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Enhancement of nonlinear processes near rough nanometer-structured surfaces obtained
by deposition of fractal colloidal silver aggregates on a plain substrate

Eugene Poliakov, Vladimir M. Shalaev, and Vladimir Shubin
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In this paper we extend our previous results concerning the enhancement of nonlinear optical responses near
rough self-affine metal surfaces to different objects in a wider spectral range and also beyond the quasistatic
limit. In our previous work@E. Poliakovet al., Phys. Rev. B57, 14 901~1998!# we studied local and averaged
enhancement factors for the second- and third-harmonic generation and degenerate four-wave mixing for
nonlinear molecules adsorbed on nanostructured self-affine metal surfaces in the quasistatic approximation in
the spectral range from 0.4 to 1.8mm. In the present work, we study the same nonlinear effects for surfaces
formed by deposition on a plane substrate of fractal clusters rather than individual nanoparticles. The spectral
range is extended to 10mm. We have calculated the enhancement factors for the above nonlinear process with
the account of retardation and performed numerical calculations for significantly larger samples. Our numerical
results indicate that the enhancement factors increase with the wavelength up tol510 mm. The enhancement
of the degenerate four-wave mixing can reach, for example, the value of 1022 in the far-infrared spectral region
~the maximum enhancement reported by us earlier for this process was;1016 nearl51.8 mm).
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The optical properties of rough nanometer-structured m
tallic surfaces~RNSMS! with fractal geometry recently at
tracted a lot of attention.1–6 The strong enhancement of loc
electromagnetic~EM! fields near RNSMS in a wide spectr
range can lead to the possibility of performing linear a
nonlinear spectroscopic measurements of single molec
adsorbed on a RNSMS.4,5 The collective nature of the EM
energy localization~as opposed to the ‘‘single-scattering
regime of localization near sharp needles, etc.! provides that
the enhancement can take place in a wide spectral region
just at a particular resonance frequency. It turns out that
any wavelength from;0.5 mm to at least;10 mm, the
fractal RNSMS possesses several collective resonant m
~surface modes!. Typically, for each frequency, some of th
resonant modes are localized and some are delocalized.
chaotic behavior of the localization length was referred to
inhomogeneous localization.7,8 But, on average, the localiza
tion length of the modes thatare localizedtends to decreas
with the wavelengthl.6,9 In addition, the quality factor of
the resonances increases withl in most metals, as a conse
quence of the Drude formula, up to the maximum wav
lengthlm52p/g, whereg is the Drude relaxation constan
Therefore, asl approacheslm , the EM field near a RNSMS
becomes localized in hot spots of progressively smaller
and higher intensity. The locations of these ‘‘hot spots’’ a
wavelength dependent, contrary to what one would expec
the single-scattering regime.

If there is nonlinearity of the host metal, or in molecul
adsorbed on the surface, the existence of these zones of
intensity EM fields leads to enhancement of local and av
age nonlinear optical responses, as was predic
theoretically10–15 and observed experimentally.16–21 In our
recent numerical calculations,22 we used experimental opti
PRB 600163-1829/99/60~15!/10739~4!/$15.00
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cal constants of silver in the range ofl50.2–1.8mm to
estimate the values of the enhancement factors for diffe
nonlinear processes. Our results have indicated that the
hancement of a nonlinear signal can reach the values of7

and 1015 for the second- and third-order process, resp
tively, nearl51.8 mm. However, the value oflm is, typi-
cally, much larger~for example,lm;70 mm for silver!. This
prompts that even larger enhancements can be reached
l approacheslm . It is known that the dielectric function o
good conductors, such as silver, are well described by
Drude formula in the regionl@lp , wherelp52pc/vp and
vp is the plasmon frequency, and, in particular, in the sp
tral region where experimental constants of metals are
usually measured. In this paper, we report the results of
merical calculations forl ’s up to 10mm.

