enhancement is larger for thd&ef. 6, the locations of such hot spots are extremely wave-
third-order nonlinear processfHsigs. 1b) and Xc)] than for  length and polarization sensitive and can span large portions
the second ordelFig. 1(a)]. This happens because for the of the surface in a relatively small spectral range. A compari-
higher-order nonlinearities the local fields in E¢®—(5) are  son of corresponding figures for the third-harmonic genera-
raised to a greater power. Further, the enhancement is largéon [Figs. 1b) and 2b)] shows again that the maximum
for the degenerate four-wave mixing than for the third-local enhancement can be 8—9 orders of magnitudes higher
harmonic generation, although both are third-order nonlineathan the averaged value. This allows us to predict extremely
processes. This can be understood by examining@&gand  high local enhancements of nonlinear signals in the far-
(2). In the case of a degenerate process,wq and the linear  infrared region of the spectrum considered in this pdpear
local fields are first enhanced by Ed) and then the non- N=10 um).
linear fields are enhanced by E®) at the same frequency.
But for the third-order harmonic generation, the coupling of This research was supported by NSF Grant No. DMR-
nonlinear fields occurs at the tripled frequeney=3w, 9810183. The computational facilities were provided by the
when both the resonance quality factor and localization ar®ational Center for Supercomputing Applications under
significantly smaller. We obtained the maximum enhanceGrant No. PHY980006N.
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