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1. INTRODUCTION

A. Review of the Problem
Understanding the optical properties of carbonaceous soot
in a wide spectral range is important for many areas of
application such as climate research, monitoring of atmo-
spheric pollution, and remote sensing of fires. It has long
been recognized!™* that aerosol soot consists of fractal
clusters built of many hundreds or thousands of
nanometer-scale carbon spheres (monomers), and the geo-
metrical structure of soot plays an important role in de-
termining the soot’s optical properties. In the visible and
near-infrared spectral regions the electromagnetic inter-
action of monomers in a soot cluster is relatively weak,
and analytical perturbative approaches such as the mean-
field approximation® produce sufficiently accurate results.
However, as the wavelength is further increased, the op-
tical constants of black carbon become more metalliclike
(dominated by the input of conduction electrons),® which
leads to stronger electromagnetic interaction and the
eventual breakdown of the perturbative methods. As a
result, the collective optical properties of a soot cluster be-
come increasingly different from those of isolated
monomers.”® Experimental measurements of the ab-
sorption and extinction efficiencies of diesel soot in a very
wide spectral range® (0.5 um to 0.857 cm) have demon-
strated that neither the model of isolated spheres nor that
of long cylinders can explain the spectral dependence of
the quantities cited above.

The nonperturbative methods that can account for
strong EM interaction in the long-wavelength spectral re-
gion include the dipole approximation®%-13 and the fam-
ily of rigorous numerical methods in which the field scat-
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metrical renormalization of clusters; it avoids both the inaccuracy of the
and the numerical complexity of rigorous direct methods of solving the
verified by comparison with the experimental measurements for spe-
1 region from 0.488 xm to 0.857 cm that were performed by Bruce
ry leads to analytical expressions that are applicable to different

d optical constants.
tinction can depend critically on a parameter characterizing the
value of this parameter. © 2001 Optical Society of America
3770.

We show that the functional form of the

tered by each monomer is expanded into spherical
rmonics up to a certain maximum order.541° How-
both methods have shortcomings. The dipole ap-
mation for aggregated spheres is accurate only when
eres are separated by distances larger than their

napplicability of the dipole approximation
rongly interacting touching spheres was

theoretically'*'® and experimentally.?’ A
icgd anation of why the dipole approxima-
ided, for example, in Ref. 20.

well equations
by various author:

g spheres has been developed
he essence of this method,
 the coupled-multipole method,
ach sphere and the field

is to expand the EM fiel
scattered by each spher
and to match the bound
discontinuity.  Generally,
infinite-dimensional system of
spect to the expansion coefficients
one needs to truncate it by assuming that all the expan-
sion coefficients for spherical harmotii
than L are zero. Then the total num if equations
scales (for large values of L) as NLZ2. though this
method gives a rigorous numerical solution to the Max-
well equations in the limit L — o, it has a fundamental
difficulty: When the interaction of monomers in a cluster
becomes stronger and the perturbation expansion, corre-
spondingly, less accurate (or even diverges), the number
L required for attaining accurate results tends to
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increase.?>?2 This property is illustrated in Fig. 3 below. concentration of optically active electrons) as free param-
However, the number N should stay sufficiently large to eters. A highly accurate fit to the experimental data for
retain the fractal geometry of samples. propane soot was achieved for the following values of
To overcome the inadequacy of the dipole approxima- fa: f.=404 X 1087 £, = 293 x 101 871, and f,
tion and the overwhelming computational complexity of = 9.54 x 10®s7! in the spectral range 0.4 pm <\
the coupled multipole method, we suggest using the geo- < 10 um. Analogous three-electron dispersion formulas
metrical cluster renormalization method (GCRM).23:2¢ were used to describe optical constants of smoke at the
lows one to stay in the frame of the di- flame temperatures.?® The temperature dependence is
In this paper we focus on applica- governed mainly by the temperature dependence of the
to carbonaceous soot in the spectral conduction electron relaxation constant?’: v, o T2,
range of app y 0.5 um-1 cm. The results are The real and imaginary parts of the complex refractive
compared wit! tal measurements reported by index m = e = n + ik calculated from formula (1) with
Bruce et al.® the constants specified above are shown in Fig. 1. The
The major advanta, f the GCRM is its numerical low-frequency metallic behavior of the optical constants is
simplicity. But, in ad seful analytical results can clearly manifested for A > 100 um: 7 and & become very
be obtained in an approki on, in which the retardation close to each other and scale with wavelength as yX.
effects are ignored ( tatic limit) and the Mathematically, this happens when the term if,?/y,w be-
weighted density of states (WD$) of the dipole interaction comes dominant in formula (1), i.e., for v < y,.

