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Abstract

Fractal nanostructured materials, such as nanocomposites and self-affine thin films, are shown
to possess giant optical nonlinearities. The enhancement results from the sub-wavelength local-
ization of dipolar modes and strong local field fluctuations.
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Optical phenomena experience giant enhancements in metal nanocomposites and
rough thin films consisting of small nm-sized particles and roughness features, re-
spectively. The enhancement is associated with excitation of surface plasmons which
are collective modes and depend strongly on the morphology (geometrical structure)
of the material. Fractal structures are prevalent in composites and cold-deposited thin
films. The emergence of fractal geometry was a significant breakthrough in the de-
scription of irregularity. Fractal objects do not possess translational invariance and,
therefore, cannot transmit running waves. Accordingly, collective excitations, such as
surface plasmons, tend to be localized in fractals [1]. Formally, this is a consequence
of the fact that plane running waves are not eigenfunctions of the operator of dilation
symmetry characterizing fractals.

Fractal aggregates of small particles embedded in a three-dimensional host are self-
similar (scale-invariant), within a certain interval of sizes. Unlike fractal assembles of
particles, a self-affine surface reveals a scale-invariance if different scaling factors are
applied in the (x, y)-plane of the surface and in the normal, z-direction. We studied
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nonlinear optical properties of small-particle composites and rough thin films character-
ized by various random morphology. In the following, we first consider small-particle
composites and then self-affine films.

Nonlinear electrical and optical properties of nanostructured composites have at-
tracted much attention in recent years [1-15], partly, because they have much larger
nonlinear susceptibilities than those of ordinary bulk materials.

As is well known, there is only one dipolar mode that can be excited by a ho-
mogeneous field in a spherical object. For a 3D collection of small particles, such as
randomly close-packed spheres (CPS) in a spherical volume and random gas of parti-
cles (RGP), the absorption spectra are still peaked near the relatively narrow resonance
of the individual particles, i.e., all eigenmodes of the collection of particles are located
in a small spectral interval [1].

In contrast to conventional (non-fractal) 3D systems, the dipolar interactions in low-
dimensional fractals are not long range; this results in localization of the correspond-
ing eigenmodes at various random locations in a fractal cluster. These modes form a
broad optical spectrum of fractal aggregates which is characterized by strong inhomoge-
neous broadening. It is important that despite asymptotically zero density of particles in
a fractal cluster, there is always a high probability of finding a number of particles
in close proximity to any given one (in fractals embedded in d-dimensional space,
the pair correlation gocrP~¢, where D (<d) is the fractal dimension; accordingly,
g becomes large at small ). Therefore, there are strong interactions between neigh-
boring particles, which lead to the formation of eigenmodes covering a broad spectral
range. The large variety of different local configurations in a fractal cluster leads to
the wide spectral interval covered by the eigenmodes. We emphasize that this be-
havior is different from nonfractal composites (such as RGP and CPS) where dipolar
eigenmodes are not localized and typically occupy a narrow spectral interval. Thus in ‘
objects with fractal morphology, the density—density correlation, g(r) o rP~4 results in
unusual combination of properties: whereas the volume fraction filled by N particles in
a fractal is very small, oc N'=4/P — 0, there are strong interactions between neighboring
particles [1].

Localization of eigenmodes in fractals leads to a patchwork-like distribution of local
fields associated with “hot” and “cold” zones [16]. This brings about large spatial
fluctuations of local fields in fractal composites and giant enhancement of various
optical effects [1].

In fractals formed by metal particles, the dipole eigenmodes cover the visible and
infra-red parts of the spectrum; the mode quality factors increase with the wavelength,
i.e., the local fields are especially large in the long wavelength part of the spectrum [1].

We consider a system of N polarizable particles (monomers) with the dipole—dipole
interactions between them at the optical frequency. The monomers are positioned at
the points r; (i=1,...,N) and assumed to be much smaller than the wavelength, 4,
of the incident wave. For the sake of simplicity, we restrict our consideration to the
quasi-static limit (i.e., assume that R, <A, where R, is the size of a cluster). Then, the

interaction operator has the form Wa';{ = (| W1jB)=1[0up — 3n§fj )ngj )]1;-;3 where Greek
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indices stand for Cartesian components, (the summation over repeated Greek indices
is implied), r; =x; — r;, and n@) =1;/r,.

