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| INTRODUCTION

Gel’mukhanov ef al.}+® have theoretically predicted
.d experimentally detected a new physical phenome-
* n: light-induced drift (LID) of gases. The esseace of
-ID consists in the appearance of directed macroscopic
.stion of a gas during its interaction with a traveling
sectromagnetic wave that is at quasiresonance with
me transition of the particles from the ground state.
sere the presence in the system of an extraneous (buf-
sr) gas is essential. The appearance of the drift is due
.; the selective—with respect to the velocities—optical
.citation through the Doppler effect of the absorbing-
s particles and the fact that the particles in the ex-
red state and those in the unexcited state elastically
-sllide with the buffer-gas particles at different rates
,and v *' Under optimal conditions the LID velocity
-ustitutes an appreciable fraction of the characteristic
 qermal velocities. The direction of the drift coincides

sith, or is opposite to, the direction of propagation of
i e radiation, depending on the ratio of the rates v
ad v, and the on sign of the detuning of the rad1at1on
requency from the frequency of the corresponding tran-
: stion.

The occurrence of the LID of gases under conditions

i stationary excitation {SE), i.e., under the action of
; »atinuous radiation, are investigated in Refs. 1-6. At
e same time, the study of this interesting phenomenon
- ader conditions of pulsed periodic excitation (PPE) is
mportant, since the use of pulsed light sources allows
:s to significantly broaden the possibilities of its ex-
cerimental investigation and the region of its applica-
sons. The present paper is devoted to the theoretical
mnalysis of the indicated problem.

In Sec. 2 we derive general expressions for the vel-
<city distribution function and the mean drift velocity
" fthe absorbing gas under conditions of excitation by
! short light pulses. The analysis shows that, in the case
{fpulsed periodic radiation with a large off-duty factor
1={p7)"1>> 1 (7 is the pulse duration and v is the pulse
‘epetition rate), the LID velocity can be fairly high, al-
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The drift of gases under the action of short light pulses is theoretically investigated. The phenomenon is due
to the selective—with respect to the velocities—excitation of the particles and the faci that the particles in the
ground state and those in the excited state clastically collide with the buffer-gas particles at different rates.
The conditions under which the effect manifests itself most strongly are found, and it is shown that under
these conditions the drift velocity constitutes an appreciable fraction of the most probable thermal velocity of
the particles. The cases of dynamic and stochastic pulsed periodic excitation are analyzed. It is found that, in
the case of the dynamic excitation, the drift can be reversed by changing the radiation intensity, an effect
which has no analog in the continuous regime. The characteristics of the drift phenomenon are discussed in
the cases in which it occurs in molecular and atomic media. It is shown that the highest drift velocities can be
attained at moderate pulse repetition rates and radiation intensities.

though on the face of it the smallness parameter a™
should arise when we go over from SE to PPE. This is
due to the fact that the anisotropy induced by the field of
a short pulse in the velocity distributions for the parti-
cles at the energy levels exists during a time deter-
mined by the characteristic relaxation times v' and

u;‘ [u,, is the decay (quenching) rate of the excited state;
During this same time the velocity distribu-
tion function for all the absorbing particles is aniso-
tropic, an anisotropy which develops after the passage -
of the pulse as a result of the difference in the rates
v, and v, and manifests itself as a LID of the gas.
Thus, if the pulse repetition rate v is close to the rates
v,and v, the LID velocity under PPE conditions can
dlffer only insignificantly from the drift velocity in the
SE regime.

Section 3 is devoted to the analysis of the LID phe-
nomenacn under conditions of coherent excitation by
“rectangular” pulses with determinate field character-
istics. The most interesting characteristic here is the
possibility of reversing the drift by changing the field
intensity 7, or the pulse duration 7. This effect is due
to the following circumstances. In the case of coherent
excitation by a “rectangular” pulse the populations of
the energy levels of a particle oscillate with the Rabi
frequency.” This frequency is determined by both the
pulse-field intensity /, and the radiation-frequency de-
tuning (with allowance for the Doppler shift) relative to
the transition frequency. The latter circumstance
gives rise to an energy-level-population-oscillation-
phase difference between particles moving with differ-
ent velocities. Accordingly, depending on/; and T, dif-
ferent velocity-defined groups of particles are prefer-
entially excited, which leads to the dependence of the
direction of drift on the indicated characteristics of the
pulsed periodic radiation.

Section 4 is devoted to the investigation of the LID of
gases under the action of short pulses whose character-
istics undergo random fluctuations. The analogy be-
tween the effect occurring in the indicated regime and
the effect occurring in the SE regime is followed.
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In Sec. 5 we discuss the characteristics of the LID of
gases in the PPE regime in the cases of molecular and
atomic media. It is shown that significant drift veloci-
ties can be realized at moderate pulse repetition rates
and moderate radiation intensities.

