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It is shown that optical free-induction decay (OFID) in fractals is governed by a power-law time
dependence. The scale invariance of the OFID in the time domain results from the self-similar
distribution of the dipolar eigenmodes in fractals.

PACS number(s):

A spatial scaling (self-similarity) of fractal clusters re-
sults under certain conditions in scaling in the time do-
main. Martin et al, who studied the dynamics of the
sol-gel transition probed by the use of light scattering,
reported on the observation of power-law time decay of
the intensity autocorrelation function.! The power-law
decay of the correlation of the detected photons at differ-
ent instants of time indicates in this case a fractal time
set in the scattered field.?

Fractal time processes often imply a self-similar dis-
tribution of the eigenfrequencies.? Optical eigenmodes of
fractal clusters (referred to below for the sake of brevity
as fractals) were studied in a number of papers.>7 In
particular, it was shown in Refs. 5-7 that a distribution
of the dipolar eigenstates of a random fractal possesses a
scaling.

The time decay of the optical free induction (macro-
scopic dipolar moment) is typically described by an expo-
nential or “stretched” exponential dependence with some
characteristic time 7.% In the present paper we show that
optical free-induction decay (OFID) in fractals is de-
scribed by a power-law (rather than exponential) time
dependence, and, thus, there is no characteristic time
scale. The scaling of OFID in fractals is a consequence

of the self-similar distribution of the dipolar eigenmodes. |

Let us consider a fractal cluster consisting of polariz-
able particles (monomers). The number of monomers N

in the cluster is given by N = (Re/Ro)P, where R, is '

the gyration radius, Ry is a typical separation between
neighbor monomers, and D is the fractal (Hausdorff) di-

mension. The polarizability of an isolated particle is Xo-
We assume that the particles possess an optical resonance
at wo with a high quality factor. If such a cluster is ir-
radiated by an external field with frequency close .to wy,
then large transitional dipole moments are induced on
the particles and, accordingly, strong dipole-dipole in-
teraction occurs, resulting in the formation of collective
eigenmodes. At |w — wp| < wp the density of the modes
for random fractal clusters with N — oo is given by the
power-law dependence®:®

plw —wy) ~ NA"d°lw - wo|d°—1, ()

where d, is the optical spectral dimension (0 <ds <1)
introduced in Ref. 5. The quantity A = R3 wo(w?)t/?

characterizes the width of the spectral range within which
the modes are distribufed.ﬁ Here w,, are the eigenvalues of
the interaction operator W, i.e., W|n) = wn|n), and W
has the following matrix elements in the coordinate rep-
resentation: (za{W]yﬂ) = Wc(:ﬁJ) = [0ap — 3n‘(;.7)ng3)]ri;3
if i # jand W = 0ifi = j (The Greek in-
dices e, 3 label the Cartesian components, summation
over repeated Greek indices is implied, rj = r; — T,
and n?) = r;; /ri;-) The quantity R, is a typical
charge displacement (which is of order of the size of a
monomer) associated with the dipolar moment induced
on the monomer. ' .

The interaction operator in the presented form is valid
in general if the wavelength ) is much greater than the
size of the cluster kR, <« 1. For the sake of simplicity we
assume first that this condition is fulfilled. However, as
will be discussed below, the main results obtained in this
work remain valid for the arbitrary size of the cluster.

Let us assume that the dipolar eigenmodes are excited
under steady-state conditions by a laser beam and that
suddenly, at ¢ = 0, the excitation is terminated. Then,
at t > 0, the modes will freely oscillate with their eigen-
frequencies. We will consider the system behavior for
times t, which are much less than a characteristic time,
471, of irreversable relaxation: vt < 1. At ¢t = 0, all the
modes are in phase, and the macroscopic dipolar moment
is proportional to the number of particles (accordingly,
the radiated intensity o« N2). However, for ¢ > 0, since
the frequencies of the freely oscillating dipoles associated
with different modes are different, the modes gradually
become out of phase. First, the modes at the two oppo-

. site sides of the spectrum, having the largest difference
. in frequencies (~ 2A), are dephased, then those which
. are closer to the central frequency, wg, and, therefore,
have a smaller frequency difference, and so on. This pro-
! cess of the mode dephasing developing with time results
. in decay of the macroscopic dipolar moment. The phe-
! nomenon, by analogy with magnetic induction decay, has
t been called optical free-induction decay.?

