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ABSTRACT

An analytical theory for extraordinary light transmittance through an optically thick metal film with sub-
wavelength holes is developed. It is shown that the film transmittance has sharp peaks that are due to the
Maxwell-Garnet resonances in the holes. At resonances electric and magnetic fields are dramatically enhanced in

the holes. These resonances are proposed to guide light over a metal film at 3 nanoscale.

1 Introduction

In this paper we consider light interaction with nanoholes punched in a metal film. We show that the
transmittance through a metal film with subwavelength holes (see F ig. 1) has sharp resonances corresponding to
the excitation of the localized surface waves that are specific for a metal film with holes and were not discussed

in the literature. We propose that nanoholes can guide light over the film at subwavelength scale.
The extraordinary optical transmittance (EOT) was first discovered and then intensively investigated in the

works (see also, for example,?). A number of various models (with most of them being numerical simulations)
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Figure 1: Holes of diameter D in a metal film with thickness h. Electric and magnetic fields are considered in the

reference planes placed at distances a from both sides of the film.

were suggested to explain the EOT.3"8 Despite the very sophisticated simulation codes used, the physical picture
of the EOT is not fully understood. In this paper, we use a new analytical approach referred to as the generalized
Ohms’ law (GOL).? This approach allows us to develop a physical model, which provides a simple qualitative

picture for the field distributions and the EQT.

2 GOL approximation

A new analytical approach to the calculation of optical properties of metal dielectric films, referred to as
the GOL approximation, has recently been proposed.® We restrict ourselves, for simplicity, to the case where
all the external fields are parallel to the plane of the film (normal incidence). It is supposed that a metal film,
with possible holes, voids, or other inhomogeneities, is placed in the zy plane so that z axis is perpendicular to
the film, which has thickness 4. The external electromagnetic wave is incident onto the z = —h/2 interface of
the film (front interface) and the transmitted wave is emitted from the z = h/2 interface (back interface). A

typical spatial scale D of the film defects is supposed to be much smaller than the wavelength ), i.e., D < X; for
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cylindrical holes, D is the cylinder diameter. (In some graphs below we also show results for D < A that should

be considered as an extrapolation.)

We consider first the electric and magnetic fields in close vicinity to the film. Namely, the electric and magnetic
fields are considered at the distance a in front of the film E, (r) = E(r,—h/2 — a), H, (r) = H(r,—-h/2 — a),
and at the distance a behind the film E;(r) = E(r,h/2 +a), Hy(r) = H(r,h/2 + a) (see Fig.1). All the
fields and currents are monochromatic fields, with the usual exp (—iwt) time dependence. The vector r = {z,y}
is a two-dimensional vector in the zy plane. In the case of laterally inhomogeneous films, the average electric
displacement current D(r) = ff}/j;fa D(r,z)dz = ff{j;'fa g(r, z) E(r, z) dz and the average magnetic induction
B(r) = ffﬁ;ﬁa B(r,z)dz = ff}/j;fa u(r,z)H(r, 2) dz are functions of the vector r. We assume hereafter, for
simplicity, that permittivity € is a scalar and magnetic permeability ;4 = 1. In the GOL approximation it is
supposed that the local electromagnetic field is a superposition of two plane waves propagating in +z and —z
directions. This superposition 6f two waves is, indeed, different in different regions of the film. We neglect
scattered and evanescent waves that propagate in the zy plane since their amplitudes proportional to (/\/D)Q.
Thus we use the two-wave approximation when electric E(r, z) and magnetic H(r, z) fields have their components

in the {z,y} plane only. Then, the Maxwell equations curl E(r,z) = ikB(r, z) and curl H(r, z) = —ikD(r, 2),

when integrated from z = —h/2 — a to z = h/2 + a (see Fig. 1), take the following form :
[nx (Eo(r) — Ex(r))] =ikB(r),  [nx (Ha(r) - Hi(r))] = —ikD(r), (1)
where k is the wavevector, n = {0,0, 1} is the unite vector normal to the plane of the film, and
Ei(r) =E(r,~h/2~a), H;i(r) =H(r,~h/2—a), Es(r)=E(r, h/2+ a), Hy(r)=H(r,h/2 +a)

