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Fractals: giant impurity nonlinearities in optics of fractal clusters
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A theory of nonlinear optical properties of fractals is developed. Giant enhancement
of optical susceptibilities is predicted for impurities bound to a fractal. This enhancement
occurs if the exciting radiation frequency lies within the absorption band of the fractal.
The giant optical nonlinearities are due to existence of high local electric fields in the
sites of impurity locations. Such fields are due to the inhomogeneously broadened charac-
ter of a fractal spectrum, i.e. partial conservation of individuality of fractal-forming parti-
cles (monomers). The field enhancement is proportional to the Q-factor of the resonance
of a monomer. The effects of coherent anti-Stokes Raman scattering (CARS) and phase
conjugation (PC) of light waves are enhanced to a much greater degree than generation
of higher harmonics. In a general case the susceptibility of a higher-order is enhanced
in the maximum way if the process includes “substraction” of photons (at least one
of the strong field frequencies enters the susceptibility with the minus sign). Alternatively,
enhancement for the highest-order harmonic generation (when all the photons are “accu-
mulated”) is minimal. The predicted phenomena bear information on spectral properties
of both impurity molecules and a fractal. In particular, in the CARS spectra a narrow
(with the natural width) resonant structure, which is proper to an isolated monomer
of a fractal, is predicted to be observed.

PACS: 68.35.Bs

to describe the nonlinear optical properties of impuri-
ty centers bound to a fractal. The susceptibilities are

Fractals are known as objects of non-integer dimen-
sion immersed into a three-dimensional space {1]. In
nature there is a great vareity of clusters which are
the physical counterparts of fractals. Such clusters
(hereafter referred to as “fractals”) possess unique
geometrical, statistical and kinetic properties. Among
the most interesting representatives of fractal clusters
are obviously metal clusters, the linear optical proper-
ties of which have been studied by Kriebig [2] and
fhe nonlinear ones by Rautian et al. [3]. Light scatter-
Ing on fractals has been studied by Berry, Percival
-(1986) by a mean-field approach [4]. Unlike them,

fow

~Inour previous work a description has been suggested
: -Which takes into account the crucial feature of the
- fractal, ie. its fluctuation nature.

* In this paper the technique from [5] is extended

calculated, responsible for coherent (parametric) phe-
nomena such as coherent anti-Stokes light scattering
(CARS), optical phase conjugation (OPC) by degener-
ated four-wave mixing, second- and third-harmonics
generation. The effects of CARS and OPC are shown
to be giantically enhanced. Third-harmonic genera-
tion has been found to be enhanced as well, though
to a much smaller extent.

Optical properties of fractals are unique and differ-
ent from those of gases and condensed media. This
is due to the asymptotically zero integral density of
the fractal. The pair interaction is, nevertheless, not
weak. These properties, being mutually exclusive for
a nonfractal medium, are a consequence of the power-
law drop of the pair-correlation function (density-
density) g(r) with the intermonomer distance r and
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of the scaling dependence of the number of monomers
in a fractal on its radius R,

g0 = RGP, N=(R/RoP 0

where R, is the length dimension parameter denoting
the typical distance between monomers. Index D is
called the fractal (Hausdorff) dimension. Both rela-
tions (1) directly follow from each other. Dependence
g(r) should be understood as an intermediate asymp-
totics at RySr<SR,. A fractal is called nontrivial
when D<3. If this is the case, the integral density

oo RP~3 is asymptotically zero (at R,— co). Giant Ra- -

man scattering discussed earlier in [5] and giantically
enhanced nonlinearities predicted in this paper are
due to the existence of high local fields created near
the monomers of the fractal, resonant to the exciting
radiation. The local field is amplified proportionally
to the quality of the monomer as of a resonator. The
fractal spectrum is inhomogeneously broadened be-
cause of the dispersion of the monomers interaction;
therefore in the broad band of its absorption there
occur monomers for which the resonant conditions
are fulfilled. The enormous enhancement of nonlinear

susceptibilities follows from the fact that they are de- '

fined as the local field value raised to a higher power
(e.g. to the sixth power for CARS and OPC). When
D—3, i.e. when a fractal tends to become trivial, its
spectra become broadened and the susceptibility is
not enhanced.

Below it is also shown that the nonlinear spectra
of impurities in the fractal matrix bear informtion
on the properties of the impurity centers, the fractal
as a whole and of the individual monomers of the
fractal as well.