The enhancement of optical processes in a small-particle composite occurs because
local fields exhibit strong fluctuations that significantly exceed the applied field. The lo-
cal field, E;, acting on the ith particle (monomer) in a cluster is given by: E;, = Oy lcxi, B
Eg)), where E® is the applied field, «, is the polarizability of the individual monomer
and o; .5 is the local polarizability of a monomer in a cluster which is related to
the local dipole moment d}, induced on the ith particle via the formula dy :oc,;aﬂE[(,O) .
Note that since we restrict our consideration to the quasi-static approximation, by E©),
E;, and d; we mean the amplitudes of the fields and dipoles, i.e., the spatial- and
time-varying factors are omitted.

By solving the coupled-dipole equations (CDE) in the quasi-static approximation,
do = 00[E” + 32,0 dig), we obtain [1]: 45— 2 (ialm)(n j B (W — X ) — i8],
where X = — Refog 1, 6= — Im[ory 17, and wy, and |n) are the eigennumbers and
eigenvectors of the interaction operator: (n|W|m)=w,6,,,. Thus (ix|n) are the compo-
nents of the vector |n) in the orthogonal basis |ia:). With given coordinates of particles
(dipoles), we can find eigenfunctions and eigenvalues of the interaction operator, W,
and then, using the above formulas, to determine local dipoles, d;, and fields, E;.

The light frequency, w, enters in the above equations implicitly via the complex
variable Z = oy 1(co)z ~ [X + i8]. Material and geometrical properties of monomers
affect the problem only via the parameter Z. The real part, X = X(w), plays the role
of a spectral variable instead of @, and the imaginary part, §> 0, describes dissipation
in a monomer; in general, § can also depend on . The quantity ¢g=6""! defines a
resonance quality-factor. The dependences of X and 6 on o for silver are specified
in [1].

A parameter characterizing enhancements of the local-filed intensities is defined as
G =(|E;[*)/|E®, where the symbol (-+) denotes an average over an ensemble of ran-
dom clusters. The enhancement G is related to the cluster absorption, Im (X ) =(1 /3)
Im(e; 40), as follows [17]: G =0[1+ X?/8?]im o(X).

In Fig. 1(a), we show the enhancement of the intensities of local fields, G = (|E:|%)/
[E®2, in silver cluster-cluster aggregates (for CCA, the fractal dimension D~ 1.78),
and nonfractal silver RGP and CPS, with D=d =3. As seen in the figure, the local-
field enhancements in fractal CCA are much larger than in non-fractal RGP and CPS. In
Fig. 1b, we also show an electron micrograph of a typical silver cluster—cluster
aggregate.

High local fields result in giant optical nonlinearities for optical processes in small-
particle composites. In particular, the Kerr nonlinear susceptibility can be very large in
particle aggregates. The Kerr polarizability has, in general, the form xo(%)y&(cu; W, 0, —w),
and determines nonlinear corrections (ox the field intensity) to the refractive index and
absorption. We consider the enhancement of the Kerr susceptibility due to the cluster-
ing of small particles embedded in a linear host material., Rough estimation for the en-
hancement can be found from the relation Gy ~ (EPEF)/[EOPE®* The enhancement
factor is, in general, complex: Gy =G} + iGy. If the original nonlinear susceptibility



252 V.M. Shalaev et al. | Physica A 241 (1997) 249-258

10007
100

10

""200 400 600 800 1000 1200
@ Wavelength, nm

Fig. 1. (a) Enhancement factors, G, of local field intensities plotted against A for particle aggregates: fractal
cluster—cluster aggregates, CCA (solid line), a random gas of particles (RGP) with the same as for CCA vol-
ume fraction of metal (short-dashed line), and a close-packed spheres, CPS (long-dashed line). (b) Electron
micrograph of a silver CCA.

of monomers composing a cluster, ijgmme,, {which can be associated with a monomer
itself or an adsorbant molecule on it) is real, then, the real part, Gg, and the imaginary
part, G¢, determine, respectively, the enhancement for the nonlinear refraction and for
the nonlinear correction to absorption of a particle aggregate.