In our previous paper,22 we performed calculations fo
samples generated in the so-called restricted solid-on-s
model. In this model one assumes that single metal nano
ticles are deposited on a plain substrate from a solution. H
we use an alternative model in which the individual nanop
ticles are allowed first to aggregate in the solution and fo
fractal clusters~cluster-cluster aggregates with the fractal d
mensionD'1.8) and only later are deposited on the su
strate. An image of a rough surface formed by this deposit
process is shown in Ref. 3. We also used larger clusters
N55000 elementary units~compared toN;1000 in the pre-
vious work22!. Each elementary unit is considered to be
sphere of the size;8 nm, and the characteristic lateral d
mension of the samples used in the present work is 1mm
and the maximum vertical height about 120 nm. The res
presented here are averaged over four random samples.
that unlike the self-affine films obtained in the restrict
10 739 ©1999 The American Physical Society
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10 740 PRB 60BRIEF REPORTS
solid-on-solid model, the samples studied here are chara
ized by the appearance of ‘‘holes’’ or empty spaces of d
ferent sizes~see the image in Ref. 3!. Such samples more
closely resemble the experimental surfaces that were stu
recently using the near-field microscopy1–3,6 and ~SERS!.4,5

To obtain the optical properties, we used the coupl
dipole method12 with intersections of the neighborin
spheres.9,23 But contrary to our previous work, we did no
restrict the dipole-dipole interaction to the quasistatic lim
and we used fully retarded dipole fields.

The coupled-dipole equations that couple the linear
nonlinear dipole momentsdi(v) and di

NL(vg) of the i th
monomer to the incident wave have the form~see Refs. 12
and 22 for more detail!

di~v!5a~v!FEi
(0)1( Ŵi j ~v!dj~v!G , ~1!

di
NL~vg!5a~vg!FFi1( Ŵi j ~vg!dj

NL~v!G . ~2!

wherev and vg are the frequencies of the linear and ge
erated signals,Ei

(0)5E(0) exp(ik•r i) is the amplitude of the
incident plane wave at the location of thei th monomer,
a(v) is the frequency-dependent polarizability of a mon
mer, Ŵi j (v) is the fully retarded dipole radiation field pro
duced by a dipole at thej th site oscillating with the fre-
quency v at the i th site, andFi is described below. We
calculateda(v) using the Lorenz-Lorentz formula with th
radiative correction introduced by Draine24 and with the use
of the model of intersecting nearest-neighb
nanoparticles.9,23 The dielectric function of silver was ob
tained from the Drude formulae(v)5e02vp

2/v(v1 ig)
with the following parameters for silver:e055, lp
52pc/vp5136 nm, andg/vp50.002.

The generated signal frequencyvg and the free term for
the equation coupling the nonlinear dipoles to each other,Fi ,
depend on the specific nonlinear process. In general,Fi can
be expressed in terms of the linear dipole momentsdi(v) or
corresponding local electric fieldsEi(v)5a21(v)di(v).
For the processes considered below,

vg52v, Fi5a~Ei•Ei !ni1b~ni•Ei !Ei1c~Ei•ni !
2ni

~second-harmonic generation! , ~3!

vg53v, Fi5a~Ei•Ei !Ei ~third-harmonic generation! ,
~4!

vg5v, Fi5a~Ei•Ei* !Ei1b~Ei•Ei !Ei*

~degenerate four-wave mixing! . ~5!