2. GENERAL EXPRESSIONS

Let us consider the interaction of a gas of two-level

particles (one being the ground level) with a traveling
electromagnetic wave:

E(r, t)='/s{e(r, t) e~~~ "+g" (r, t) ~=¥],

Below we shall label the ground state of the particles by
the subscript n; the excited state, by m. Under the as-
sumption that the system contains a large quantity of
buffer gas, this interaction is described, when the
strong-collision model® is used, by the following sys-
tem of kinetic equations for the density matrix:
[8/3t+vV—1{@etkv) +T]pam (¥, 1, t) =iV e [p. (v, 1, £) —pm(v, £, 1)],
(B/Ot+v IV +vmtve) pa(V, 1, ) =v W (V) par(r, t)
~2Re(iVe "™ pan(v, 1, 1)], (2.1)
(B/at+HvT +v.) palv, 1, £y =v W (¥) pa(r, t)
+vipm(V, 2, t)+2 Re[iVe ™'pn(v, 1, 8)].

Here V= -£(r, )d_ /2K, d _, is the matrix element of the
dipole moment for the m-n transition, w, and I are the
frequency and the homogeneous halfwidth of this transi-
tion,

W (v)=(x"vo) " exp [~ (v/v,)’]

is the Maxwell velocity distribution, ¢, is the most
probable thermal velocity, and

pi(r, )= j.p;(v, rt)dv, j=m,n.

The symbols v, v,, and v, are explained above. The
collisions of the absorbing particles with each other is
neglected in view of the assumption that the relative
concentration of these particles is low. The system of
equations (2.1) allows us to investigate the LID effect
for gases in the field of pulsed periodic radiation. We
shall assume that the radiation is a train of identical
pulses of duration 7, following each other at the rate of
v, and that the field amplitude is equal to zero in the in-
tervals between the pulses. The medium is assumed to
be optically thin. Here we consider the case in which
the irradiated cell is located in a reservoir containing
the parent gas mixture, and the absorbing and buffer
gases can freely flow in and out of it through its open
ends. On account of the smallness of the relative con-
centration of the absorbing particles, we neglect the
deviation of the state of the buffer gas from the equilib-
rium state, and shall hereinafter be interested only in
the state of the absorbing gas in the cell.

Let the following conditions be fulfilled along with the
above-indicated ones:

Tyt

S T e S A TU/CES PP (2.2)

Here [ is the length of the cell and ¢ is the velocity of
light. The fulfillment of the conditions (2.2) implies
the following: 1) the gas has time to return to the equi-
librium state in the intervals between the pulses (the
possibility of the free flow of the gas through the open
cell ends, a possibility which precludes the appearance
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of a density gradient, has been taken into account)
2) the velocity distributions for the particles 3t ti{e 5
ergy levels after the passage through the cell of N2
radiation pulse are spatially homogeneous; 3) the'
laxation of the velocity distributions for the pmiéle{
the m and n states occurs largely in the intervals'b’e*:h
tween the pulses, the respective distribution functig,:
remaining spatially homogeneous during the reia;xairi.
1t is clear from the foregoing that, under the condit
in question, the excitation of the medium by each pul
and the subsequent relaxation occur in entirely the
same fashion. Therefore, the macroscopic gas veloe
u averaged over a long period of time is equal to the )
velocity averaged over the period v, Accordingly' to
compute the drift velocity u, it is sufficient to analyze
the processes accompanying the passage through the
medium of any one radiation pulse. Let us proceed
the analysis of this question.

Under the conditions in question the velocity distyi.
butions of the particles at the energy levels immedme_
ly after the passage through the cell of a radiation’pig'u,e
coincide with the corresponding distributions for the
particles at the inlet (r = 0) end of the cell. The Ia tez
can, if the rate at which the pulse-field-induced prp
cesses proceed is higher than the rates of the relagz.
tion processes (the criteria are indicated in Secs}‘fz’u
4), be found from the following system of equationg:™:

[2:0t—i(m.Fkv) . (v )= () e [pa (v 1) —pa (v, D],
(6100 paty, D ==2Re[iT{1) e~ *'pun(v. )],
(0:00) pa (V. 1) =2 Re [iV (D) e~ paniv. 1)]

(here V(f) = ~£(0,#)d__/2K) with the initial conditia

Pan(v. M) =0, pm(y, U)=0, pa(v. N=H1V).

The system of equations (2.3) is obtained from (2:3} bty
discarding the relaxation terms and the terms contain.
ing space derivatives. The initial conditions (2.4) cor-
respond to the equilibrium state of the gas. Evidently,
the solutions to the equations (2.3) depend essentially
on the form of the function V(t), which is determined by
the characteristics of the pulse field. In Secs. 3 and 4
we shall give the solutions corresponding to “rectangu.
lar” pulses with determinate and fluctuating field char-
acteristics. Now let us arbitrarily denote the required
solutions by p, (v, 7) and p{v,7), and proceed to the in-
vestigation of the relaxation processes.