We found that Gg is, on average, larger than Gy and can be approximated by
the formula G =~ C[X*/6°]Im a(X), where C is a constant and Imo(X) describes a
linear absorption by composite material. In Fig. 2, we present plots of G} (a) and
G¢ (b) for X <0 (the calculations for X >0 give similar results). The calculations
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Fig. 2. The enhancement of the Kerr optical susceptibility, 3, in CCA: (a) the real part, G, and (b) the

imaginary part, G.
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were made for fractal CCA. The solid line in Fig. 2(a) represents the calculations
based on the above formula, with the C chosen so that |G¢6*|=1 in its maxima at
X~ —4. As follows from the figure, both real and imaginary parts of the enhancement
are approximately proportional to the third power of the eigenmode quality factors,
¢*(~573). In the maxima, G ~ 673 (GY is several times smaller than Gy ). For metal
particles, in particular, the decay parameter varies from §=001 to 6=0.1 in the
infrared and visible parts of the spectrum; accordingly, the enhancement ranges from
|G| ~10% to |G|~ 10° in this spectral range. It also follows from Fig. 2 that the real
part Gy is negative for most of the resonant modes, i.e., a nonlinear correction to the
refractive index, An, is negative, if x,(,?gnomer>0, and positive, if X,(T?gmme,<0 (leading
to self-defocusing and self-focusing of the light beam, respectively). Interestingly, the
imaginary part, G¢/, changes its sign as a function of X very rapidly. Thus, a nonlinear
correction to the absorption coefficient (given by GY for real xf,?g,,ome,) is a very strong
function of the laser frequency and can be both positive and negative. The fact that the
nonlinear contribution to the absorption can have a different sign is not surprising: there
are nonlinear optical processes (associated with the Kerr-type nonlinearity) leading to
both positive and negative nonlinear contributions to absorption [18].

The enhancement for four-wave-mixing (FWM) process can be expressed in terms of
G according to the formula Gpww = |Gy |? ~ C2[X 8/6°1[Im (X )]2. Since Gpwi o 69,
the enhancement can be very large for small 6 (i.e., high quality factors). A million-
fold enhancement of degenerate FWM due to the clustering of initially isolated silver
particles in a colloidal solution was experimentally obtained in Ref. [4]. Our calcula-
tions give roughly the same enhancement. The experimentally obtained value for the
nonlinear susceptibility in silver fractal composites is 7*) ~ px 105 esu at 4 =532 nm.
Even for a very small Ag volume fraction used in the experiment, p~ 1073, this gives
7~ 107" esu (cf, a typical value of 2% in crystals is ~ 105 esu). Moreover, P
is a variable quantity and can be increased. We can assign the value 107° esu to the
nonlinear susceptibility, y3¢), of silver fractal clusters. Note that the obtained value
189 ~ 1075 esu for Ag fractals is three orders of magnitude larger than the y®) mea-
sured for non-aggregated Ag particles [8]. The huge nonlinearity, ¥3¢) ~ 10~ esu, with
a time of the nonlinear response lying in the ps-scale, makes metal fractal aggregates
very attractive for many potential applications.

We also found the enhancements associated with particle clustering for third-harmonic
generation (THG) and Raman scattering. It is shown that the susceptibility of a com-
posite material consisting of random small-particle clusters is proportional to q* for
Raman scattering and to ¢* for THG, where as above g~06~! is a quality factor for
the eigenmodes [1]. Our calculations for Raman scattering are in good agreement with
experiments [1].