operator is replaced by a step fungion. These two ap-
proximations lead to an analytic
accurate (as verified by compari:
numerical calculations within the
such as black carbon in the spectral
IR to centimeter waves. The availabi

100

10k

B. Optical Constants of Black Carbon
Any numerical or analytical calculation requires:
edge of optical constants of the soot material. Unfo
nately, there is some uncertainty in this matter. Black
carbon can exist in several modifications (graphite, amor-
phous, glassy carbon). We use the data of Dalzell and
Sarofim,® who proposed a three-electron dispersion for- ]
mula for optical constants and verified it experimentally i Aum o
in the spectral range 0.4 um < A < 10 gm. The avail-
ability of an analytic expression for the optical constants
allowed us to extrapolate them into a much wider spectral
range. The important feature of this dispersion formula
is the presence of a free-electron term that dominates the
optical constants at large wavelengths.

The dispersion formula for the dielectric constant e sug- 100 p—— T
gested by Dalzell and Sarofim is based on the well-known [0 =~Im(1/x)
quantum expression for the complex dielectric function:

fa?
f(w)=1- 2 —

w 0 — w02+ iy

N Y B B

1 10 100 1000 10000
d imaginary parts of the complex refractive index
ik as functions of wavelength calculated from

@

Earlier, Taft and Philipp?® identified experimentally
three optical resonances in graphite, two of which corre- L
spond to bound electrons and one to conduction electrons. 01l A = 10%um
The resonance frequencies are w, = 0 (conduction elec-
trons), wy = 1.25 X 10%s7! and wy, = 7.25 X 10571
(or the corresponding wavelengths: )\, = o, A

0.01 |- A = 10%m -

= 151 um, and Ay = 0.26 um). The values of the relax- i )
ation constants were found to be 1y, = v1 = 6.00 r A= 10%um X = —Re(l/x)

X 10%s™! and y, = 7.25 X 10%s!,  Dalzell and [ L
Sarofim® assumed that the same electronic transitions 0'001_10 5 0 5 10 15 2 25 30 35
contribute to the dielectric constant of carbon soot and Fig. 2. Spectral dependence of complex variable 1/y = —(X
used the above values of w, and v, to fit formula (1) to + i8) parameterized by wavelength \, where x = (3/dm)(e
their experimental data, treating f, (which depend on the - D)/(e + 2).
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In Fig. 2 we show the spectral dependence of two im-
portant optical parameters, X and &, originally
introduced?® in Refs. 10 and 11. They are defined as X
= —Re(l/yx) and § = —Im(1/x), where

3 e—1 @
X_Ee+2'

ning of these parameters is that X is the

Goupled-Multipole Method

le approximation for clusters of
n when the overall size of
han the wavelength, and
the usual quasi-static poly.5® In principle,
this problem can be resolved ing rigorous numerical
solution to the Maxwell equation: 81_4’29 However, the
convergence of these methods with
spherical harmonics used (L) is
clusters. The number of linear e
solved in this approach scales as N.
number of primary spheres. In this sibg
onstrate that such convergence canno
achieved for A > 10 um.

We used in our calculations a model fracta '
N = 100 primary spheres. The cluster was generated hy
the cluster—cluster aggregation process®®®! in threg’
mensions. We calculated the specific extinctio
unit volume), defined as

The breakdown o
touching spheres hap
the clusters is much s

O-e
g = =, 3)
Vtot

where o, is the total extinction cross section and V,, is
the total volume of the cluster (equal to N times the vol-
ume of primary spheres, v). Quasi-static Fortran codes
courtesy of D. W. Mackowski were used in the calcula-
tions (see Refs. 8 and 29 for more details), and the refrac-
tive index was calculated with formula (1).

The results are presented in Fig. 8, where we plot the
quantity A2e, as a function of L for several wavelengths.
The specific extinction is multiplied by A2 so that the data
for several values of \ can all be compared in the same
plot. It can be seen that a fast convergence is reached for
A =1um. (The scale of this figure does not allow one to
see that convergence is, in fact, achieved for L > 4 at this
wavelength.) The convergence for A = 10 um is some-
what slower. It is, actually, difficult to judge from the
figure if the result can still change considerably with in-
creasing L.