The relaxation of the distributions p (v, T) and p{v,1
realized immediately after the passage of a field pulse
through the cell is described by the following system of
equations:

(B18tHvmt v ) P (¥, 1) =vu W (¥) pm (1),
(313142 pu (¥, 1) =va W (¥} pa (8) TP (W, 1), (25

ps(t) = 5 pi(v,}dv, j=m,n

with the initial conditions o
pa(v, 0)=pa(¥, 7}, pa(¥, 0)=pa(¥, 7). 38

The system (2.5) is obtained from (2.1) by neglecting-
the field terms [this also allows us to exclude the fird
of the equations (2.1) from the analysis] and the terms
containing space derivatives. The solutions to the eg‘_“
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P

;

(jons (2.5) have the form

p_(v, t)=Y(v, 1) exp {—-(v.+‘vq)t} +pm(T) W(v) exp (—Vu")v
vaY (v, 1) —Vm
p.(m‘)-ﬁ[ exp{—(v.+v,)z}—lvq_"_

Xexp (=) | +W () [1=pa(oxp(-3,0)], (2.7)

Y(v. ¥ =pu (D) =pa (W (¥), pu(r)= [palv, 1)dv.
rhe distribution functions p(v,#) can each be split up
.ato tWO parts: one isotropic (i.e., Maxwellian), and the
xher anisotropic (i.e., selective) and proportional to
2 7). The selective part of the distribution function
")“,\v’{) “dies out” over a period of time equal to (v,
.v)"t. This is due to the fact that its relaxation is
caused both by the “mixing” of the velocities as a re-
cuit of the elastic collisions and by the transitions into
:he state n. Then the velocity-integrated population of
.re level w relaxes with the time constant v}!. The in-~
;erpretation of the expression for p(v,!) is complicated
ny the fact that for the level n, besides the relaxation
J;—ocesses that occur at the level itself, the arrival
¢rom the level n is important.

From (2.7) we find the velocity distribution function
anty=p v, B+ plv, 1) for all the absorbing particles:

Va—V,

() =Wiv)+ -.v Y (v, 1) [exp{— (vatv)) t} —exp(—vat)].(2.8)
q

Va—Vm—

~he deviation of the distribution (2.8) from Maxwellian

.s due to the inequality of the rates v and v, and the

selective—with respect to the velocities—optical excita-

r:on of the particles. As noted above, the drift velocity

jveraged over a long period of time is equal to the drift

selocity averaged over the time v7!;

u=v .[ dt y/'(v, t)vdv. (2.9)

L ]

Thus, from {(2.8) and (2.9), allowing for the fact that

v, vy, we find
Va—Vm

(2.10)

u=

j'vp.,(v, T)dv.

Va  Vatyg

From (2.10) we can (allowing for the fact that in real
situations v ~v ) easily see that the drift velocity at-
-ains its maximum values when !(u"— v.)/v,~1 and the
salues of the parameters v, and v, (allowed by the con-

¢ ditlon v<< v ,v ) are as close as possible to v. This is

iue to the fact that, as follows from (2.8), the nonequi-
<brium character of the velocity distribution function
Or the particles is most strongly pronounced in the in-
iicated case, and the relaxation time of the function
wonstitutes a significant fraction of the pulse repetition
nme.

Let us write out for comparison the expression giving
the drift velocity under SE conditions®:

Va TV (2.11)

usl=

.“ vpm{Vv)dv.

dere p (v) is the velocity distribution function for the
sarticles in the state m in the SE regime. It is clear
‘rom a comparison of (2.10) and (2.11) that, when the
snditions (2.2) are fulfilled, the smallness parameter
3 the PPE regime is the factor (v, + v )™, and not the
“2tiprocal off-duty factor a™ = p7 for the pulsed period-

33 Sov. Phys. JETP 55(3}, March 1982

ic radiation. Further, within the framework of (2.2)
Uy, + u')" > vT, and the values of (v + v )™ ~107" are
admissible when the parameter a™ is arbitrarily small.
Thus, if

l va-(v, t)dv ' ~ l J'vp..(v)dv l .

then the situation can obtain in which [u]~107u,l,
which is a substantial quantity, since |u,| under opti-
mal conditions attains values of (107%-107")y,. The
validity of this estimate for ju| will be confirmed be-
low.

Let us note that the obtained results have a general
character, and do not depend on the specific character-
istics of the pulses. ’

3. DYNAMIC EXCITATION
1. General relations

Let us consider the case in which the amplitude, the
carrier frequency, and the initial phase of the electric
field of the pulse are constant. Then the system (2.3)
with the initial conditions (2.4) can be reduced to a
third-order equation for the population difference

n(v, t) =pm(Vv, t) —pa(v, )

between the states s and n:

'h(‘.‘ ) +wa (v, t)=0, Of'= (4] VII+QIZ)'IJ’ (3.1)
A(v,t)= 0nf;t',t) . |VI*=const, Q' =Q~—z, Q=w—w, z=kv
with the initial conditions
RV, 0)=—W(v), #(v,0=0, #(v,0)=4|V|]*W(v) (3.2)

(Ref. 9). For = 7 the solution to Eq. (3.1) with the ini-
tial conditions (3.2) has the form

4lvi

7
wa"?