2. Formulation of the problem and qualitative
estimations. Basic fractal properties relevant
for quantitative evaluation

Consider a fractal consisting of N particles
(monomers) located in the points {r;}, where the su-
perscript (low-case Latin) indicates the number of the
monomer. Coordinates {r;} are random; a probability
of finding another monomer distanced from the given
one by r is determined by the correlation function
g(r) ().

Monomers are dipole-polarized (at optical fre-
quencies) particles with the nonlinear susceptibility
¥o(w), where @ is the frequency of the external light
field. The induced dipoles of different monomers in-
teract via the dipole-dipole forces.

Some of the monomers have the impurity centers
bound to them, the number of which is considered
to be small and hence the interaction between them
may be ignored. The impurities are assumed to be
nonlinearly polarized and characterized by the sus-
ceptibility ¥ of order n. "

The reason for the giant enhancement of nonlinear
susceptibilities of the impurities incorporated into a
fractal is that the local field E° acting on the impurity
center, bound to the exciting-radiation-resonant
monomer, exceeds the mean field E. Now we turn
to estimations and present some results of the theory
[5] required for further discussion.

Let us consider one of the impurities bound to,
say, the i-th monomer of the fractal. The radius-vector
monomer-impurity will be denoted by R, assuming
R to be smaller than the distance between the nearest
monomers.R,. Then the local electric field at the im-
purity E° is a combination of the field E’ acting on
the given monomer and the field of its induced dipole:

EZ =0 Haﬁ Eip,

Ha,,=(x51—R_3)5a,,+3R"3n§n§, n°=R/R, (2

where the subscripts (Greek) denote the tensor com-
ponents, summation is implied to extend over the re-
peated indices.

The main quantitiy that we are going to estimate
and calculate below is the enhancement factor G
for the n-th-order nonlinear process. G™ is defined
as the ratio of the radiation intensity generated at
the fractal-bound impurities to the analogous intensi-
ty for the free impurity particles. Since the field ampli-
tude generated by the n-th-order nonlinearity is pro-
portional to the n-th power of the excited field, it
is evident that

G~ [C(EY'D/E" 3)

Hereafter averaging, denoted by the angular brackets,
includes averaging over an ensemble of fractals.
It should be emphasized that since the phenomena

“under discussion are of coherent nature (i.e. leaving

the state of the subsystem unchanged), it is the ampli-
tude of the radiation that is to be averaged and not
the intensity (as is the case with spontaneous Raman
scattering).

In order to find E° and to choose the averaging
procedure in (3), it is necessary to know the properties
(especially statistic ones) of the local field E!. First
of all, one may try to estimate the difference between
the local E' and the mean (macroscopic) fields in 2
conventional manner by introducing the Lorentz field
EL. The latter is determined by the familiar procedure
(see e.g. [6]); it should, however, be taken into ac-
count that the density of other monomers around



the given one is not constant, but is determined by
the function g(r) (1). The resultant expression has the
form EX=Dd/3R3 x (Ry/Ro)" 3, where Ry is the radi-
us of the cavity (Lorentz sphere) cut out around the

iven monomer. In contrast to the non-fractal medi-
um (D =3), the Lorentz field for the nontrivial fractal
(D < 3) diverges at R .—0.

The divergence of the Lorentz field at small dis-
tances shows that the main contributors to the local
field E! are the nearest monomers. Since they are few
in number, the local field E strongly fluctuates. Theo-
ries based only on the field averaged over the ensem-
ble of systems (of the Lorentz field type) are not ade-
quate for fractals.

In [5] a binary approximation is formulated with
an exact account of the fluctuating field of the nearest
neighbour. The fields of the rest monomers are treated
as averaged, which results, analogously to [6], in the
replacement of the external field by the mean one
and addition of the Lorentz field to E'. However con-
tribution of the Lorentz field appears to be small,
the major contribution being given by the field of
the nearest monomer. Below, an expression for E!
will be derived in binary approximation, and now
we seek to estimate G™ (3) on the basis of the above
qualitative considerations. For simplicity, we ignore
such unimportant factor as the influence of the Lor-
entz field (its account would introduce negligible
quantitative corrections). Not to shadow the main
physical principles, at first we shall also neglect the
interaction with the generated radiation fractals. But
later (see (8)) it will be taken into account.