The decay is described in general by the integral

£(t) = / = i P(Q)$(Q) exp{—iQ2t} @

where the density of the eigenmodes, p(Q2), is given by
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(1), and ¢(2) is the weight that each mode contributes
to the macroscopic dipolar moment (Q is the detuning
from the central frequency wg). The weight function ¢(2)
depends in general on the way the system was excited
before t = 0.

~ The main contribution to the integral in (4) is given
by the frequency range for which |t < 1 and |Qt ~ 1.
Accordingly, if we consider the time for which At > 1,
then all the frequencies Q contributing significantly to
the integral are such that 2] < A. The modes for which
|2| > A become out of phase by the time when At >
1 and, therefore, their contribution to the macroscoplc
dlpole is of no importance. We assume that thesgni
of the eigenmodes have been excited at t = 0 and ¢'(Q'Tls
a reasonably smooth function with a characteristic scale
of changing of A. Then, for |2] < A the weight-function
¢(?) may be approximated by its value at £ = 0 when
performing the integration in (2). Using (1), one obtains
the following estimation for f(t) in (2):

f(t) ~ No(0)(At)~% (At > 1). (3)
Thus, for the time ¢ satisfying to the condition At >
1, the decay of the optical free-induction in fractals is
characterized by a power-law (rather than exponential)
time dependence.

Below we demonstrate this general result for a frac-
tal set of harmonic oscillators. The transitional dipole
moment d) induced by an external field E©®) =
E(9 exp(—iwt) on the ith particle obeys in this case the
following system of equations:

49 4 24d® 4 w2dD = REwi | EL0) -3 Wi g

(4)

Under steady-state conditions, (4) reduces to the system
of algebralc equations '

d(‘) = x0E® — xo Z W 1J)d(J) (5)

where d(l) = X(z)E(O) is the dipole amplitude, and y, is
defined as

Xo= (R3 wg)/lwg — w? — 2éyw]

~ ( R3 wo)/[wo —w=—17].

We will use the latter expression for xo below. In the
case of a harmonic oscillator, it is valid for |wp — w| <« w.
Note that Eqgs. (4) and (5) describe also a set of two-level
particles for which the latter expressmn for xq is exact if
the system is far from saturation.®

The solutlon of (5) for a cluster polarlzablhty, Xag =
¥ Xczﬁ’ in terms of the éigenfunctions of the interaction

operator has the form5 S,

Z "»[’aln nl"r/)ﬁ) (6)

+wn

where o

|¢01 = \/—lea (7)

Let us assume that at ¢ < 0 a system was excited by
the field with frequency which was far beyond all the
eigenvalues w,, (nonresonant excitation), i.e., x5! > A.
Then, under steady-state conditions, all of the dipole mo-
ments induced on the particles have the same amplitude.
For t = 0, the dipole values are given by

d&) (o

) = %o Z(i‘a|n) (nliB)ES) = xoE.

j!n
<or o

he modes Tree y oscillate (slowly decaying with
a characteristic time y~') with eigenfrequencies w,, so
that for 43 (t) one obtains

~ (3)

de () =e Yy Zexp{—zwnt} za]n (nliB)E ED), (8)

.7)

where w, = wo(1+R3,wn)'/2. Assuming that R3 A < 1,
one finds for the eigenfrequencies

1; 1
Wy X wo + Ly, = Ewoanwn.

The macroscoplc dipolar moment, P(t), is defined as

P,(t) =N Re(d ( )}, where the angular brackets denote
averaging over an ensemble of clusters. Performing first
the averaging over orientations of a cluster as a whole and

using (8), we find Py (t) = xoEL Re[f exp{—~t — iwot}],
or in the explicit form

Pa(t)

(9)

= XOEéO)e_'”{fl coswot + fa sinwgt}, (10)

where f = f; +if, is given by |
() = <%NZexp{—innt}'(¢a[n)(n[¢a)>. (11)

To obtain (10) and (11), we have taken into account that
for a nonresonant excitation at ¢ < 0, one can neglect the
imaginary part of xo. The macroscopic dipole moment
in (10) and (11) satisfies the initial conditions P,(0) =
N{d%(0)) = NxoEL and P,(0) = 0.