(3.3)

A (v, ) =n(v, 1) =W () [ (1=cos ©a’1) ]

The expression (3.3) is the Rabi solution (see, for ex-
ample, Ref. 7), which characterizes the dynamical
variation of the population difference under the action of
the field, and which takes account of the thermal motion
of the particles. According to (3.3), the rate of radia-
tion-induced transitions is determined by the quantity
w,’. Thus, the requirement, formulated in Sec. 2, that
the field-induced processes predominate over the re-
laxation processes has in the present case the form

u)k'»\'q.\',, I' for |I{€Io=kv,.r

Let us note that the solution (3.3) describes adequately
the real situation only when the pulse field is switched
on or off instantaneously.!®

Using (3.3), we find the following expressions for
p.v,7) and p (v, )
2VIEW (v)

2
R

(1=cos 0z'%), pa(¥, T)=W(¥)—pal(v, 7). (3.4)

pn(v, 1) =
Here we have allowed for the fact that p_(v,7)+ p{v,7)
= W(v), as follows from (2.3) and (2.4). The formulas
(3.4) reflect the fact that the populations of the states
m and n of each particle oscillate under the action of
the pulse field with amplitude 2| V13/w,’'? and frequency
w,’ that depend on the component v, of the velocity v of
the particle along the wave vector k of the radiation.
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Connected with this are two factors that make the par-
ticle excitation selective with respect to the velocity
components v,. The oscillation amplitude of the popula-
tion of the excited state is greatest and equal to § in the
case of particles for which ’=0, i.e., for which v, is
such that the corresponding Doppler shift kv, compen-
sates for the detuning Q. Thus, the selectivity factor
connected with the dependence on v, of the amplitude of
the Rabi oscillations imposes a tendency toward pre-
ferential excitation of the “resonance” particles, and is
respoasible for the definite similarity that exists be-
tween the LID of gases in the dynamic PPE regime and
the corresponding phenomenon occurring in the SE re-
gime. The dependence of the frequency wy’ on v, pro-
duces a tendency toward preferential excitation of the
particles for which v, is such that wy/7=(1+ 247 (a
are integers). This selectivity factor does not have an
analog in the SE regime, and gives rise to a number of
specific features that characterize the occurrence of
the LID of gases under conditions of dynamic PPE. The
role played by the two indicated factors in the appear-
ance of the drift motion of the gas will be analyzed be-
low.

Combining (3.4) and (2.10), we find for the drift vel-
ocity u and its component » along the wave vector the
following expression:

k k 21V, '\7 e='*/=" (| —cos wa' 1) T dz

U= U= —

k k

’

akz,? Wy

" (3.5)

Va=Vm v

B=

Ve Vmtyg

It therefore follows that the drift velocity and the wave
vector of the radiation are collinear, and that no drift
occurs when © = 0, which indicates that the particle ex-
citation is symmetric about the center of the Maxwelli-
an distribution.

2. The drift velocity for smal! and large 7

In the case of short pulse lengths (i.e., for wy'T«<1
when |x1< x,) we find from (3.5) that

ua=|V{*BQz.t'v./12. (3.6)

In the present case the drift velocity is small (i.e., ||
<« y,) even for optimal 3 [let us recall that the conditions
(2.2) admit of values of | 81~10"']. This is due to the
fact that, because of the condition wp'T<«< 1 (I1x1sSx,),
only a small fraction of the particles undergo, as fol-
lows from (3.4), the transition into the excited state un-
der the action of the pulse field. The drift is parallel
or opposite to the direction of propagation of the radia-
tion, depending on the sign of (v,- v}, and has the di-
rection as the drift that occurs under the same condi-
tions [the same sign of the combination (v, - v )2} in
the SE regime.® Analysis of (3.4) shows that in the case
of short T the selectivity factor connected with the de-
pendence on v, of the Rabi-oscillation amplitude pre-
dominates, which leads to the indicated analogy with the
SE regime.

In the other limiting case of long 7 (the criteria are
given below) that part of the integrand in the formula
{3.5) which is proportional to the factor cosz/'r isa
rapidly oscillating function of the integration variable

AA Crir Divvre IETD ERITN Mareh 1GR9

x, and therefore makes a small contribution to the Iy
tegral. By neglecting this small contribution, we ¢g
reduce the formula (3.5) to the form

*u, . 2 ¢ .
=B el (a), W= [t ] @
Here W(z) is the probability function of the complex
variable!!

?=Qfz,, 2"=2|V]/z:

2= 2'+iz”,

Let us estimate the 7 values necessary for the es.
tablishment of the regime (3.7) for different relationg
among the parameters x,, Q, and |Vi. In the case i
which |R|s x, and | Vi<« x, the dominant contribution to
the integral in the Iormula (3.5) is made by the x domgaj,
where the factor |V{?/ w2 which represents a Lorent,
contour with center at the point x =  and halfwidth
2| VI, is significantly different from zero. In this cag,e
the variation scale of the r-independent part of the ip.
tegrand is equal to | V{. It is accordingly clear that the
expression (3.5) assumes the form {3.7) if the parame.
ter coswy'T undergoes in the indicated region oscilly.
tions whose scale is very small in comparison with 1.
The corresponding criterion, as is easy to verify, hag
the form .y
[Vir>t. ! (38
In all the other cases the region thal makes the don;in.
ant contribution to the integral and the variation scale
of the 7-independent part of the integrand is deterﬁfned
by the Gaussian factor exp -(_\(:‘xo)2 . Arguments"éiﬁi;
ilar to those presented above lead, for IQ1sx, and {¥}
Z x4, to the criterion

21V [ — (4] V]2 o>, Py eX

and, for Q! x, and arbitrary values of | V1, to'the
criterion 5

1Qlze/oa®t,  on= (4] V]HRY)™ (3.0

Thus, in the case of pulse lengths 7 that are long {in the
sense of (3.8)-(3.10)], but satisfy the conditions (2.2},
the drift velocity does not depend on-7, and is described
by the formula (3.7). Analysis of the factor
2" Re[zW(2)] with the use of the tables of Ref. 11:show
that in magnitude this factor attains its maximom
values, which are close to 0.1, when [2'|=2"= 1. Thus,
when | 81~107, and the indicated optimal conditions ar¢
satisfied, the drift velocity attains values lul~ 107%,,
which confirms the estimate obtained in Sec. 2. It fol-
lows from (3.7) that the direction of the drift is deter-
mined, as in the case of small 7, by the sign of the
combination (v - v,_)Q, and has the same direction 23
the drift that occurs in the SE regime.