We also studied optical properties of self-affine thin films. Such films are formed by
condensing atomic beams onto a low temperature substrate. To simulate a self-affine
surface, we used the restricted solid-on-solid (RSS) model which generates surfaces
with fractal dimension D=2.6 and well approximates cold-deposited metal (in partic-
ular, silver) films [19] (see Fig. 3(a)).
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Fig. 3. (a) The sclf-affine film obtained in the restricted solid-on-solid model (D=2.6). (b) Local field
distributions on the Ag self-affine film (X = — 3, s-polarization of light).

To calculate optical excitations of a self-affine thin film by an incident wave, we
used the “discrete-dipole approximation” (DDA) [20]. In the DDA, one replaces an
odd-shaped object (such as a rough thin film) by an array of point dipoles, with the
spacing between the dipoles small compared to the wavelength and sizes of spatial
inhomogeneities. Each dipole has an oscillating polarization in response to both an
incident wave and the electric fields due to all of the dipoles in the array. Assuming
that the size of a sample is much smaller than the wavelength (so that the quasi-
static approximation is valid), the self-consistent solutions for the dipole polarizations
(oscillating at frequency @) can be obtained as the solutions to a set of the coupled-
dipole equations (CDE).

We observed that the eigenmodes of a self-affine surface manifests strongly inho-
mogeneous spatial distributions characterized by various degree of localization. On a
metal self-affine film, the intensities in areas of high local fields (“hot” zones) exceed
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Fig. 4. The enhancements of Raman scattering on silver self-affine films, Gggs| and Ggs,1, for the light
polarized in the (x, y)-plane and normal to it, respectively.

the applied field intensity by approximately three orders of magnitude. The spatial lo-
cations of the “hot” zones are very strong functions of the frequency and polarization
of the incident light.

The field distribution on Ag self-affine film for X = — 3 (1~ 500) and s-polarized
light is shown in Fig. 3(b). As seen in the figure, the field in the hot zones is much
larger than the applied field, ) =1.

Our simulations also showed that a change of the wavelength or/and the polarization
strongly affects the field distribution. A similar strong dependence on frequency and
polarization of the applied field was obtained in experiments on near-field scanning
optical microscopy of localized optical modes in Ag fractal aggregates deposited onto
a surface [16].

We also studied enhanced Raman scattering from self-affine thin films. In Fig. 4, we
show the averaged enhancement of Raman scattering, for both small and large Stokes
shifts, on silver self-affine films generated in the RSS model. As seen in the figure, the
enhancement increases toward the long-wavelength part of the spectrum and reaches
very large values, ~ 107; this agrees well with experimental observations of SERS on
cold-deposited thin films [21].
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Fig. 5. (a) The spatial distributions for the local fields at the fundamental frequency, A=550nm, (bottom;
the field distribution is magnified by factor of 3) and for the Stokes fields, s = 600 nm, (top). (The applied
field is linearly polarized in the plane of the film.) (b) and (c) The contour-plots for the field distributions
shown on (a).

In Fig. 5, the field spatial distributions at the fundamental and Stokes frequencies are
shown. As seen in the figure, the distributions contain “hot” spots, where the fields are
very high. The spatial positions of these spots are strong functions of frequency and
polarization of the applied field [19]. Although the Stokes signal is proportional to the
local field at the fundamental frequency, w, the generated Stokes field, with frequency
ws, excites, in general, other eigenmodes. Hence the field spatial distributions produced
by the applied field and by the Raman signal can be different, as clearly seen in the
figure.

The observed picture is expected to be typical for various optical processes in
strongly disordered fractal systems, such as self-affine thin films. Specifically, hot spots
associated with fields at different frequencies and polarizations can be localized in spa-
tially separated nm-sized areas. These novel nano-optical effects can be obtained with
NSOM providing a sub-wavelength resolution.

We also calculated enhancement for second harmonic generation (SHG) from self-
affine silver films. The obtained enhancement is very high, ~ 10°.

To summarize, dipole—dipole interactions in fractals are not long-range (as they are in
conventional 3D media) and many of the collective eigenmodes are strongly localized
in different parts of a fractal object with various random structures. This ultimately
leads to strong spatial fluctuations of the fields. Optical nonlinearities emphasize the
role of fluctuations leading to giant enhancements.
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