But, for the wavelengths A = 102, 10°, and 10% um,
when the refractive index of carbon is metallic (see Fig.
1), convergence is not achieved at all. The quantity \2e,
grows linearly with L and does not depend noticeably on
A. Extrapolating the linear growth of A2z, to larger val-
ues of L, and using experimental values of the specific ex-
tinction, we can roughly estimate the lower bound of L
that is required for convergence. From experimental
data of Bruce et al.® we find that ¢, ~ 0.13 pm™1 for A
~ 100 um. (To obtain this result, we used the mass
density of black carbon, p ~ 2 g/em?; specific extinetion in
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Fig. 3. Specific extinction ¢,, multiplied by A\* and averaged
over spatial rotations, as a function of L (Fortran codes courtesy
of D. Mackowski). The calculations were performed in the
quasi-static limit for a three-dimensional cluster~cluster aggre-
gate of N = 100 touching spheres as shown in the inset.

Ref. 9 is measured per unit of mass rather than of vol-
ume.} Thus, at X ~ 100 um, we have A%, ~ 1300 pm.
The linear growth of A%¢, as a function of L in Fig. 3 can
be approximated by AZ%e, = [50 + 20 L]um. If this lin-
ear behavior is extrapolated to larger values of L, the ex-
perimental value of A%¢, is reached at L ~ 65. However,
it is plausible to assume that the slope of the curve
%g,(L) will decrease for larger L and that the actual
ber of spherical harmonics necessary for convergence
rger than 65. Even for L ~ 65 and N = 100, the
er of equations that must be solved is 422,500. And

#L is required for A > 100 um. This makes the
rical approach impractical for large wave-

n from Fig. 3 that the dependence ¢,(L)
ladder with alternating steps of differ-
ample, ,(4) — ¢,(3) is much smaller
Therefore, it is generally incorrect

all constant. Instead, this con-
nsecutive iterations. Also,
met, it is not always clear
n g, will not accumulate
convergence criterion
_after two consecutive
plateau in the curve

that a relatively large
for larger values of L.
should be not the small ch
iterations but rather a man
g (L).

2, THEORY

A. Dipole Approximation
In this subsection we briefly describe the dipole approxi-
mation in its generic form and introduce the relevant no-
tation.

The essence of the dipole approximation is to replace
each (finite-size) monomer in a cluster by a point dipole
with polarizability a, located at point r; at the center of
the respective spherical monomer. The dipole moment of
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the ith monomer, d;, is proportional to the local field at
point r;, which is a superposition of the incident field and
all the secondary fields scattered by other dipoles.
Therefore the dipole moments of the monomers are
coupled to the incident field and to each other as de-
scribed by the coupled-dipole equation

N

Endr;) + 2, G(r; - r)d;|, @

J#i

— 1;)d; gives the dipole radiation
t point r; and G(r) is the regu-
yadic Green’s function:

+ B(kr)r rg/r?], (5)
“exp(ix), (6)
3x3Yexp(ix), ¢

field created by
lar part of the

Gaﬂ(r) =k
Ax) = (x1 %
B(x) = (—x7' -

where 2 = 2#/\ is the wave n
the greek subscripts stand for the
of vectors, and summation over rep
plied.

The coupled-dipole equation is a sys
equations that one can solve to find dipole
The cross sections of extinction and absorpti
found from the optical theorem

O, = IE0|ZImE d inc*(ri);
4
e IE0|2yGE d;[?, 9
1) 243
Va = —Im ; - —3— = 0. (10)

For monomers small compared with A, polarizability « is
given by%?

(11)

where v = (47/3)R,,? is the volume of a spherical mono-
mer, R, is its radius, and the susceptibility y is defined
by formula (2). As follows from formulas (10), (11) and
(2), y, is nonnegatively defined for any physically reason-
able e The ratio 3y,/2k® characterizes the relative
strength of absorption by a single isolated monomer.

B. Geometrical Renormalization of Clusters
In this subsection we describe the GCRM and its applica-
tion in the dipole approximation.

First, we note that most calculations employ computer-
generated samples. The geometry of these samples does
not coincide exactly with that of experimental soot (which
is, obviously, impossible) but rather reproduces certain
statistical geometrical properties of the real soot. Among
such properties are density correlation functions; total
volume of the material, V,,, = Nv; and average radius of
gyration, R,. However, such characteristics as the num-
ber of monomers in a cluster, N, and monomer radius,
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R, , might be considered not essential. It is known, for
example, that the real carbon monomers are not actually
spherical and that nearest neighbors touch each other not
just at one geometrical point, so the model of touching
spheres is only an idealization.