It can be seen from (3.4) that, for large 7, the osclt-
lation phases of the populations of the excited states o
particles with arbitrarily close v, values may differ
significantly from each other. It is precisely this cir-
cumstance that is manifested in the occurrence of the
very-small-scaled oscillations of the r-dependent part
of the integrand in the formula {3.5) as a function Q_f_x-
The selectivity factor connected with the dependence of
wy’ on v, accordingly imposes a tendency toward eqﬁi-
probable excitation of the particles with positive
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ogative ' values, and does not guarantee the excita-
oﬂ asymmetry necessary for the appearance of LID
‘,‘ee the formula (2.10)]. Thus, in the case of large 7
: ne drift motion owes its appearance only to the selec-
ity factor connected with the dependence of the Rabi-
iy cluatxon amplitude v,. As a result, the LID occur-
g in the dynamic PPE regime in the case of large 7
d the LID occurring in the SE regime bear a similar-
1o each other that extends to the formulas describ-
s’the drift velocities [see the formula (3.7) in the
resent paper and the formula (3.1) in Ref. 6).

Let us proceed to the analysis of those cases in which
e dependence of the Rabi {requency on the particle-
-elocity component along the radiation wave vector can
sy a0 important role.

The drift velocity in the case of large detunings or
‘ﬂong fie'ds

In the case of large detunings (i.e., for |Q|>»x,) or
arong fields (1 V1> x;) the expression (3.4) for p (v, 7)
1 the region fxi=x, can be represented in the form

21V (v)
av =Ty sy’ {-cos[wat(L-2gy +py7) 1},
Qz, ! 40 2| Vitzy? z (3.11)
(.IJA @R Wa g Z,

-t us note that the representation (3.11) is valid only
saen the conditions

(VI Q] riea’ <, IVizdtos< (3.12)

shich indicate the smallness of the “advance” of the
wpulation oscillation phase as a result of the presence
{the terms of higher order in v than the quadratic
+rm, are satisfied.

it follows from (3.11) that, under the conditions in
westion, the Rabi-oscillation amplitude depends weakly
athe velocity component . Therefore, it is a priori
-ear that the selectivity, connected with this depend-
sace, of the particle excitation is insufficient for the
wpearance of high-velocity drift. The Rabi-oscillation
:nase for sufficiently large values of the parameter
.;7 depends essentially on r,. This dependence, as
will be seen below, guarantees a high excitation selec-
avity, and results in a strong manifestation of the LID
sffect.

Combining (3.11) and (2.10),
2AV133v, . .
i-—.,—ﬁu-j. e vy dy{4gqy— (1+4qy—sy*) cos[wat{1—2qy+py?) 1}.

ntox” I
(3.13)
Let us consider in greater detail the case of large de-
unings in arbitrary fields. Under these conditions we
; :an neglect in (3.11) the terms quadratic in y in com-
:arison with the linear terms, and require in addition
at

AT ¢ A ML e e

we find that

AT S (3.14)
1 athis approximation, it follows from (3.13) that
3 21 VI*Qz,Bv, 0T Qr,t\?
u _mﬁ‘ [1— D ;m(mkt)exp{~( Son ) }
(3.15)

+D, ( S;,I:; ) cos(mnt)exp{_— (E-Q:—;:—)z}] .

5 Sov. Phys. JETP 55(3), March 1982
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Here D,{a) is a parabolic cylinder function of the second
order.'” The absolute values of this function do not ex-
ceed 1.2, and are exponentially small at large values of
the argument; D,(0) = —1. The formula (3.15) assumes
in the case of small 7 (w,T<« 1) the form (3.6) and in the
case large 7 (1Q1x,7/w,> 1) the form (3.7) with allow-
ance for the fact that 1z’|> 1. Thus, if the condition
[Qlx,7/wy> 1 can be realized within the framework of
the condition (3.14) (and they are, generally speaking,
not inconsistent), the expression (3.15) is valid for ar-
bitrary values of 7, including the values in the region
[ViZx*r/wg*2 1. The first term in the square brackets
in the formula (3.15) is connected with the dependence
of the oscillation amplitude of the populations of the ex-
cited states of the particles on the velocity component
vy [see (3.11)]; the second, with the dependence on v,
of the frequency of these oscillations; and the third,
with the “interference” of these dependences. The con-
tributions to the magnitude of the drift velocity that
correspond to the first and third terms are much smali-’
er in magnitude than v, in virtue of the smallness of
the factor x,/w,. In absolute value, the second term
attains its maximum values, which are approximately
equal to wp?/(2e)Y?|Q1x,, when 7=2Y2w./|Qlx,. Under
these conditions, for | Viz [Q| and the optimal |8} val-
ues ~107!, the contribution corresponding to this term
can, in absolute value, be of the order of 107%y,. Thus,
the drift velocity can be comparable to the character-
istic thermal velocities, and only insignificantly differ
from the maximum drift velocities attainable in the SE
regime.