are two-dimensional vectors defined in the {x,y} plane. The vectors E;(r), Eq(r), H,(r), and Hy(r) are curl-
free since z components of curl E(r,z) and curl H(r, z) are supposed to vanish in two-wave approximation. It is
convenient to introduce the fields E = E;+E; and H = H; +H, that are also curl-free: curl E(r) = 0, curlH(r) =
0. The conservation laws give divD(r) = 0 and div B(r) = 0. For simplicity, we consider films having the mirror
Symmetry with respect to reflection in the z = 0 plane. For such films, the displacement D(r) and magnetic

induction B(r) are symmetric functions of the fields E; (r), Ez(r) and Hi(r), Ha(r) correspondingly. Therefore,
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we can write that

D(r) = u(r)E(r)/k, B(r) = v(r)H(r)/k, (2) 4

where u(r) and v(r) are dimensionless “Ohmic” parameter. Equations (2) have the form which is typical g,

constitutive equations in the electrodynamics, but include parameters u and v that incorporate local geometry

the film.

To find the optical properties of the film, such as transmittance and reflectance, we average Egs. (1) over the -
film plane {z,y} and introduce the effective film parameters, u. and v., through usual relations ue (B) = (uE

and ve (H) = (vH) ; thus we obtain the “integral” Maxwell equations for the film in the following form:
[ ((B2) = (E1)] = ive (H) , [ ((Hp) — (Hy))] = —iu, (E), (3)

which relate the average fields from both sides of the film. We suppose that the wave enters the film from z < 0,
so that its amplitude is proportional to e?*?. The incident wave is partially reflected and partially transmitted
through the film. The electric field amplitude in the z < 0 half-space, away from the film, can be written as
E; (2) =ekz 4 re~*% where r is the reflection amplitude. Well behind the film, the electric component of the
electromagnetic wave acquires the form E’g.(z) = te’**, where ¢ is the transmission amplitude. In the planes
z=-h/2—-aand z = h/2 + q, the average electric field equals to (E;) and (E2), respectively (see Fig. 1). The
electric field in the wave is matched with the average fields in the planes z = —h/2~qgand z = h/2+a,ie.,
(E1) = By (=h/2 — a) = e~tk(h/2+a) | 1 ik(h/2+a) 41 (B2) = E3 (h/2+a) = tei*(h/2+a) The same matching
for the magnetic fields gives (H;) = e~ik(h/2+a) _ poik(h/24a) 4p 4 (Ha) = te**(h/2+a) i the planes z = —h/2-a
and z = h/2 + a, respectively. The substitution of these expressions for the fields (1), (E), (Hy), and (Hs)
in Egs. (3) gives two linear equations for ¢ and r. By solving these equations, we obtain the reflectance and

transmittance in the following form

2

, T = [t = | e

(7 + ue) (i + ve)

(Ue — ve)

= 17"2 - (Z + ue)(i +'Ue)

(4)

Thus, the effective Ohmic parameters ue and v, completely determine the optical properties of inhomogeneous

films.
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3 Transmittance of nanoholes

Now we apply the developed GOL formalism to find the transmittance of a metal film with subwavelength

holeg, We find the local electric E(r) and magnetic H(r) fields and then the effective parameters u. and v, for a
< ‘with holes from Egs. (2) and the definition te (E) = (uE), ve (H) = (vH). Since electric E(r) and magnetic
H(I‘) fields are curl-free (note also that divD(r) = 0 and div B(r) = 0) the quasistaic approximation can be
ﬁ;;d_4v9 Therefore, a number of efficient analyﬁcal and numerical methods, which were developed in quasistaic
percolation theory are in our disposal for calculation of the local fields and effective parameters.?:10 Here we
use the simplest approximation, namely, the Maxwell-Garnett (MG) approach that holds when the surface hole
concentration is small, p < 1. In the MG approach the dipole approximation can be used that leads to the

following expression for the electric field Ej, in a hole

_ 2Enqum,

Eh - 3
Um + Up

()

where um, and u, are the Ohmic parameters for the metal and holes, and the quantities E,, and E; are the
electric fields averaged over the metal and holes, respectively. From Eq. (5) we obtain the following expression

for the “electric” effective parameter Ue:

WE) _ (1—p)umEm + pup By, (6)
(B~ (1=p)Em+pEp

Ue

Repeating the same procedure we find the “magnetic” effective parameter Ve, which is given by Eq. (6), with the

following change u,,, — U, and up — vp,.