Second, as was mentioned above, the dipole approxima-
tion in its pure form underestimates the strength of elec-
tromagnetic interactions between the monomers. In par-
ticular, it predicts that the shift of the resonance
frequency in small clusters of spheres will be significantly
less than that experimentally measured.?’ To correct the
interaction strength of the dipole approximation, we can
move the monomers closer to one another (of course, this
refers to computer-generated samples) by allowing them
to intersect geometrically. However, doing this will evi-
dently reduce the overall system size (R o), which is an es-
sential parameter of the problem. The other possible
way to introduce the intersections is to increase the radii
of the spheres (R,,) while keeping the distance between
nearest neighbors ({) unchanged. Doing so will, however,
lead to an increase of the total volume of the material.
Luckily, for fractal clusters it is possible to introduce a si-
multaneous renormalization of the sphere radii (R,,), the
total number of monomers (N) and the distance between
the nearest neighbors (!) in such a way that the overall
volume (V) and the gyration radius (R,) are unchanged
and to introduce an arbitrary geometrical intersection of
neighboring spheres. The transformation is

R, = R, (&2)P3E-D) (12)
= N(2/g)?P/D), (13)
I' = ¢R,,, (14)

§ is an intersection parameter (1 < § < 2 § =2

Indeed, it is easy to verify that the gy-
Wlnch scales with [ and N as

R, « IN'D, (15)
e, which scales with R,, and N as
. < NR,3 (16)

et of transformations defined by

and theitotal

do not change ungér t
formulas (12)—(14)

Thus the main i
to model an ensemble
values of R, and N
generated renormalized e
rameters B,," and N’, and
tion of neighboring spheres
important to emphasize that the
apply to a single random cluster (b
only the interparticle separation but.alsg
particles in an individual cluster) but 1s
tion that creates the renormalized rand
given original (experimental) ensemble. ¢

The initial value for £ can be obtained by analogy with
the discrete-dipole approximation (see Refs. 32-34) in
which bulk nonspherical particles are modeled by arrays
of point dipoles located on a cubic lattice. In the first ap-
proximation, the polarizability of the dipoles is taken to
be equal to that of an equivalent sphere with the radius

“of the.renormalization approach is

ith corresponding pa-

ER,' <2R,’'. Ttis
ization does not
it changes not
he number of
an opera-
mble for a
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R, such that its volume is equal to the volume of a lattice
cell, ie., (47/3)R,,® =13. From this equality we find
that ¢ = I/R,, = (47/3)18 ~ 1.612.

Another approach to estimating parameter ¢ is based
on the following consideration which can also be used to
justify the physical plausibility of the renormalization
method. It can be shown® that a linear chain of inter-
secting sphere’ has the same depolarization coefficients
der (within the dipole approximation)®¢
21Y8 ~ 1.688. This value is close to
It is important to note that two
ion coefficients can simulta-
t values by adjusting only one
1l known, the depolarization
finite cylinder is a particu-
tral positions of the reso-
nances. Thus the renorm procedure gives the
correct spectral locations ical resonances for a
one-dimensional chain. The line shape of each resonance
can still be described incorrectly
tion of a large fractal cluster, typ
tinction spectra are superposition
resonances, and the line shapes of
are of little importance.

for §=[43,
the one obtaing
independent
neously be tuned
free parameter &
coefficients in ellipsoid
lar case) determine t

C. Quasi-Static Limit
The quasi-static limit plays an important role
wavelength electromagnetic properties of soot. Thi
proximation is highly accurate in the spectral ran
der consideration (0.6 um <\ < lcm) and provi
valuable mathematical simplifications.