The direction of the drift in the present case is de-
termined not only by the sign of the combination (v,
-~ v,)8, as under SE conditions and in the cases con-
sidered above, but also by the factor wy,7. From the
formula (3.15) it follows, in particular, that, for w,r
>1 and [Qlx,7/wgs 1, the drift can be reversed by
changing the pulse-field intensity I, = clE|*/81x|V|?
or the pulse length 7. This characteristic is due to the
following circumstances. From (3.11) it follows that,
for |Q{x,7/wg~1, the difference between the phases of
the oscillations of the excited-state populations for par-

ticles the components v, of whose velocities differ byran .. .

amount of the order of v, can attain values close to 7.
At the same time, in the case of particles the v, values
for which differ by an amount significantly smaller than
vy, this phase difference is insignificant. Therefore,
the scale of the selectivity of the particle excitation
with respect to the velocity components v, is equal in
this case to r,. From this and the fact that the Rabi
oscillation amplitude depends weakly on v, when |Q|

> x, [see (3.11)], it is clear that there exist values of 7
(depending on | V}? and Q%) at which the particles with
positive or negative 1, values in the region lu,ls v,

are significantly more strongly excited. Evidently, to
these two situations correspond the opposite directions
of the mean excited-particle velocity

u,< j‘vp,,.(v, t)dv,
and, consequently, the opposite directions of the drift.

For {Q1x,7/wa <1 or |Q|x,7/wg> 1, the scale of the
selectivity, connected with the dependence of w;' on iy,
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of the particle excitation with respect to v, turns out to
be much greater or much smaller than y,. In either
case the corresponding selectivity factor plays a lesser
role, which is manifested in the form of the realization
of the regime (3.6) (when w,7<« 1) or the regime (3.7).
The origin of the optimal condition |Q|x,7/w,~1is
accordingly clear.

The elucidated characteristics of the LID phenomenon
are illustrated in Fig. 1, which was obtained through a
computer analysis of the formula (3.5) under conditions
close to the case |2|>x,. It can be seen from the
graph that in the case under consideration the velocity
u attains its maximum—in magnitude—value, which is
equal to —-1.31x 107y, at 7= 2.5¢,™ (Qx,7/w,= 1.8).
For 7 >7.8x,™ (Qx,7/w,>5.6) the drift velocity u does
not depend on 7, and is equal to -2.5x 107y,

Let us turn to the analysis of the case of strong
fields (i.e., the case in which | V|>x,) and arbitrary
values of the detuning . Under these conditions the
terms quadratic in y in (3.11) may be of the same order
of magnitude as, or even greater than, the linear
terms. Let us, in view of this, take into account the
dependence of the Rabi-oscillation frequency on v,, in-
cluding the quadratic term. Then, neglecting the weak
dependence on v, of the amplitude of these oscillations,
we find from (3.13) the following expression:

_ 21Vi%v, Qexpl- Q‘/(1+P*)]
wa* (14-P2)"

% (cos @—P sin @) +cos (w7) (sin g+P cos §) 1;
Q@*P
TP
The factors depending on the quantities P and @ in
(3.16) are, on account of the conditions g« 1 and p< 1,
slower functions of the argument wg7 than sinw,T and
cosw,T. Thus, the expression (3.16) describes an os-
cillatory type of rapid variation, slowly modulated in
amplitude, of the drift velocity as the factor w,T is
varied. It also demonstrates the possibility of revers-
ing the drift at a fixed value of the factor (v, - v )Q.

in(wet)

(3.16)

Qmqwgt, P=post, @= —12-arctgP —

The maximum absolute values of 4 are attained in the
region |1Qi~1, Ps1, | V|2 |Q}| (for this to happen it is
necessary that |12 x,). Under these conditions, and
for the optimal | B! values ~107, lu| can be of the or-
der of 107%y,. Notice that for |Q|> x, the formula
(3.16) goes over into (3.15) if only the second term in
the square brackets in the latter formula is taken into
account. If P> Q] {1Q1«x,), the drift velocity is low.
This is due to the predominance under the present con-
ditions of the quadratic “scatter” of the population-os-

Iﬂz /u,

sy A

NPre==

~1J

-FIG. 1. Dependence of the drift-velocity component « along the
radiation wave vector on the pulse duration T under conditions
when B=-10"1 and 2]V]| = @ = 5¢.
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cillation phases for particles with different v, va.lues,
which leads to the rapid reduction of the excitation-ge.
lectivity scale. Analysis shows that the formula (3, 16)
is applicable in the region where the »x-variation ampli.
tude, given by the formula, significantly exceeds the
modulus of the T-independent contribution to the drig
velocity in (3.13).

