Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements

Harsha Reddy1, Kun Wang2, Zhaxylyk Kudyshiev3, Linxiao Zhu2, Shen Yan2, Andrea Vezzoli4, Simon J. Higgins3, Vikram Gavini2,5, Alexandra Boltasseva1, Pramod Reddy2,5,†, Vladimir M. Shalaev†, Edgar Meyhofer2,†

Hot carriers in plasmonic nanostructures, generated via plasmon decay, play key roles in applications such as photocatalysis and in photodetectors that circumvent bandgap limitations. However, direct experimental quantification of steady-state energy distributions of hot carriers in nanostructures has so far been lacking. We present transport measurements from single-molecule junctions, created by trapping suitably chosen single molecules between an ultrathin gold film supporting surface plasmon polaritons and a scanning probe tip, that can provide quantification of plasmonic hot-carrier distributions. Our results show that Landau damping is the dominant physical mechanism of hot-carrier generation in nanoscale systems with strong confinement. The technique developed in this work will enable quantification of plasmonic hot-carrier distributions in nanoplastic and plasmonic devices.

H

et carriers, which are energetic electrons and holes with energy distributions that deviate substantially from equilibrium Fermi-Dirac distributions (1), are expected to arise in metallic nanostructures because of the nonradiative decay of surface plasmons. Such hot carriers hold promise for the development of a variety of technologies, including plasmon-driven photochemistry (2–5), alternative solar energy harvesting devices (6), and efficient photodetectors operating below bandgap (7–9). Central to the design and development of these applications is knowledge of the hot-carrier energy distributions (HCEDs) that are generated under steady-state conditions (10). Although previous work has tried to quantify HCEDs (11–15), most of it has relied on first-principle calculations or semiclassical approaches, which involve assumptions about the dominant relaxation pathways of hot carriers as well as material properties (15) that lead to considerable uncertainties in the estimated HCEDs (22, 23). In fact, recent calculations (16) have even suggested that the deviations from the equilibrium Fermi-Dirac distribution are negligibly small, calling past calculations into question. Therefore, direct experimental observations are critical for obtaining detailed insights into the HCEDs and for rationally engineering the aforementioned technologies.

Here, we show how scanning probe–based techniques (17–19) that measure charge transport in single molecules, when combined with nanophotonic experimental methods, can be leveraged to directly quantify steady-state HCEDs (f_{hot}(E)) in a key model system—a thin gold (Au) film that supports propagating surface plasmon polaritons (SPPs). Our basic strategy is to first create single-molecule junctions (SMJs)—using carefully chosen molecules with appropriate transmission characteristics—between a plasmonic Au film and the Au tip of a scanning tunneling microscope (STM) and then elucidate the current-voltage characteristics with and without plasmonic excitation at various voltage biases (V_{bias}) (see Fig. 1A). The difference in the measured currents for the cases with [f_{SPP}(V_{bias})] and without [f_{D}(V_{bias})] plasmonic excitation, which we call the hot-carrier current I_{hot}(V_{bias}) = I_{SPP}(V_{bias}) − I_{D}(V_{bias}), enables us to directly quantify f_{hot}(E).

As depicted in Fig. 1, B and C, I_{hot}(V_{bias}) arises because of the generation of the non-equilibrium carriers under plasmonic excitation with an energy distribution f_{SPP}(E). We note that the energy distribution f_{SPP}(E) represents the difference between f_{hot}(E) and the equilibrium Fermi-Dirac distribution f_{eq}(E) as f_{SPP}(E) = f_{hot}(E) − f_{eq}(E). As explained in detail in the supplementary materials (20), f_{hot}(E) and I_{hot}(V_{bias}) are related by

\[I_{hot}(V_{bias}) = \frac{2e}{\hbar} \int_{-\infty}^{V_{bias}} T(E) f_{hot}(E) \left(E - \frac{eV_{bias}}{2} \right) dE \]

where Eo is the energy of the peak in T(E). Equation 2 relates I_{hot}(V_{bias}) to f_{hot}(E) via a voltage- and energy-independent constant scaling factor \[\frac{2e}{\hbar} \int_{-\infty}^{\infty} T(E) dE \]. Therefore, by varying V_{bias} in the window \{ V_{G1} − V_{G2} \}, the steady-state HCEDs can be mapped within the energy window \{ Eo − \frac{eV_{bias}}{2} : Eo + \frac{eV_{bias}}{2} \} (Fig. 1C).