When the wavelength is much larger than all cha:
teristic 51zes of the system, the terms proportional to x~
and x~2 in Egs. (6) and (7) can be omitted, exp(ix) set to
unity, and the incident wave on the right-hand side of Eq.
(4) replaced by a constant field Ey. The resultant equa-
tion can be written in operator form as

|d> = a(lEinc> + Wid», amn

where |d) is the 3N -dimensional vector of dipole moments
with components (iald) = d;,, and, analogously, |Eipe) is
the vector of the incident fields with (ia|E) = E,,.
The 3N X 3N-dimensional operator W is real and sym-
metric in the quasi-static limit and therefore is Hermit-
ian. Its matrix elements are given by

Sup 3(r; — 1) ol — 1))
E

ia|W|ig) =
{ ) r; ~ r; |r; - rjl5

(18)

Equation (17) can be formally solved by use of the spec-

tral theorem as!®!!

|7 n|Ejn,
> X )

. Ya-—w,

|d) = , (19)

where |n) are the eigenvectors of W with corresponding ei-
genvalues w,. The expression for the extinction cross
section [Eq. (8)] takes the form

Tk 47kv <Eincin><n|Einc>
I —————e
g ™ Fld) = T 2

g, = ’

Uy - vw,
(20)
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where we have used Eq. (11) for I/« and neglected, in the
quasi-static limit, the term 2%%/3.

In the limit 2 — 0, Egs. (8) and (9) are exactly
equal.}®!  Therefore the scattering cross section is zero
in this limit. However, o, can be calculated in a higher-
order perturbation expansion, where 2£%/3 is considered
to be a small parameter. If there are no antisymmetrical
states in the system,?”%® or if the absorption parameter
3y,/2k? is large, the integral scattering cross section is
given by

8wkt

mlDlz, (21)

o, =
where D = 3,;d; is the total dipole moment of a cluster.
The above conditions typically hold for carbon soot clus-
ters. For example, for A = 1em and R,, = 50 nm we
have 3y,/2k% ~ 10%, This result allows us to use Eq.
(21), which implies that the whole cluster radiates as a
single dipole.

One can obtain the expression for |D}? by using the ho-
mogeneous vectors |0,) with components (i8|0,) = Sap
by observing that D, = (O,|d), which leads to

877k4v2 (Eincim><mIoa><0aln><n|Einc>

3IE0|2 a,m,n (1/)(* - me)(l/)( - an)
(22)

O =

D. Weighted Density of States and the Step-Function
Approximation

In the quasi-static limit one can average the extinction
s section over spatial rotations of a cluster by taking
ithmetic average of the corresponding expressions
ee orthogonal polarizations of the incident field.10:1
ically, this can be expressed as

4d7kv 0,n¥r|O,
S (O4ln)(n|O,)
3 e Uy —ovw,

) (23)

O ln)n|Ogys(w —w,), (24

(25)

(26)

Analogously, the expression for the Ting cross
section averaged over rotations can be w in terms of

the WDS as

_ 8wV, f T pa(w )T og(w)dwdw,y
Gy = ———
s 9 7

—o(Ux* = vwy)(Ux — vwy)
27

The normalization rules for the WDS are
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fw Faﬁ(w)dw = 6,4;. (28)

For clusters that are, on average, spherically symmetri-
cal, we can assume that, in the first approximation,
I'os(w) = 8,4 (w). Then Eq. (26) becomes

(29)

swk‘*vﬁ,t\ x F(w)dw|2
3 Ij_m

llx—vwl '
The WDS c¢

cluster—cluster

for an ensemble of 10 random
with N = 1000 particles in
imension D ~ 1.8 is shown in

over small intervals
; ction approximation
of the WDS, which is discussed in detail below.

By comparing Figs. 4 and 2,
variable 1/x does not effectively px
ture of I'(w) when we tune \. T
complicated structure of I'(w) with
minima is of little importance. In the

wavelength limit because the variable 1/y approache

comes comparable with the effective width of I (b

The next level of approximation is to replace I'(w) b
step function. Such an approximation is shown in Fig.
by the dashed line, which preserves the normalization
and the first and second moments of the exact WDS.
Note also that the third moment of I'(w) was numerically
found to be very small, so the step function shown in Fig.
4 effectively conserves the third moment too. Here the
constant vw, was numericaily estimated to be vw,
~ 2.29,and I'y = 1/2w,. The quantity vw, is indepen-

0.2 T T T 1 T
Exact onalization
T'(w) Approximation by a step function ----~-

Ny SV
i

015

0.05 - 1

-3 —wov-2 -1 0 1 2wew 3

Fig. 4. Weighted density of states I'(w) and its approximation
by a step function with the equivalent normalization, first and
second moments. The numerical diagonalization was performed
for an ensemble of 10 clusters with N = 1000. The values of the
constants are vwy = 2.29 and I'y = 1/2w,,.
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dent of the system dimensions (such as R,, and [), as one
could expect in the quasi-static limit.