Let us consider monomers having an isolated res-
onance. Their susceptibility is defined by

Yo= — W, RI(Q+iIY; 4)

where w,, and I" are the characteristic excitation fre-
quency and the homogeneous width of the monomer,
respectively; R,, is the characteristic geometrical size
of the monomer (for a two-level system w,, R3=ld,,)?
where d,, is the transition matrix element); Q is the
frequency detuning w from the resonance.

Interaction of the given monomer with its close
neighbour leads to the resonance frequency shift (in
the optical absorption) by some random amount (due
to the random distribution of monomers) ~ €., where
we introduced a characteristic frequency

Q= 0,(R,/Ro) _ ©)

determining the scale of spectral broadening and shift
of the fractal compared to the spectra of individual
monomers. This estimate follows from (4) with the
account of the dipole-dipole interaction of conven-
tional type and the fact that the typical distance be-
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tween the neighbouring monomers is of order R.
For many of studied fractals R, does not substantially
exceed R,, [4], therefore Q,;<Sw,. If a monomer is
a good resonator, then its quality is Q~w,/I'>1,
which we adopt for our further consideration.
Probability for the monomers to become resonant
to a given pair of monomers is small in I'/Q2; parame-
ter. Therefore different parts of the fractal will absorb
independently. Thus we come to an idca of strongly
inhomogeneously broadened (due to the dispersion
of pair interactions) absorption spectrum of the frac-

" tal.

~ If the external radiation frequency lies in the frac-
tal absorption band, then there should exist
monomers (more exactly, pairs of monomers) which
are resonant to the fractal. Their fraction is, evidently,
evaluated to be I'/Q,<1. The field Ei induced by
the resonant monomer in its close vicinity, according
to (2), (4), is defined as

1 (Q=0E w,
R T

Efe~ ©)
The high local field Ef, exceeding the mean one E
by a factor of w,/I'>1, is responsible for the giant
enhancement of the nonlinear susceptibilities (cf. (3)).

It would however be impossible to carry out aver-
aging in (3) on the basis of the qualitative suggestions,
even at an estimation level. The point is that the quan-
tity under averaging contains an unknown phase,
whose fluctuations may, in principle, suppress the en-
hancement effect (this suggestion is supported by the
theory, see below). It is only possible to estimate G"
from above and below.

The upper estimate could be obtained if one ne-
glects the phase fluctuations in (3), i.e. with the substi-
tution E°—|E°|

|ESI" T2
G(n)s Ecn En2~( l'n __)
QEPY/EY ~( 5 o
Qf 2(n—1) RO 6n
(A &) 0

If the generated frequency is little shifted from the
pump frequencies, so that it also appears to be reso-
pant to the fractal monomer, then the effect is addi-
tionally enhanced

l E |n ES I E¢ ln Es I 2
G(n) < resl | res ~ rest ~Hres - )
~(< E FE >) ( E E Q ,) ®)

Taking into account that the exceeding of the local
generated field E:, over the mean one E* is also given
by (6) and making use of (5), the estimate (8) can
be written as
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Q\2n /R \6(+1)
m~ 220} (220
=7 &) <9>

On the contrary, the lower limiting value is ob-
tained from the assumption that the influence of the
phase fluctuations in (3) is strongly destructive: the
large contribution to E° proportional to w,,/I’, is elim-
inated and only the mean (nonfluctuating) value is
retained. No additional enhancement of the generated
field is observed as well. The resultant expression has
the form

E:es I\2n R 6n
aziEyr~ () ~z) - 0

Thus the enhancement factor, according to (9), (10),
varies within the limits )

(&)6" <G <(&)2n (&)(mﬁ 1).
R, = TA\T R,

The appeareance in (7), (9) of the homogeneous reso-
nance width of an isolated monomer is associated
with the spatial-frequency selection characteristic of
the nonlinear light interaction.

Since Ry Ry» @,>T, the upper and lower esti-
mates differ very much. To determine which of them
approaches the value of G™ for a particular effect
is possible only with a complete theory (see below).
Such a theory is also capable of describing the missing
in (11) spectral dependence of the factor, which is
largely determined by the fractal dimension.

As will be shown below, the higher-order harmon-
ics generation (i.e. generation of a maximum attain-
able frequency at the given external fields and order
of nonlinearity) is always described by the lower limit
in (11).