Herea,b,c are constants related to nonlinear susceptibiliti
probably different for different processes, andni ’s are the
‘‘preferred direction’’ vectors for nonlinear molecules th
break the spherical symmetry in order to make the seco
harmonic generation possible. For simplicity, we assume
low that all the adsorbed molecules have the same ‘‘p
ferred direction,’’ ni5n which is perpendicular to the
surface plane.
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The physical meaning of Eqs.~1! and ~2! is transparent.
The first equation couples the linear dipole moments to e
other and to the incident wave. The local fields at the in
dent frequencyv induce nonlinear dipole moments that o
cillate at the generated frequencyvg and are further coupled
to each other via dipole radiation fields by Eq.~2!. The term
Fi plays the role of the incident field for the nonlinear d
poles and is oscillating at the generated frequencyvg . Note
that in the case of a degenerate nonlinear process~5!, both
linear and nonlinear dipoles interact at the same freque
and the coupling constants in both Eqs.~1! and ~2! are the
same:a(v)5a(vg); therefore the interaction of nonlinea
dipoles cannot be disregarded in the spectral region wh
the interaction of linear dipoles is known to be strong.

In the numerical simulations the samples were conside
to be placed on a surface of a dielectric prism and irradia
by an evanescent incident wave due to the total internal
flection of the incident laser beam from the inner surface
the prism. This setup is the same as in several near-fi
optical microscopy experiments that detected the existe
and spectral dependence of the regions of EM ene
localization.1–3,6 Correspondingly, the incident wave has th
form

Ei
(0)5E0 expFv

c
~2zAn2 sin2u211 ixn sinu!G , ~6!

whereu is the angle of incidence for the laser beam~set to
p/4 in the calculations! andn51.58 is the refractive index o
the prism, thez axis is perpendicular to the prism surface a
the x axis is parallel to the propagation direction of the ev
nescent wave.

One of the possible definitions for the nonlinear enhan
ment factor utilizes the idea of work that would be done b
weak probe field oscillating at thegeneratedfrequencyvg
on the nonlinear dipoles. This definition is convenient b
cause it allows one to express the enhancement factor
terms of linear local fields only. The general formula for
enhancement factorG is22

G5U K (
i

di
NL~vg!•Ei

(0)* ~vg!L
on the surface

K (
i

di
NL~vg!•Ei

(0)* ~vg!L
in dilute solution

U 2

. ~7!

There are few conventions adopted in the above definit
First, Ei

(0)(vg)5E(0) exp(ikg•r i) is the amplitude of the
probe field which is oscillating at the generated frequen
vg rather than the incident frequencyv. It can be obtained
from Eq. ~6! by replacingv by vg . The summation( i is
over all possible locations of nonlinear molecules on
outer surface of the sample. The term in the numerator of
~7! is calculated when the molecules are placed on the
face of a RNSMS and the denominator—when the sa
molecules are in a dilute solution and are irradiated only
the incident wave@Eq. ~6!#. Finally, the averaginĝ•••& is
over random sample realizations. Note that both the num
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tor and the denominator in Eq.~7! are bilinear in dipole
moments or local electric fields, as would be expected for
enhancement factor. The amplitudes of the probe field
independent of the solution to the coupled-dipole equatio

Although the definition~7! utilizes the amplitudes of non
linear dipole moments that must be calculated from Eq.~2!
after Eq.~1! is solved to determine the appropriate free ter
Fi , the similar structure of Eqs.~1! and ~2! allows one to
expressG in terms of linear dipole moments only. Using th
fact that the solutions to Eqs.~1! and~2! can be written in the
form di(v)5( j k̂ i j Ej

(0) anddi
NL(vg)5( j k̂ i j Fj , wherek̂ i j is

a symmetrical tensor such that (k̂ i j )ab5(k̂ j i )ba , it is pos-
sible to show that( idi

NL(vg)•Ei
(0)* (vg)5( iFi•di

1(vg),
wheredi

1(vg) is the solution to the equation obtained fro
Eq. ~1! by taking the complex conjugate of the free ter

FIG. 1. Average enhancement factors for the second-harm
generation~a!, third-harmonic generation~b!, and degenerate four
wave mixing~c! as functions of the wavelength.
n
re
s.

s

Ei
(0) , i.e., for the incident evanescent wave propagating

the negativex direction. Consequently, formula~7! can be
rewritten as

G5U K (
i

Fi•Ei
1~vg!L

on the surface

K (
i

Fi
(0)
•Ei

(0)* ~vg!L
in dilute solution

U 2

, ~8!