The case |Q]~1Vi~x,, which has not been analyzeq
lends itself at arbitrary 7 to only a numerical treat-
ment. Figure 2 shows a plot, obtained through a com.-
puter analysis of the formula (3.5), of # Vs 7 under ¢op_
ditions when @ = 2| V| = x,/2 and = —-107. The plot ig
markedly asymmetric about the # = 0 axis. This is due
to the fact that the conditions under consideration are
the optimal conditions for the manifestation of the ex.
citation-selectivity factor stemming from the depend-
ence of the Rabi-oscillation amplitude on v,. The ten.
dency toward the assumption at high 7 values of T-in-
dependent values is clearly visible.

4. STOCHASTIC EXCITATION

In the preceding section the analysis was based on the
assumption that the characteristics of the radiation
pulses are completely defined. In this section we con-
sider the occurrence of the LID of gases under the ac-
tion of pulses whose characteristics undergo random
fluctuations. Here we shall assume that the field auto-
correlation time 7, is significantly shorter than the
pulse duration 7.

The system of equations (2.3) can be reduced to an
integro-differential equation for the difference between
the populations of the states m and » (see, for example,
Ref. 6): '

(v, ) Y'=—4Re j’ (G (1—2') G () n{p, t—t')deVdl’, (4.1

Here G(#) = -¢(0,#)d_,/2%, where g(0,?) is a random
function of the time, and the symbol {.. .) denotes aver-
aging over f greater than 7_. Let us, following Bursh-
tein,'? “uncouple” the variables:

(G () G(t)n (v, 1—t)>—=<G (t—t) G () ><n(v, t—¢').

The “uncoupling” procedure is justified if no transitions
occur between the states m and n of the particles during
the period 7, which is assumed. In this approximatior
we can, by allowmg for the fact that 7« 7, reduce Eq.
(4.1) for ¢ < 7 to the form

(v, )Y =—4lVINn(, z))Bej @ (') e . (4.2
[']
X,
10 20 ki 47
q T i T |
-0
ES
~
=7
<
-15

FIG. 2. Dependence of the drift-velocity component 31°n€l ¢
radiation-wave vector on the pulse duration 7 under counditles
when B=-10"1 and 2|{V| = & = x4/2.
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5 the field autocorrelation function, which is connected
gith the radiation line shape g(w’ - w) by the relation

J. glo'—w)dao’ =1,

b
’ — ’ "‘(""'"'d ’
g(m —-w) —- Re.’ O(t')e t’,

gFrom here we finally find that
(v, Y =—Aln(v, 1)), A=4a]V|*g(Q). (4.3)

The quantity A has the meaning of a transition probabil-
ity per unit time. Thus, the requirement, formulated
n Sec- 2, that the field-induced processes predominate
over the relaxation processes is met in the present

case when

A»v, vi T for [z]=z.
The solution to Eq. (4.3) has the form
(r(v, t)>=n(v, 0)e~4,

¥ith allowance for the initial conditions (2.4), we find
e following expressions for p (v, 7) and p (v, 7):

(¥ V=W F) {(1—e=4)/2,  pulv, =W ¥) —pa(y, 1). (4.4)

1 is easy to see from the expressions (4.4) that the par-
icles that (with allowance for the Doppler effect) are at
-esonance with the most intense spectral component of
e radiation are the ones that are mostly excited. This
pdicates excitation selectivity with respect to the vel-
xity components v, in the present case. A similar sit-
sation obtains in the case of stationary particle excita-
yon by a nonmonochromatic field.® This circumstance
nakes the LID effect occurring under conditions of sto-
chastic PPE and the effect in the SE regime essentially
similar (see below).

Combining (4.4) and {2.10), we find for the drift vel-
xity component along the wave vector the following ex-
pression:

B=- zi"i,oz_f_exp [- (%) ~as] e (4.5)

for spectra that are symmetric about the carrier fre-
pency w, the relation g{a) = g{-a) is valid. Taking this
ato account, and using {4.5), we can easily show that in
his case # changes sign when the sign of  is changed.
Thus, it is clear that, as in the SE regime, the direc-
1on of the drift is determined by the sign of the com-
sination v, - v ).

If the radiation spectrum g{w’ - w) has a smooth en-
selope, and its halfwidth 6 is significantly greater than
‘3¢ halfwidth x, of the Doppler contour, then it follows
‘rom (4.5) that up to terms of the order of (x,/6)*

u=—3n]V|*(dg(Q)/dQ) 1z, exp {—4n| V|*g (Q) 1} v, - (4.8)
- aderiving the formula (4.6) we assumed that
in V|z.tdg (Q)/dQ<.

The derivative dg(R)/dQ attains its maximum absolute
- ‘dues at {Q1~6. In this case the estimates g{Q) ~ 8™
- id |dg(Q)/d1~ 672 are valid, and, consequently,

ul ~l3] fV(Is:.r.,r exp{ —-4:1‘[3Vl’1: }Ua. (4.7)
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From (4.7) and the fact that 1Qi~4, it is clear that,
from the point of view of the maximization of |ui, the
optimum conditions are

4a|V[e/o~1, [Q]~E~z. (4.8)

The first condition in (4.8) indicates that only the par-
ticles that are at resonance with the most intense spec-
tral components lying in the interval of the order of the
width of the radiation spectrum are efficiently excited.
It is similar in meaning to the condition for appreciable
saturation of the transition in the SE case when the
field-induced broadening, which lowers the excitation
selectivity, is not too large. The second condition in
(4.8), which is entirely analogous to the condition that
obtains in the SE regime, together with the first condi-
tions, implies that the process of strong selective ex-
citation with respect to v, involves a significant fraction
of the particles.

