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Abstract

A scaling theory describing the local field distribution and high-order field moments in metal—
dielectric percolating composites is developed. It is shown that the field distribution is extremely
inhomogeneous and consists of small spatially separated clusters of very sharp peaks, “hot”
spots, where the local fields are much greater than the applied field. The theory predicts that the
high-order field moments that characterize the average enhancement of nonlinear optical processes
are very large and frequency independent in a wide spectral range. The local nonlinear signals
from the “hot” spots exceed the average surface-enhanced signal by many orders of magnitude,
a fact that opens a fascinating possibility of the nonlinear spectroscopy of single molecules and
nanoparticles. © 1999 Published by Elsevier Science B.V. All rights reserved.
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The local electric field fluctuations can be strongly enhanced in the optical and in-
frared spectral ranges for a percolating nanocomposite containing metal particles that
are characterized by the dielectric constant ¢,, with negative real ¢}, < 0 and small imag-
inary parts x = ¢, /lej,| <1 [1,2]. Since the metal-insulator transition associated with
percolation represents a dynamic phase transition one might anticipate that the current
and field fluctuations are scale-invariant and large. In percolating composites, however,
the fluctuation pattern appears to be quite different from that for a second-order tran-
sition, where the fluctuations are characterized by a long-range correlation and their
relative magnitudes are of the order of unity at any point. In contrast, for the DC
percolation, for example, the local electric fields are concentrated at the edges of large
metal clusters so that the field maximums (large fluctuations) are separated by dis-
tances of the order of the percolation correlation length, &,, which diverges when the
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. metal volume concentration p approaches the percolation threshold p, [3-5,20]. Below
I ! we show that the difference in fluctuations becomes even more striking in the optical
spectral range where the local field peaks have a resonance nature and, therefore, their
| relative magnitudes can be up to 10%, for the linear response, and up to 10, for non-
linear responses (e.g., for third-order optical nonlinearity), with distances between the
.| peaks much larger than &p.
" When wavelength A of an incident beam is much larger than the particle size ag
" we can introduce a potential ¢(r) for the local electric field, and the field distribution
problem reduces to a solution of the equation representing the current conservation law,
V - (a(P)] — Vé(r) + Eo(r)]) =0, where Eq is the applied field and o(r) is the local
conductivity that takes ¢, and o4 values, for the metal and dielectric bonds, respec-
tively. In the discretized form this relation acquires the form of Kirchhoff’s equations
defined on a cubic lattice [1]. The Kirchhoff’s equations, in turn, can be written in
the matrix form with the “interaction matrix” defined in terms of the local dielectric
constants, &(r) = (47i/w)o(r). Then, the Kirchhoff’s equations map the Anderson’s
transition problem with the Hamiltonian (which we refer hereafter as to Kirchhoff’s
Hamiltonian, KH) built from the local dielectric constants. The off-diagonal elements
of the KH are Hj; = —&; and the diagonal elements are defined as Hj; = > ; Eij> where
j refers to the nearest neighbors of i. The dielectric constants &; take values &, and
g4 with probabilities p and (1 — p), respectively. Thus, the KH is of Anderson’s type,
with both on- and off-diagonal correlated disorder. Since &, < 0 and ; > 0 the mani-
fold of the KH eigenvalues A; contains the eigenvalues which have the real parts equal
(or close) to zero, with very small imaginary parts (x<1). Then the eigenstates that
correspond to the eigenvalues |4;/e,| <1 are strongly excited by the external field and
seen as giant field fluctuations representing the non-uniform plasmon resonances.

The strong fluctuations of the local electric field lead to enhancement of various
optical nonlinear effects. For example, four-wave mixing and generation of higher har-
monics can be enhanced in percolating composites, and the bistable behavior of the
effective conductivity can take place when the conductivity switches between two sta-
ble values [6,21,22]. Nonlinear percolating composites are potentially of great practical
importance as media with intensity-dependent dielectric functions and, in particular,
as nonlinear filters and optical bistable elements. The large field fluctuations reveal
themselves, e.g., in the enhanced Raman scattering observed in percolating systems
[7,23]. The local field enhancement was previously studied in fractal aggregates of
metal particles [8,9,24-26].