whereFi is related to the linear local fieldsEi by one of Eqs.
~3!–~5!, Ei

1(vg)5a21(vg)di
1(vg), andFi

(0) is determined
from the same equations with the local fields substituted
the incident fieldsEi

(0) .
Now we turn to the results of calculations which a

shown in Figs. 1 and 2. Figure 1 illustrates the wavelen
dependence of the averaged enhancement factorG for the
second- and third-harmonic generation and the degene

ic

FIG. 2. Distribution of the local enhancement factors at the s
face of a computer-generated sample for the second-harmonic
eration at the wavelength of the incident linear wavel5760 nm~a!
and for the third-harmonic generation atl51 mm ~b!. The gener-
ated signal wavelength is close to 300 nm in both cases. It is
sumed that the nonlinear moments at the generated frequenc
not coupled.
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10 742 PRB 60BRIEF REPORTS
four-wave mixing. Apart from random fluctuations which a
associated with numerical averaging and are not expecte
be seen experimentally, the general trend is the increas
enhancement with the wavelength. Note that the spec
ranges for different nonlinear processes differ in Figs. 1~a!–
1~c!. This is explained by the fact that according to Eq.~8!,
to determine the enhancement factor at a specific incid
wavelengthl one needs also to find linear responses at
generated wavelengthlg . For the second- and third
harmonic generation,lg is two and three times, respectivel
smaller thanl. On the other hand, the Drude formula used
this work to calculatea(l) is accurate only forl.300 nm.
Therefore the data for the second-harmonic generation
from l5600 nm and for the third-harmonic generation fro
l5900 nm (lg is in both cases equal to 300 nm which co
responds to the lower bound of the spectrum!.

As one could expect, the enhancement is larger for
third-order nonlinear processes@Figs. 1~b! and 1~c!# than for
the second order@Fig. 1~a!#. This happens because for th
higher-order nonlinearities the local fields in Eqs.~3!–~5! are
raised to a greater power. Further, the enhancement is la
for the degenerate four-wave mixing than for the thir
harmonic generation, although both are third-order nonlin
processes. This can be understood by examining Eqs.~1! and
~2!. In the case of a degenerate process,v5vg and the linear
local fields are first enhanced by Eq.~1! and then the non-
linear fields are enhanced by Eq.~2! at the same frequency
But for the third-order harmonic generation, the coupling
nonlinear fields occurs at the tripled frequencyvg53v,
when both the resonance quality factor and localization
significantly smaller. We obtained the maximum enhan
i-
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ment for the degenerate four-wave mixing nearl510 mm
of 1022.

Finally, in Fig. 2 we present the distribution of local field
on the surface raised to the fourth@Fig. 2~a!# and sixth@Fig.
2~b!# powers, atl5760 nm and 1mm, respectively, which
roughly corresponds to the local enhancement of the sec
and the third-harmonic generation when the coupling ofnon-
linear dipoles via Eq.~2! can be neglected. In both cases t
generated wavelength is close to 330 nm~the surface-
plasmon resonance wavelength! when the coupling is known
to be small.9,12 By comparing Figs. 1~a! and 2~a!, we see that
while the average enhancement of the second-harmonic
eration is close to unity atl5760 nm, the maximumlocal
enhancement can reach 109. It can be probed by placing a
single molecule in the surface region where the EM energ
highly concentrated at a given wavelength. As was shown
Ref. 6, the locations of such hot spots are extremely wa
length and polarization sensitive and can span large port
of the surface in a relatively small spectral range. A compa
son of corresponding figures for the third-harmonic gene
tion @Figs. 1~b! and 2~b!# shows again that the maximum
local enhancement can be 8–9 orders of magnitudes hi
than the averaged value. This allows us to predict extrem
high local enhancements of nonlinear signals in the f
infrared region of the spectrum considered in this paper~near
l510 mm).
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