The function f(t) in (11) determines optical free-
induction decay [cf. (2)]. Provided all the modes con-
tribute to the signal with an equal weight (see below),
then

f= <z exp{—iQnt}> = /exp{—iQt}p(Q) Q.

n

As follows from (6) and (7), and (9) and (11), function
f(t) can be expressed in terms of the Fourier trarsform
of

-

x(w) = x'(w) +ix"(w) = 1/3(Xaa) ,

2i-

fR)e et = - f x(@)e~*tdw ,  (12)



in agreement with the general theory of a linear opti-
cal response.!® Note that P(t) in the form (10) and (11)
can also be obtained for a wide band excitation when
E©)(t) o« E®§(¢) and one has, accordingly,

P [ " HREO ¢ - r)dr

x f(t) x /x(w) exp (—iwt)dw .

As follows from compa;rison of (12) and (2) in both the

considered cases, nonresonant steady excitation followed
by a sudden termination of the excitation and a wide-
band excitation by a é pulse, a spectral dependence of
the product p(Q2)¢(2) in (2) is given by polarizability
x(w). Note, however, that in general a system can be
“prepared” in such a way that only a part of the modes
are excited at t = 0.

Further simplification in (12) can be done by using the
equality [% x/(w)e ™idw =i 2 X" (w)e™*tdw, which
is valid for ¢t > 0 and can readily be proved by performing

a Fourier transform of x' and x” in (6) and (7). This
results in the following formula for P, (t):
4X0E‘(10) * —iw

Pa(t) = mRe Lm X”(a})e tdw. (13)

Since for At > 1 the modes for which |Q] = jwo —
w| > A become out of phase, only the central modes
with |Q] < A contibute significantly to the integral in
(13) [cf. with the discussion preceding formula (3)]. For
random fractals the eigenmodes in the central part of
the spectral contour contribute to the imaginary part of
the polarizability with an equal weight so that x'(w) is
simply proportional to the density of eigenstates in this
region: x"(w) = (wR3,we/6)p(w — wp).® Thus, provided
At > 1, one can substitute the spectral density p(w—wp)
for x"(w) in (13). Using (1), (10), and (13), one readily
obtains :

P, (t) = %Xong’)Re <e-"“’°t /

— 00

p(Q)e—mtdQ)

xt™% (At 1), (14)
in agreement with that predicted by (3).

The intensity radiated by a freely decaying system is
determined by the expression I = ([Re}, d}]?). Using
(6) and (7), and (10) and (11), one finds for I °

1
I= —2-[XOE(°)e-“"]2F2, (15)

where F? = F2 + FZ? and

< (%N ; cos(Qnt) (thaln) (n1¢,,)> > ,

F2=

o 2
- F= <(-;—NZsin(nntwaln)(nlz/za)) > (16)

Note that in general F? # |f|? [cf. (11) with (16)).

In our simulations we have examined ballistic cluster-
cluster aggregates (D =~ 1.9). The clusters were gen-
erated using the Monte Carlo method and well-known
procedures. Then, the clusters have been subjected
to dilution (random decimation), which consists of the
following:® The ith (i = 1,2,..., N) monomer is randomly
retained in the cluster with some small probability § or
removed with probability 1 — 3. The fractal as a whole is
in turn reduced in size $~1/D times, so that the value of
Ry remains the same. This procedure reduces the total
number of particles on average by a factor of 8. The frac-
tal structure at small scales is significantly simplified by
the procedure. The important aspect is that the resul-
tant (diluted) cluster is characterized by the same fractal
dimension as the original one. The clusters (IV = 32768)
in our simulations have been subjected to the dilution
with 3 = 64 so that after the dilution each cluster con-
sists of N = 512 particles. Averaging over an ensemble of
100 random clusters has been conducted. In the simula-
tions, the eigenvalues and eigenvectors of the interaction
operator W for the generated aggregates have been found
and then the macroscopic dipolar moment, P(t), and the
intensity radiated by freely decaying fractals, I(t), have
been calculated using (10) and (11) and (15) and (16),
respectively.