For the most interesting spectral range where ¢),(w) < 0, the local field distribution
and enhancement for optical nonlinearities are poorly known for metal-dielectric com-
posites. When p is small, the field and nonlinearities are large at the particle positions
and the largest enhancement occurs at the frequency w, corresponding to the plasmon
resonance of an individual metal grain [1,6,21,22]. The effective medium theory was
developed to describe the nonlinear response of percolating composites [10,27]. For
linear problems, predictions of the effective medium theory usually offer a quick in-
sight into a problem. This theory, however, has disadvantages typical for all mean-field
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theories, namely, it diminishes fluctuations in a system [1] that can be very large for
&, (w) <0 and k<1 and play a crucial role in nonlinear optical responses [2].

Below, we develop a scaling theory for the spatial distribution of the local fields
and their high-order field moments that characterize enhancements of nonlinear optical
effects in percolating metal—dielectric composites. For estimations, we assume that metal
grains have the Drude dielectric function &.(w)= ¢, — (wy/®)?*/(1 +iw./w), where & is
a contribution to ¢, due to the interband transitions, ), is the plasma frequency, and
o, =1/t <w, is the relaxation rate. In the high-frequency range considered here, losses
in metal grains are small, w, <w, and the real part of the metal dielectric function ¢/,
is negative and much larger in modulus than the imaginary part &7, for the frequencies
o less than the renormalized plasma frequency W, = wp/+/¢. The metal grains are
placed in a dielectric substrate characterized by ;.

Using the numerical technique described in detail in [7,11,28], we calculated spatial
distributions of the local fields. In Fig. 1, we show the calculated field distributions
I(r)=1(x,y) = |E(r)/Eo|* in a 2d silver-on-glass film (wp, =9.1 &V, 0, =0.021 eV,
&4 =22) at p= p.; Ey =1 is the amplitude of the incident wave; the wavelength
A is assumed to be much larger than the metal grain size, 1> ap. For simplicity,
all distances are given in the ap units. For individual silver particles, the resonance
condition Re(en(w,)) =~ —e&; [6,21,22] is fulfilled at 4 ~ 0.4pum (see Fig. la). In
Fig. 1b and lc, we also show I(r) for A = 1.5 and 12 um that correspond to &, =~
—118 +i3.2 and ¢, ~ —7.6 x 10°> +i1.5 x 10°, respectively. As seen in the figure, the
local fields form a set of peaks with the magnitudes about 10* for w = w,; the peaks
become larger with increasing A.

We consider first the case when w ~ w, corresponding to &; ~ —¢), ~1 and the
loss factor k < 1. We express the fluctuating potential ¢(r) in terms of the eigenvalues
A, and eigenstates ¥, of the real (Hermitian) part, H', of the non-Hermitian KH,
H=H'+iH", where H" ock is small since k < 1. The local potentials can be represented
as ¢(r) =3, &,V (r)/(A, + ibyk), where &, is proportional to the projection of the
external field £y potential on the eigenstate ¥,(&,ocEy), and ib,x is a small correction
to the eigenvalue A} due to x # 0 (b, ~b~1). The introduction of the term ib,xk
in the denominator of the expression for ¢(r) is equivalent to introducing complex
energies in the standard response theory.

According to the one-parameter scaling theory the eigenstates ¥, are thought to be all
localized for the 2d case (see discussion in [12,29]). On the other hand, it was shown
that there is a transition from chaotic eigenstates [13,14] to localized eigenstates in the
2d Anderson problem [15] with intermediate crossover region [16]. For g = —¢&, = 1
and p= p. = % the on-diagonal disorder in the KH with H ~ H’ is characterized by
(H?) = 4 that corresponds to the chaos-localization transition [15]. The KH has also
strong off-diagonal disorder, (H;) =0 (i # j). Our conjecture is that the eigenstates
| are localized for all A’ (see Fig. 1). (We cannot, however, rule out a possibility of
the inhomogeneous localization similar to that obtained for fractals [9,25,26].) Since
only the x fraction of the eigenstates are effectively excited by the external field the
“distance” between them, the local-field correlation length £%, is & ~ k™% > 1, where
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Fig. 1. Distribution of the local field intensities in a semicontinuous silver film at p = p. for different
wavelengths; (a) A =04 um; (b) 2= 1.5 pm; (c) A =12 um. [The coordinates x and y are given in the
lattice period (ap) units.]
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Ve = % (in a d-dimensional space, v, = 1/d). Based on the above reasoning we neglect
the overlapping of the eigenstates ¥’ in calculating the moments G, = (|E(r)/Ep|") of
the local field and thus obtain G,= [ ¢,(A")/| A’ +ibk|"d A’, where ¢,=), |6x/Eo|" (|7
Y. |"o(A” — Ay) and p is the density of states. Assuming that ¢, is smooth functions
of A’ in the vicinity of zero and taking into account that all parameters of H’ for the
considered case &; ~ —¢/, ~ 1 are about unity we immediately obtain G,~x~"*! for
n=2.