We used the molecules shown in Fig. 1D (labeled L1, L1, and L2) for experimental quantification of the HCEDs. Molecule L1 represents a charge-transfer complex of quaterthiophene (T4) and tetracyanoethylene (TCNE) with terminal thiophenes containing gold-binding methyl sulfides, while the H1 molecule, 3,4-ethylenedioxythiophene (EDOT) with terminal thiophenes containing gold-binding methyl sulfides. The transmission characteristics of Au-L1-Au and Au-H1-Au SMJs are expected to be sharply peaked and dominated by the lowest unoccupied molecular orbital (LUMO) (21, 22) and highest occupied molecular orbital (HOMO) (23), respectively. We also used L2 molecules, 1,4-benzenediisitonitrile (see (20), section 3, for additional details); SMJs created from L2 are expected to feature weakly energy-dependent T(E) also dominated by the LUMO level (24).

Plasmonic gold films (thickness: 6 and 13 nm), with integrated grating couplers, were fabricated on fused silica substrates (Fig. 1A) to excite SPPs and generate hot carriers [(20), section 4]. The 6-nm-thick gold film with a grating coupler was first exposed to a solution containing L1 molecules to create a monolayer of the molecules [(20), section 5]. Next, we positioned an Au STM tip at a separation of ~1 μm (along the x direction) from the grating edge (fig. S2). Subsequently, the Au film was covered with an immersion oil matching the refractive index of fused silica to create a symmetric optical medium around the film, and a V_{bias} of 0.1 V was applied to the STM tip while grounding the Au film. We then used the STM break junction technique (17, 18) (see (20), section 2, for a detailed protocol) to identify the current through a Au-L1-Au SMJ. The peak in the current histogram created from more than 2000 current versus displacement traces represents the most probable current (I_{p})—corresponding to a conductance of 8.5 × 10^{-4} G_0 for a
Au-L1-Au junction (Fig. 2A) under the absence of plasmonic excitation \(G_0 \approx (12.9 \text{ kilohms}) \) is the quantum of electrical conductance, in good agreement with prior work (22). Subsequently, we illuminated the gratings with a focused 830-nm linearly polarized laser beam (0.3 mW/\(\mu \text{m}^2 \) power density) perpendicular to the grating strips, launching SPPs in the Au film (Fig. 1A). Concurrently, we measured the electrical current and found that the most probable current \(I_{\text{SPP}} \) is larger than \(I_d \) (Fig. 2A). We then determined the hot-carrier current as \(I_{\text{hot}}(V_{\text{bias}} = 0.1 \text{ V}) = I_{\text{SPP}}(V_{\text{bias}} = 0.1 \text{ V}) - I_d(V_{\text{bias}} = 0.1 \text{ V}) \). The measured \(I_{\text{hot}}(V_{\text{bias}} = 0.1 \text{ V}) \) displayed a strong dependence on the laser polarization (Fig. 2C), consistent with the polarization-dependent SPP excitation efficiency, indicating that the measured \(I_{\text{hot}} \) is due to the excitation of SPPs. Additional control experiments further confirmed that the measured \(I_{\text{hot}} \) is indeed due to hot-carrier effects and not because of an increased temperature or simple light-assisted transport (20, section 6).