In Figs. 1 and 2 we present the results of the simu-
lations of optical free-induction decay in fractals. The
dependence f;(t)/N on ¢ and a double-logarithmic plot
of F(t)/N are shown in Figs. 1 and 2, respectively. ‘As
follows from (11) and (16), f1(0)/N = F;(0)/N =1, and
f2(0) = F2(0) = 0. Thus, at ¢ = 0, one has f = N
and F? = N2, i.e., all the dipolar moments are in phase.
At't > 0, the quantities f;(¢) and F(¢) decay and exhibit
the power-law dgpendence (o t'"d") within a certain time

Qt

FIG. 1. Function fi(t)/N describing the decay of the op-

' tical free induction. The solid line is the 0.75(Qt)~%%5 de-
- pendence. The exponent gives the value of the optical spec-

tral dimension do = 0.55. The simulations are made for bal-
listic cluster-cluster aggregates having the fractal dimension
D =1.9. -



Ln(F(t)/N)

| slope : -0.55

-3 1 1 1
Ln(Qt)

FIG. 2. Double-logarithmic plot of F(t)/N characterizing a
square root of the intensity (per particle) radiated by ballistic
cluster-cluster aggregates. The slope obtained is equal to —d,,
where d, = 0.55 is the optical spectral dimension.

interval, the scaling region. For large times (not shown
in the figure) f(t) falls to zero, reflecting the complete
dephasing of the dipole moments and the radiated in-
tensity, I oc FZ2, tends to the nonzero steady-state value
I, < F? ~ F%(0)/N = N . The quantity F? ~ N charac-
terizes the intensity radiated by N independent dipoles.

The exponent in the power-law dependence, f;(¢) and ;
F(t), obtained for the scaling region in the simulations is

—0.55. In our work!® we reported for the ballistic cluster-
cluster aggregates the value dy = 0.53 £ 0.1. Thus, the
exponent found in the simulations coincides within the
error interval with —dg, in accordance with the theoreti-
cal predictions [see Eqgs. (3) and (14)].

We have assumed above that the size of a cluster is

i

smaller than the wavelength. However, since the dipo-
lar modes are localized in fractals in regions that are
significantly smaller than the wavelength,®"1! the re-

W) if ke < 1,

duced Hermitian operator, V(fg) = Wo3's

~and VOE;’) .= 0, otherwise, can be used instead of the
_ exact non-Hermitian operator of the dipole-dipole inter-
" action of particles in a cluster of an arbitrary size.

Accordingly, the scaling properties of collective dipolar
" excitations remain valid for a cluster larger than the
" wavelength. In particular, the power-law decay of the

12

macroscopic dipole moment occurs in large fractal clus-
ters as well. Note, however, that the intensity radiated
by a large cluster at small values of ¢ is proportional to
N(kRy)™P for D < 2 and N?>~¥D(kRy)~2 for D > 2,

_ rather than N 2. as in the case of a cluster smaller than
" the wavelength.1%1 This is because the complete coher-
“ence for large clusters occurs only within a range of an

order of the wavelength.

The dipolar eigenmodes, which are considered above,
are non-Goldstone-type excitations. As shown in our
work®, Goldstone-type vibrational excitations having an
energy gap in the spectrum, e.g., optical phonons, also
possess a self-similar distribution of eigenmodes in the
form (1). The exponent d, in this case is half the spec-

tral dimension d (i.e., d, = 1d), which determines the
scahng of gapless Goldstone -type vibrational excitations,

The theory of OFID developed
in tlns work can also be applied to the decay of the
Goldstone-type optical phonons. Accordingly, the power-
law OFID can be observed for the optical phonons on a
fractal lattice.

To summarize, power-law time decay of the optical
free-induction is shown to occur in fractals, resulting in
scale invariance of the macroscopic dipolar moment and
the radiated intensity in the time domain. The temporal
scaling is a consequence of the self-similar distribution of
the dipolar eigenmodes in the frequency domain.
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