We note that the above results are in good agreement with comprehensive numerical
calculations performed in [11,28] for a 2d system with ¢,/e; =~ —1 and p = p,; for a
particular case of n=2, it was shown there that G, ~x~7 and &%, ~ ™", with y = 1.0
and v, = 0.5, as the above speculations predict. Also, we note that in accordance
with the above consideration, the field distribution can be thought of as a set of peaks
with amplitude E}, ~ Egk~'>E, separated by distances &%, so that G,~ (E%/Ey)"/
6»;;1 ~ K—-n+l_

In the infrared part of the spectrum (w < ®,), the parameters associated with ¢, in
the KH can be much larger than unity and the above consideration cannot be directly
applied, in this case. To understand the structure of giant optical field fluctuations for
the large contrast, |e,|/es> 1, and calculate the high-order field moments we further
develop the scaling arguments of the percolation theory [3,17,18,30]. We divide a
system into cubes of size / and consider each cube as a new renormalized element.
All such cubes can be classified into two types. A cube that contains a continuous path
of metallic particles is considered as a “conducting” element. A cube without such an
“infinite” cluster is considered as a non-conducting, “dielectric” element. Following the
finite size arguments, the effective dielectric constant of the “conducting” cube &% (1)
decreases on increasing its size [ as e%(]) =2 [~¥'r¢,,, whereas the effective dielectric
constant of the “dielectric” cube &)(/) increases with [ as &j(/) = ISPrey (t and s
are the percolation critical exponents for the static conductivity and dielectric constant,
respectively, and v, is the critical index for the percolation correlation length: £, &
|p — p|™"" [1]). We set now the cube size / to be equal to /*:

I* = (|| fea) /. M

Then, in the renormalized system, where each cube of the size [* is considered as a
single element, the ratio of the dielectric constants of these new elements is equal to
en(I)/e5(I*) = emfle),| = —1 + ik, where the loss-factor x &~ ®,/w<1. The average
distance between the field maxima in the renormalized system is equal to &%, and the
average distance ¢, between the field maxima in the original system, as follows from

(1), is

Ee = 81 2 (el/en) " (el fea) /) . )
Let us consider two neighboring conducting clusters of size /. The clusters have
inductive conductances 2; = —iwe}(/)!/4m; this is because the metal conductivity is

inductive for w < w; (g, <0, |¢,|>e,). The gap between the two conducting clus-
ters has a capacitive conductance Z.(/) ~ —iwe}(1)//An. We choose the size [ = [*
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so that the capacitive and inductive conductances are equal to each other in modulus,
|Z:(I*)| = |2:(I*)|. Then there is a resonance in the system, and the electric field is
strongly enhanced in the inter-cluster gap. Yet, the local field is mostly enhanced only
for the part £%~¢ of the clusters. The potential drop across the gap can be estimated
as Ujz~E;I*, and the local field concentrates at the points of the closest approach,
where the gap shrinks down to the period lattice, a. At these points of the original
system, the local field acquires the largest values

En/Eo & (Ep/E)* ~ (len /ey )|/ )"+ . 3)

The points of the close approach determine the gap capacity conductance 2.(/*),
that in turn depends on the cluster size [*. Therefore, the number n.(/*) of the
close-approach points scales with the size /* in the same way as the conductance
Ze, 16y n(I*) o Zo(IF) ~ 5 ()72 o [5/0pHd =2,

The following pattern of the local field distribution emerges from the above specu-
lations: The largest local fields are concentrated in the resonant clusters of the size [*
defined in (1); the high-local-field areas are separated in distance by the field correla-
tion length &.>1 determined in Eq. (2). Within each resonant area there are n.(I*)
sharp peaks of the amplitude E,, given by (3). With increasing wavelength, the scale
[* increases, so do the amplitude E,, and the number of local field maxima 7.(/*) in
each resonating cluster. The average distance £, between the resonant sets of the field
peaks also increases with 1. One can track this behavior for the field fluctuations in
Fig. 1. Note that the cluster resonances are similar, in some respects, to the Lifschitz
singularities [19] originally considered for the vibration spectrum of disordered alloys.