Next, we performed additional measurements from Au-L1-Au SMJs at the same location while varying \(V_{\text{bias}} \) from \((-0.3 \text{ V}; 0.3 \text{ V})\). The measured bias-dependent \(I_{\text{hot}}(V_{\text{bias}}) \) (fig. S16A) displayed an asymmetric shape with a peak around 0.15 V. Further, the transmission characteristics of Au-L1-Au junctions, necessary
for determining the spectral distribution of hot carriers (see Eqs. 1 and 2), were obtained using an experimental approach developed in (23) [(20), section 7]. Figure 2D shows the T(E) obtained for Au-L1-Au junctions. Consistent with past work (23), we fit the measured T(E) with a Lorentzian and obtained the energy of the peak to be $E_0 = 0.18$ eV relative to the Fermi energy (E_F) with a peak width of 2.6 meV (Fig. 2D), confirming the sharp nature of the peak [(20), section 7], in good agreement with past computational work (22). Subsequently, we determined $f_{\text{hot}}(E)$ from the measured $I_{\text{hot}}(V_{\text{bias}})$ and $T(E)$ of L1 using Eq. 2. The measured $f_{\text{hot}}(E)$ (see Fig. 3A) revealed the relative hot-electron energy distribution (HHED), displaying a peak around 100 meV followed by a decaying tail extending up to about 330 meV above E_F. As the transmission function peak enters the window between the quasi-Fermi levels of the two contacts (E_F, $E_F - E_{\text{bias}}$), extremely large currents flow through the molecular junction making the junction unstable and extremely large currents flow through the molecule.

To determine the hot-hole energy distribution (HHED), i.e., energies below E_F, we repeated measurements of $I_{\text{hot}}(V_{\text{bias}})$ in Au-H1-Au SMJs for V_{bias} in the range of $(-1.5 \text{ V: } 1 \text{ V})$ (Fig. S16B). Unlike for L1, where large $I_{\text{hot}}(V_{\text{bias}})$ was observed for positive V_{bias}, no perceivable $I_{\text{hot}}(V_{\text{bias}})$ was recorded in H1 junctions for positive V_{bias}. Instead, $I_{\text{hot}}(V_{\text{bias}})$ in H1 junctions increased above the noise floor for V_{bias} below -0.6 V and peaked around -1.2 V. Next, we measured the transmission characteristics of Au-H1-Au junctions and obtained the Lorentzian-shaped transmission characteristics shown in Fig. 2E, which features a peak at $E_0 = -0.7$ eV and a peak width of 6.8 meV, in good agreement with prior work (23). From the measured T(E) and $I_{\text{hot}}(V_{\text{bias}})$, we obtained $f_{\text{hot}}(E)$ using Eq. 2 over the energy range $(-1.2 \text{ eV: } 0.05 \text{ eV})$ (Fig. 3B). The HHED featured a peak around -0.1 eV and a decaying tail that extends to energies about -0.4 eV with respect to E_F.

To gain insights into the microscopic origin of our observations, we performed first-principle density functional theory (DFT) calculations (11) to compute the hot-carrier generation rates and subsequently used the Boltzmann transport equation under the relaxation time approximation (25) to obtain the steady-state HCEDs [(20), section 11]. For our calculations, we considered a geometry consisting of a Au film surrounded by a symmetric dielectric environment with a refractive index $n = 1.45$, mimicking the geometry in our experiments, which is known to support two plasmonic modes: a symmetric mode and an antisymmetric mode with distinct dispersion relations (26–28).

The computed HCEDs arising from the symmetric plasmonic mode on a 6-nm-thick Au film, obtained using both an energy-dependent electron-electron collision rate from Landau’s Fermi liquid theory (FLT) (29) and an energy-independent scattering rate, are shown in Fig. 4A. Additionally, electron-phonon scattering is included via an energy-independent relaxation rate (30). These computational results are multiplied by a scaling factor so that the peak value is 1. The results obtained following FLT predict that hot carriers are largely populated within the energy window of $(-0.4 \text{ V: } 0.4 \text{ V})$ relative to E_F, in excellent agreement with our experiments. In contrast, an energy-independent scattering rate results in hot carriers in a larger range of energies (Fig. 4A, blue curve) that disagree with our experimental observations. These findings establish the validity of using the energy-dependent electron-electron collision rate for modeling hot carriers in plasmonic nanostructures.

To understand the effect of film thickness, we measured the HCED in thicker (13-nm-thick) Au films. The measured HCED (Fig. 3, C and D) showed that the hot carriers are mostly populated around E_F. Further, the total number of hot carriers $[\int_{E_F}^{E_F+h} f_{\text{hot}}(E) dE]$ was found to be ~40% smaller than those measured on 6-nm-thick film. The observed reduction in the magnitude of HCED in thicker films can be attributed to the effect of surface-assisted absorption, that is, to the Landau damping (13, 15, 25) [see relevant discussion in (20), section 11]. To quantify the role of Landau damping, we computed the HCED in a 13-nm-thick film arising from the symmetric plasmonic mode, and electron-electron scattering rates from FLT (Fig. 4A), which revealed that the generated hot carriers are populated close to E_F, similar...
to the 6-nm-thick film. However, about 43% fewer hot carriers are generated in the 13-nm-thick film, in good agreement with our experiments.