Now we substitute the parameters . and v in Eq. (4) and obtain the following expression for the transmittance

16p? ]um2 1+ uhvh)]2

T ) (1)
215
1 = uh—puh+(1+p)(I—iuh)um—i(l—p)ufn,
Yo = (4 um) Wmvh~1) 4D (6 — tum) (Um vr+1),
where we used the relation Um = —1/vp, that holds when the flm thickness A is much larger than the metal skin

depth ¢ , i.e., when k> d; we also take into account that surface concentration of the holes p <« 1. Hereafter we
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consider this case of a strong effect, which corresponds to most of experiments with subwavelength holes reporteq

so far.

The electric field E, in a hole raises formally up to infinity at u,, — —uy if there are no losses (see Eq. 5).
By substituting the u,, = —uyp, in Eq.(7), we obtain the following expression for the resonant transmittance
T = 4fum|/ |1+ uZ,|, which does not depend on the hole concentration p and, therefore, remains finite, evep
for p — 0. When the magnetic resonance takes place, i.e., vy, = —1/uy, = —uvp, the resonant transmittance alsg
remains finite at p — 0. Thus we conclude that the electric and magnetic MG resonances in the hoies can resuylt

in the extraordinary optical transmittance.

To calculate the transmittance, we find the Ohmic parameters U, Up, U, and v,. Parameters u,, and Upy,

we can obtain directly from solutions to the Maxwell equations in the GOL approximation:
Um = —cot(ak), v, = tan(ak), (8)

80 that um = —1/vy,. (see®). To obtain the hole parameters u;, and vp, we have to know the em field distribution
inside a hole. The inside field is a superposition of different eigenmodes for this subecritical waveguide. At the
hole entrance the internal field is similar to the plane wave, though its amplitude can be different significantly
from the amplitude of an incident wave. When we move deeper inside the hole, only the mode with the smallest
eigenvalue survives. To simplify further qualitative considerations, we assume that the internal field is a plane
wave near the entrance of the hole and it matches with the basic internal mode at the distance a from both ends
of the hole. We use for this matching the same distance a as we used before to match local fields with the incident

plane wave. As a result of such matching, we obtain

up = wvp=tan[(a+h/2)k], for h< 2a: 9)

ktan(2a k) — V&% — k2 tanh [(h/2 - a) VK% — k2]

k+ V&2 — k% tan(2ak) tanh [(h/2 - a) VK2 — = ’

_ Vr>—k%tan(2ak) + ktanh [(h/2 — a) ViZ — k2 _

o= vV&? —k? — ktan(2a k) tanh [(h/2 —a) VKE = k2]’ for h>2a; (10)

Up =

where k = 3.68/D is the eigenvalue for the basic mode in a cylindrical waveguide,!! Ch.91, and D is the diameter

of the hole.
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Consider first shallow holes with depth A < 2a. By substituting Egs. (8) and (9) in Eq.(7) and considering
the limit p < 1, we obtain the following simple expression for the transmittance

A; (k)
T (k)= Z A; (k) + (4a + h)? (k - kj)2

J

. 205w g P . dajmw
A~ = 2 4 ;= —_
o Ay (k) =4p Sm(4a+h)’ ks da+h 4a+hsm(4a+h)’ (11)

which is sum of the resonances located at k = k; as it is shown in Fig. 2.

0.25

D
3 5

Figure: 2 Transmittance through “shallow" holes (A < 2a); o/D = 0.6, h/D = 0.8, p = 0.1. The solid line is the

resonance approximation (Eq. 11); the points represent calculations with Eq. (7).
Transmittance T is almost periodical function of & for p < 1, though the peak width depends on k. Some maxima
can disappear when numerators A; (k;) in Eq. (11) vanish. The odd resonances in Eq.(11) correspond to the
maxima in the electric field in the holes, whereas the even resonances are due to the maxima in the magnetic field

in the holes, as shown in Fig. 3.
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Figure3: Electric (a) and magnetic (b) field in a hole for the system with the same parameters as in Fig. 2. The
incident field amplitude is set to be equal to one.