In the case of a “rectangular” spectrum of arbitrary
width 26, i.e., for

1/28 — -
g(m’—m):{ /0 for —8o —agd

,

for other ',

we find from (4.5) that

e B - (220 o2
(4.9)

Ju| attains its maximum value |8]v,/47Y 2 under the
conditions {V|27/6—~, || =§—~«. But when
271VI1*7/6~1 and |Q|~6~x, the modulus of the drift
velocity has the same order of magnitude.

5. APPLICATION TO MOLECULAR AND ATOMIC
SYSTEMS

- For many reasons® it is important to obtain streams
of drifting molecules in an infrared-radiation field. In
this case the drift is accompanied by vibrational and ro-
tational relaxation processes. These processes cannot,
generally speaking, be described in the two-level ap-
proximation. But if, besides (2.2) (v, is the quenching
rate of the excited vibrational state m), the conditions

1< 15,(j=m, n) <v™!

(T 1is the characteristic time of the rotational relaxa-
tior{ in thej -th vibrational state) are satisfied, we need
not take the rotational relaxation into account explicitly
in the kinetic equations. All the expressions found
above for the drift velocity then remain valid to within
introduction in the right-hand sides of the factor %,
~107% -~ 107, which is the Boltzmann weight of the reso-
nant rotational sublevel of the lower vibrational state n.
This is due to the fact that the field of each pulse inter-
acts not with all the molecules, but with only those
whose rotational state satisfies the resonance condi-
tions.

For allowed electronic transitions in atoms the decay
of the excited state is due largely to spontaneous emis-
sion. The decay rate is usually a quantity of the order
of 10 MHz. In this case pulse repetition rates v~1
MHz are necessary for the attainment of high drift vel-
ocities. If by chance the LID process occurs with the
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FIG. 3. The level m s metastable; v;, and v;, are respec-
tively the spontaneous ! —n and I - m transition rates. The
pulsed periodic radiation is at quasiresonance with the I—n
transition. The level m is populated selectively with respect
to the velocities as a result of spontaneous I~ m transitions.

participation of a metastable atomic state (see Fig. 3),
then lower v values are sufficient for its strong man-
ifestation. In this case, if instead of the first of the
conditions (2.2) we require that

T<Tlu—ly Tlu-|. rl-_“(\'q_'. vyl

(T,, is the homogeneous width of the ] =~ » transition and
v, is the decay rate of the state m), then all the formu-
las obtained above for v remain valid to within the in-
troduction in the right members of the factor v,,/(7,,
+ 7,)s 1 and the replacement of the subscript m by [ in
the definitions of V and Q.

Let us estimate the pulse-field intensities /; and the
mean pulsed-periodic-pump intensities

I=tvl,=tvch*| V]|¥/21]d.. 12, (5.1)

necessary for the realization of the effects under dis-
cussion. As shown above, for the drift velocities ob-
tained to be high, the pulse repetition rate v should
(with allowance made for the assumption that v« v, v)
be as close as possible to the relaxation rates v and
v,. The frequencies v, are bounded from below by the
requirement that the particle mean free path [, be short
compared to the cell dimensions. Values of [;~1 cm
correspond to v, ~ 10* Hz. The order of magnitude of
the decay rate v can be the same for molecules® and
atoms (metastable states).!* Thus, the optimal values
of 18! (~10™) can be attained with v~1 kHz. Let us use
these values of v to make estimates. Let us note that,
as follows from (5.1), the possibility of the use of mod-
erate pulse-repetion rates allows us to reduce the
mean radiation intensity. At the same time this possi-
bility is in itself an attractive one.

It can be seen from Fig. 2 that in the case of dynamic
PPE with 2| V| = Q= x,/2 the maximum values of the
drift velocity are realized if 7=5x,™. Under these con-
ditions we obtain from (5.1) the estimates /;~1 W/ cm?
and 1 ~10" W/cm? for molecular gases and [, ~10® W/
em? and 7~107* W/cm? for atomic gases. These esti-
mates were obtained with the use of the following char-
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acteristic parameter values: x,~10 MHz, 1d,.1~0.1p
for molecules and x,~1 GHz, 1d_,/~1 D for atoms. 1"
the case of stochastic excitation under the optimal copo™
ditions |91~ 6~x, the mean intensities [ should be of t,he;
same order of magnitude as in the preceding case, byt
the pulse-field intensities /, can be somewhat lower,
Under the conditions corresponding to Fig. 1, similap
estimates yield I, ~10? W/cm?, 1~10" W/cm? for mol.
ecules and [, ~ 10‘ W/ em?, I~ 10" W/cm? for atoms.
Thus, the requisite radiatlon intensities are entirely
attainable with the use of existing infrared and optica}
lasers.
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1) The quasiresonant, transfer of excitation by the absorbing
particles to the buffer particles can also give rise to the
LID phenomenon.®
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