To elucidate the distance-dependence of hot-carrier generation, we measured hot for Au-L1-Au SMJs at a ν_{hot} of 0.1 V for varying separations d between the probe tip and the grating edge. Error bars represent uncertainties in d and hot. The red curve is an exponential fit constrained to have a decay length of 405 nm, corresponding to the symmetric mode’s decay constant in 6-nm-thick gold film ([20], section 14). (D) Simulated intensity profile normalized to the incident field intensity upon illuminating the gratings with a focused 830-nm laser (spot size: 5.6 μm). Inset shows the intensity profile near the grating edge. The color map of the inset is adjusted to show the beating pattern and is different from the main panel color map.

Fig. 4. Computed HCECs, distance dependence, and intensity profile. (A) Computed HCECs in 6-nm-thick and 13-nm-thick Au films, arising from the symmetric plasmonic mode with electron-electron scattering rates from either FLT or an energy-independent scattering rate and a constant electron-phonon relaxation rate. Inset shows the employed geometry and mode profile. a.u., arbitrary units; ν_{phon}, electron-electron relaxation time constant. (B) As in (A), but for the antisymmetric plasmonic mode. Note that the y-axis scale is smaller in (B) than in (A). (C) Measured hot through Au-L1-Au SMJs ($\nu_{\text{hot}} = 0.1$ V) for varying separations d between the probe tip and the grating edge. Error bars represent uncertainties in d and hot. The red curve is an exponential fit constrained to have a decay length of 405 nm, corresponding to the symmetric mode’s decay constant in 6-nm-thick gold film ([20], section 14). (D) Simulated intensity profile normalized to the incident field intensity upon illuminating the gratings with a focused 830-nm laser (spot size: 5.6 μm). Inset shows the intensity profile near the grating edge. The color map of the inset is adjusted to show the beating pattern and is different from the main panel color map.

at large separations, despite the presence of the antisymmetric mode, we conclude that the contribution of the antisymmetric mode to hot-carrier generation is negligible. Additional calculations (Fig. 4B) confirmed that the antisymmetric mode is indeed much less effective in generating hot electrons, resulting in only 0.25% (3.3%) hot carriers, in comparison to the symmetric mode for the 6-nm-thick (13-nm-thick) film.

Our scanning probe–based approach combines single-molecule quantum transport measurements and nanoplasmonics to directly map the steady-state energy distributions of hot carriers. The approaches developed will enable fundamental insights into hot-carrier generation processes and are critical for future hot carrier–assisted technologies.

REFERENCES AND NOTES
Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements

Science 369 (6502), 423-426.
DOI: 10.1126/science.abb3457
originally published online June 4, 2020

Taking the temperature of hot carriers

Hot carriers are expected to arise in plasmonic nanostructures because of the nonradiative decay of surface plasmons. However, identifying and determining just how "hot" these carriers actually are has been challenging. Reddy et al. devised a technique that looks at the carrier transport through a single molecular junction, which effectively acts as an energy filter, and show that it can be used to determine the distribution of hot carriers in a plasmonic nanostructure (see the Perspective by Martín-Moreno). These hot carriers could be harnessed to enhance the performance of technologies, including plasmon-driven photochemistry, solar energy–harvesting devices, and efficient photodetectors. Science, this issue p. 423; see also p. 375

ARTICLE TOOLS
http://science.sciencemag.org/content/369/6502/423

SUPPLEMENTARY MATERIALS
http://science.sciencemag.org/content/suppl/2020/06/03/science.abb3457.DC1

RELATED CONTENT
http://science.sciencemag.org/content/sci/369/6502/375.full

REFERENCES
This article cites 50 articles, 5 of which you can access for free
http://science.sciencemag.org/content/369/6502/423#BIBL

PERMISSIONS
http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. The title Science is a registered trademark of AAAS.

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works