Given the step-function approximation for the WDS, it
is easy to obtain analytical expressions for the optical
cross sections. A direct integration according to Eqs. (26)
and (29) yields, for the extinction and scattering cross sec-
tions,

27k Vg X + vwy X — vw,
g, = —— arctan — arctan ————— |,
vwy S
(30)
_ 27ktV2 (1 2(X + vwy)? + 62
77 Bowg)? |4 (X — vwg)? + 57
X + vw, X — vwg\?
+ | arctan — arctan————| |,
(31

Now we discuss renormalization of the parameters v
and w under the set of transformations defined by Egs.
(12)—(14). It is easy to see that the renormalized volume
isv' = v(&2)3P/3=D) 1 general, the eigenvalues of the
interaction operator W do not scale with the parameter /,
and it is impossible to write a similar relation between w,
and w,'; however, it does become possible in the quasi-
static limit. Then, from quasi-static expression (18), it
follows that w," = w,(I/1")? = w,(2/£¥3-D) Combin-
ing these two expressions, we obtain v'w,’ = vw,(2/¢)3.
Therefore the same transformation applies to vwy:
"= vw(2/6)%.  As could be expected, this transfor-
on does not depend on fractal dimension D. How-
he dependence on D and other geometrical charac-
.0of a cluster is retained in the eigenvalues
2d before the renormalization, i.e., in the constant
the intersection procedure effectively in-
prmalized eigenvalues and, consequently,
n strength. The same tendency holds be-
i-static limit, although the ratio v'w,’'/vw,
r different n in this case.

In summary; the GCRM we simply have to re-
place the constantivw g4dn Eqs. (30) and (31) by vw(2/¢)3,
where vw, must be altulated numerically before the
renormalization in“an”engemble of clusters of touching
spheres (i.e., with [ ' The constant vw, carries
essential information e cluster geometry. For
the cluster—cluster aggre merated in the Meakin
model®*3! with mass-indepe ubcluster mobility we
estimated that D ~ 1.8 an ~:2.29. It is well
known that the fractal dimensi
tails of the aggregation process.
dence of mobility of subclusters on
ence D. In the limiting case when on
of just one monomer can move (t en—Sander
model®®), a fixed center of aggregation is formed and the
fractal dimension is D ~ 2.5 (for clusters embedded in
three-dimensional space). We expect that the constant
vwg will also depend on the details of aggregation. Fur-
ther investigation is needed to establish the dependence
of vw, on the aggregation model and whether there is a
one-to-one correspondence between vw, and D.
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3. RESULTS

A. Numerical Calculations and Comparison with
Experiment
To verify the validity of analytical Egs. (30) and (31) we
generated on a computer an ensemble of 10 cluster—
cluster aggregates with N = 1000 in each on a simple cu-
bic lattice. We diagonalized quasi-static interaction ma-
)] and calculated the extinction and
tions according to Eqgs. (20) and (22).
ged over cluster orientations as de-
2.D. We used the GCRM with ¢
he constants R,, and ! were
Egs. (12) and (14). Note that
ends in the quasi-static limit
R, and [ but only on their
ratio; the same is true Yo ipecific scattering e, nor-
malized by £3V,,.. Tthas algh been verified? that ¢, only
weakly depends on N and, theréfore, on V,, in the quasi-
static limit, as long as N is larg gh for the fractal
geometry to be manifested. Bec ch is the case for
N = 1000, there was no need to rens: ze the constant
N according to Eq. (13). [We empha that this is valid
only in the quasi-static limit. The GCR]
and can be used beyond the quasi-stati
the dependence on N can be nontrivial
renormalization formulas (12)—(14) must be u
taneously.]
The results for the specific extinction &, and no
ized specific scattering ¢, /2%V,; are shown in Fj
6, respectively. For comparison, we also plot in thi
ures the corresponding values for unaggregated parti
(or in the noninteracting limit); g, (noninteracting
= 47k Imy and g (Rovinteracting 3y, = — (8m/3)k|x|2.
Note that the same noninteracting expressions can be ob-
tained in the Rayleigh-Gans (or, equivalently, the first
Born) approximation. The excellent agreement between
numerical and analytical results (with the interactions in-
cluded) is apparent. At the same time, the noninteract-
ing approximation is seen to become increasingly inaccu-
rate when we move from the near to the far IR. A
slightly less accurate fit is obtained for the specific scat-
tering. This is explained by the fact that in the deriva-
tion of Eq. (31) we assumed that the clusters are spheri-
cally symmetrical. This is true only on average, whereas
each individual cluster can deviate from the spherical
symmetry. As a result, the off-diagonal terms in Eq.
(27), which are neglected in the further derivations, are