This pattern of the local field distribution results in the following estimate for the
high-order moments of the local fields, G, ~ E%n.(I*)/&%, which with the use of (1)—
(3) gives

G == (leg /o) ™DV g | fe =" )

The quantity G, characterizes enhancement of optical nonlinearities due to the high
local fields in a percolating system. For e;=—¢/,, Eq. (4) reduces to the above obtained
result G, ~x~"*!, Since in the visible and infrared spectral ranges the real part of the
dielectric constant of a typical metal is large, |¢},|> &4, whereas the losses are small,
&y <|el,|, the values of the field moments G, are huge in magnitude. For a 2d system
t~sw~v,=3%, and Eq. (4) gives G, = (|¢},]/ea)™ V/2(|e,|/esr )"}, For the Drude
metal and w<w,, we can simplify this expression as G, ~ efil_")/z(wp/wf)”_l, ie.,
the local field moments are large and frequency independent. In Fig. 2, results of our
numerical calculations of the field moments for silver semicontinuous films on glass
are compared with predictions of the scaling formula (4). We see that there is excellent
agreement between the developed scaling theory and numerical simulations.

The giant field moments can be observed, for example, in enhancement of Raman
scattering Ggrs ~ G4 resulting from placing the Raman-active molecules on a perco-
lating film [7,23]. In general, the nonlinear optical processes are phase dependent and
proportional to a factor |E|"E*, i.e., they depend on the phase through the term E* and
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Fig. 2. The average enhancement of the high-order field moments G, in a semicontinuous silver film (d =2)
as a function of the frequency at p = p.. Results of the numerical calculations for n = 2,3,4,5 and 6
are tepresented by +, 0, *, x, and #, respectively. The solid lines describe Gy found from the scaling
formula (4).

their enhancement is estimated as G¥ = (|E/E,|"(E/Eo)*). Repeating the above consid-
eration, we obtain GX ~ Gy, for n>1, and GE = (el1/[em])([e],|/6a) E=2 /), for
n=0. For example, the Kerr-type nonlinear refraction and absorption Gg ~ G5 [2] and it
is estimated as Gg ~ 8d_3/ 2(a)p/cor )® ~ 107, for an Ag semicontinuous film on glass. For
parametric nonlinear processes, such as degenerate four-wave mixing (FWM), which is
used to restore the wavefront in random media, the resultant enhancement is given by
Grwy ~ |G3)? ~ 10", The enhancement for kth harmonic generation for kw > w, and
d =2 is estimated as |G{[? ~ (@,/0)(wp/w) ¥V 1, ie., in contrast to the processes
with “photon subtraction” it does depend on the frequency.

Note that the local enhancements in the “hot” spots can be much larger than the
average enhancements considered above. As follows from Fig. 1, the local field inten-
sities are enhanced up to |E/Eo|*> ~ 10° which gives for the local enhancements in the
“hot” peaks 10'° and 10%°, for the Kerr-process and four-wave mixing, respectively.
Similar estimations for 2d harmonic generation, taking into account the additional field
enhancement at the generated 2w frequency, give for the local enhancements 101, With
such level of local enhancements, the nonlinear optical signals from single molecules
and nanoparticles can be detected, using, for instance, the near-field scanning optical
microscopy. This opens a fascinating possibility of the local nonlinear spectroscopy
with nanometer spatial resolution.

Note, the fact that the problem considered here maps the Anderson transition prob-
lem, brings about new experimental means to study the problem by taking advantage
of the high intensity and coherence of laser light and subwavelength resolution pro-
vided by recently developed near-field optical microscopy. In particular, by studying
the high-order field moments associated with various nonlinear optical processes and
spatial distribution of the nonlinear signal one can obtain unique information on the
Anderson’s eigenfunction distribution.

To summarize, large field fluctuations in random metal—dielectric composites near
the percolation result in enormous enhancement of nonlinear optical processes. The
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developed scaling theory describes well the high-order field moments characterizing
the enhancement.
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