The spatial distribution of the fields near the resonance is presented in Fig.4
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Figure: 4 Spatial distribution of electric (a) and magnetic (b) fields near the MG resonance for the system with

the same parameters as in Fig.2; (a) kD = 0.992, (b) kD = 1.96.

which shows that fields are well localized in the holes. We name these resonances Localized Surface Plasmon-

Polaritons (LSPP).

For deep holes that depth h > 2a we obtain transmittance T (k), shown in Fig.5, by substituting Ohmic

parameters from Egs. (8) and (10) in Eq. (7).

Dk

Figure: 5 Transmittance through “deep" holes (h > 2a); a/D = 0.6, h/D =145, p=10.1.
We can see that the k behavior of the transmittance can be rather peculiar when the thickness of the film increases:

the peaks corresponding to maxima electric and magnetic fields can move and merge together.

For the considered lossless system, the electric and magnetic fields tend to infinity in the resonance. In any
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real metal film, the resonant fields acquire some finite values limited by losses. We take losses into account using

impedance boundary conditions!! Ch.87. Transmittance thus obtained for the square array of nanoholes in a

silver film is in qualitative agreement with the well-known experiments! as illustrated in Figs.6. Most maxima

in the transmittance are due to excitation of LSSP in the holes.
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Figure: 6 Extraordinary optical transmittance through a regular array of holes in two different silver films, a
free-standing silver film (a) and a silver film on a quartz substrate (b). The dashed lines represent experimental
data! (a) Apll. Phys. Lett 77 and (b) PRB 58. The solid lines show results of the theory. The parameters used

are as follows: a) a = 0.17 um, D = 0.28 um, h = 0.32 um, b = 0.75 pm, and b): a = 0.09 um, D = 0.15 um,

h =02 um, b=0.6 um, p=0.049.
In calculating transmittance presented in Fig. 6 we also take into account the usual, propagated surface plasmon-
polaritons that are excited when distance between holes coincides with their wavelength. This results in the
maximum at A ~ 0.6 um in Fig. 5a and small change in amplitude of the peak at A ~ 0.8 ym in Fig. 5b. Note, that
our theory does predict that the long wavelength peaks in the transmittance are not sensitive to the periodicity,
which corresponds to the experiments! show that the extraordinary transmittance can occur even for a set of
seven holes only. Finally, in recent near-field experiments® strong enhancement of the local field has been observed
for a single hole and a pair of holes; thus the local field enhancement, which is needed for the extraordinary

transmittance, does not require, in general, the periodicity.
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4 Light circuiting in nanoholes

Above, we considered the case when a metal film is irradiated homogeneously by a plane electromagnetic wave,

a) b)

Figure: 7 Nano-circuiting with metal-holes systems; a) line waveguide, first left hole is excited, &) fork waveguide,
first left hole is excited, ¢), d) - switch (center hole in top “T” is excited). Holes parameters: diameter: 0.15 pm,
film thickness: 0.2 wm, distance between the holes centers: 0.3 um. Wavelength of excitation light 0.78 um.
It is interesting to consider another possibility when only one of the holes is illuminated by light source. This

can be accomplished, for example, using a nanometer-size probe of near-field scanning optical microscope. At
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h

the resonance, electric (or/and magnetic) fields spread out from the illuminated hole toward other holes because
of interactions between the holes via plasmons. Such holes can be arranged into any desired structures that can
localize light and guide the propagation of the electromagnetic energy along the structures as it is shown in Fig. 7.
Thus in Figs. 7c and d we show how light circuiting depends on the polarization of the source. When electric field,
wﬁich excites the central hole, changes its polarization from parallel to stem of "T” (Fig.7c) to perpendicular
(Fig.7d) the light changes direction of its propagation at nanoscale. The discussed nanoengineered structures
can be used as integrated elements in various optoelectronic and photonic devices, including most sophisticated

ones, such as optical computers
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