not exactly zero.
In Fig. 7 we compare analytical formula (30) with the

experimental measurements of the specific extinction by
Bruce et al.” Again, the curve that illustrates the nonin-
teracting limit is also shown for comparison. The experi-
mental data in Ref. 9 are given per unit of mass rather
than of volume. We treated the mass density of black
carbon p as an adjustable parameter and found that the
best fit (excluding the last experimental point at A
= 8750 um) is achieved for p ~ 1.9 g/lem3. This is a rea-
sonable estimate, although the experimental value of p in
Ref. 9 is not known. (Compare this estimate with the fol-
lowing values: graphite, 2.26 g/em®, buckminster ful-
lerine, 1.69 g/em3; glassy carbon, 1.42-1.54 g/cm?.) Note
that p enters all expressions as a constant factor and does

renormalized accori
the specific extincti
not on the absolute valjies
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not influence the form of the wavelength dependence of
£,.

The surprisingly good agreement of experimental mea-
surements with the analytical formula and the reason-
able value of p obtained suggest that the GCRM gives ac-
curate results for carbonaceous soot. We believe that the
small deviations seen in Fig. 7 are due to insufficient ac-
curacy of dispersion formula (1) that was used in all cal-
culations. In particular, the apparently nonmonotonic
behavior near A = 500 um can be explained by the pres-
ence of optical resonance at that wavelength; however,
formula (1) does not contain the corresponding term.
The same can be true at A = 1 cm, where the monotonic
behavior of ¢, is again interrupted. The optical reso-

100 —r T —r——
X Numeric [o]
Analytica

Noninteracting ------

A, pm

pecific extinction e, calculated numerically (solid curve)
ding to analytical approximation (30) (circles). The

limit gnoninteracting) — 4 ok Im y is shown by the

— L et e e e
E Numerical © 3
F Analytical —— 4
Noninteracting ------ 1

b
3 0lt E
o
%
W
0.01 | €= 1612 SN -
\J
0.001 i e | " FEETE | L sl M al P PR
0.1 1 10 100 1000 10000

A, pm

Fig. 6. Specific scattering ¢, normalized by £3V,,, calculated nu-
merically and according to analytical approximation [Eq. (81)).
The noninteracting limit s(Mr°m™ferscting/p3y, . = (8m3)k|x|? is
shown by the dashed curve.
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Fig. 7. Specific extinction ¢, calculaf
approximation (30) compared with e:
from Bruce ef al.? We used the ma
p = 1.9 glem®, to convert the experiment;
units shown here. The noninteracti
= 47k Im x is shown by the dashed curve.
nance at this wavelength can occur, for example re-
sult of interaction with low-frequency acousticdl'p

To conclude this section, we note that the computst
generated samples used for numerical calculationgsf
WDS were built on a cubic lattice. However, in re
gregates, monomers do not occupy lattice sites. The
fect of using off-lattice aggregates in the computer sim
lations is not expected to be large and will be addressed
by us in the future.

B. Long-Wavelength Optical Properties of Soots Built
from Drudean Materials
In this subsection we consider fractal clusters built of a
general class of materials whose optical properties are
dominated by free electrons. We have already seen that
this is the case in black carbon for X > 100 um. We as-
sume the idealized Drudean form of the dielectric func-
tion

(Dpz

E=1—m (32)

and study the asymptotic behavior of the specific extinc-
tion and scattering by using analytical expressions (30)
and (31) together with the GCRM. As was discussed in
Subsection 2.D, application of the GCRM results in the
transformation vwg — vwy(2/£)® on the right-hand sides
of expressions (30) and (81). We use the notation C
= vwy(2/6)3.

We start with the specific extinction ¢, = ,/Vyy,. In
the limit @ — 0, the asymptotic values of X and & are

X =-X,= —4n/3, (33)
8= dmyowlw,® (34)

Then it follows from Eq. (30) that
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27k C+ X,
€, = arctan——5-—— + sgn(C
|C - X,
- X, )arctan ——|, (35)
In the limit § < |C — X,|, Eq. (35) becomes
2uk | ) c-x
= e—— + — o
£, c |2 [ sgn( )]
1 sgn(C — X,,)
- + 36
C+X, |C - X..| (36)

We can identify two separate cases: If C > X, , the
asymptotic form of g, is
27%k 1
g, = C OCX’ C>X,. 37
In the opposite case we have

(4m)vko 1 C<x
T L < Xx, 38
wp2(Xw2 _ CZ) « )\2 ( )
where we have used Eq. (34) for .

We can define the critical value of the parameter vw,
determined by the condition C = X,,, or

47 g\8
(vwg), = — —) . (39)

&, =

3 \2

If the geometry of clusters is such that vw, < (vw,),, as-
tote (38) is valid. The 1/A2 behavior is characteristic
ninteracting monomers (e.g., in disaggregated

Therefore we conclude that for vw,
, the EM interaction is not important in the

N sufficiently large fo
When C = X, th
plicated. In particti
tained in expression (

al behavior of &, is more com-
gher-order terms must be re-

! in Subsection 3.A, the
numerically estimated val 2.29 was larger than
the critical value (vwy),
= 1.612). Indeed, the onse
seen in Figs. 5-7 for A > 100 i
the carbon smoke with the geometry
gregates (D ~ 1.8) and optical cons
section 1.B, the EM interaction is alway:
long-wavelength limit. We believe th:
and, consequently, of the critical constant {vw;), , is uni-
versal for a broad class of soots. However, the quantity
vw, can depend strongly on the sample geometry. Fur-
ther investigation is necessary to establish the numerical
value of (vwg), with higher accuracy and to verify the
analytical results for materials with different parameters
vwy, ¥, and w,.

1/», asymptote can be
is means that in
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One can obtain the mean-field approximation from Eq.
(30) by considering either the limit of infinitely narrow
WDS (wqy — 0) or large absorption (y — ). In the first
case we obtain ¢, = 47k Im y and in the second case &,
= 4k/S8. Obviously, one can obtain the latter formula
from the former by taking the limit § > |X|. Note thatin
the quas1-stat1c limit the mean-field and the first Born ap-
i equlvalent owing to the symmetry of

2
, C>X,,
(40)
R 4¢?
k3Vtot - 02)2},
C<X.. 41

Note that ¢, is proportional to V.
power of scattered light depends on h

ymptote for the specific scattering is e(A) « 1/&*. In the
opposite case (C < X,), the asymptote is more comy
cated and includes two competing terms, 1/
«1/A8. The latter term is characteristic of nonin
monomers and is dominating in the limit C — 0 o
— o, when the mean-field approximation becomes accu-
rate.

4. SUMMARY AND DISCUSSION

We have built a theory of long-wavelength optical proper-
ties of fractal clusters with optical constants that are
dominated by the input of free electrons in the A — o
limit. Analytical expressions were derived for the extinc-
tion and scattering cross sections. The theory was ap-
plied to fractal carbonaceous soot, and the results were
verified by comparison with experimental measurements
in a wide spectral range.

Although a study of carbonaceous soot is the main focus
of this paper, our approach is of a more general applica-
bility. We made three main approximations, all of which
proved to be highly accurate for the object under investi-
gation but are essentially independent of one another.
These approximations are (i) the geometrical renormal-
ization of clusters, (ii) the quasi-static approximation, and
(iii) replacing the weighted density of states (WDS) with a
step function.

The geometrical cluster renormalization method
(GCRM) is applicable beyond the quasi-statics when the
retardation effects are fully included in the consideration.
It also does not put any explicit restrictions on the geom-
etry of samples (as long as they are fractal with D < 3) or
the refractive index of the material, although this subject
has been insufficiently investigated so far. The quasi-
static approximation is, clearly, applicable when the clus-
ters are small compared with the wavelength but can also
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be highly accurate in large clusters with low fractal
dimensions'? because the near-zone EM interaction is
fast decaying as 1/73. Finally, the step-function approxi-
mation is applicable only when certain mathematical re-
lations between the WDS and the complex spectral vari-
able 1/y hold. Thus, this approximation puts restrictions
on the refractive index, the geometry, or both. However,
it can be applied beyond the quasi-static limit, although
the analytical expressions in this case become more cum-
bersome.

We showed that the asymptotic form of the specific ex-
tinction &,(\) in the limit A\ — » can be either 1/ or 1/A2.
The crossover between these two regimes has the nature
of a critical phenomenon and is governed by the param-
eter vw, that characterizes the effective width of the
WDS. We have identified the critical value of this pa-
rameter, (vwy), .
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