The difference-frequency mixing processes with
substraction of even one photon are described by (7)
for coinciding exciting fields frequencies (within the
limits of I' width) and by the upper limit in (11) for

1y

the generated frequency close to the pump frequency. .

The same processes at frequency detunings increasing
from O to 2, are characterized by the values of G
varying in order of magnitude from the upper to the
lower estimate in (11).

To conclude this section, we present the required
for further treatment results on linear fractal response,
obtained in a binary approximation. The fluctuating
field acting on the i-th monomer, is expressed (see
below) in terms of the random response matrix M -1
as

Mt =Ad,,+(C—4) ni nif,

A=@ot+o)", C=@'—2¢)" (12) -

where

n“Er"f/r”, l.ijEl.i_l.j (p___Z(ri.i)—3_ (13)
k

In (12) the random values are the quantity ¢ and
the orths n*/ dependent on random monomers coordi-
nates r'/,

Averaging of the values involved in M ~* (12) over
the fractal ensemble (ie. over the sets {r'}) is per-
formed [5] by proceeding to the Laplas representa-
tion with yg ' as a variable; averaging over the dis-
tance between the monomer and its nearest neighbour
is performed by means of the g(r) distribution (1),
yielding the result dependent on the fractal dimension

_ D. This dependence is described by a special function

S, of the complex variable z:
S.(z)=i | dtexp{izt—(it*T (1 —a)}, (14
0

where a=D/3 (do not confuse with the vector index),
I'(...) is the gamma-function. The integral representa-
tion in (14) is set by S, at Im z>0; in the lower semi-
plane the function is determined by means of the ana-
lytical expansion S,(z*) =5} (z).

The linear susceptibility of a monomer in a fractal
is defined as the average

2 =53Sp<M ™y =1R3{28.(X)—3S.(—1X)};
=—R3y’. (15)

Finally, the ultimate expression for the total field
acting on the i-th monomer has the form:

Ey=20" Mg ki By, (16)

where E is the mean (macroscopic) field in the fractal;
k,=(1—aRg3x7") ! is the factor originating from
the account of the Lorentz field (the latter is not essen-
tial in the theory of interest and leads to only small
corrections). With the use of (16), formula (2) describes
the field on the impurity Ef, which is the starting
value for the nonlinear susceptibility calculations.

3. Nonlinear susceptibility of the impurity bound
to a fractal. Giant CARS and OPC

Now we formulate a theory of nonlinear susceptibility
of impurity centers in a fractal matrix. As an example
we’ll deal with CARS and OPC. Consider fields vary-
ing harmonically in space-time. If the fractal size 18
smaller than the light wavelength A, then the waves
generated by different fractal particles will always mix
coherently. Otherwise (for R.> 1) the phase-matching



conditions (“synchronism™) (see, e.g. [7]) have to be
ensured. Naturally, for R,>A the validity of the
theory requires that the typical distance between the

nearest monomers be Ry < A. In our further considera- .

tion we assume these requirements to be satisfied.
Then the oscillating components are eliminated; in
what follows only their amplitudes will be considered.
Because of coherence, the generated amplitude is pro-
portional to the number of impurity molecules, and
the radiation power — to the square of this value.
Therefore, for short, this factor may be omitted (the
amplitude recalculated per impurity center).

CARS and OPC are four-wave parametric pro-
cesses during which two photons of w, frequency
transform into two photons with w, and w, frequen-
cies. Such processes are described by a third-order
nonlinear susceptibility [8]

ng)yé(_a)s; Wy, Wy, _'wl), (17)

where w, is the generated frequency, w; and w, are
the frequencies of the interacting waves. For CARS
ws;=2w, —w, OPC corresponds to a completely de-
generate process W, =w; =w,.

For coherent effects, including the ones discussed
in this paper, quantum-mechanical and statistical
averaging (over random factors) is performed over
the field amplitude, i.e. nonlinear susceptibility.

For isotropic (after averaging over orientations)
fractals, from the familiar symmetry properties [8],
it follows that the (impurity) susceptibility of the frac-
tal x37) is expressed through two independent scalar
functions F, and F, as

<X4(z?[’1€)6>=F;A:py6+EzAa_ﬁy5,
aBys =4[8,4 0,5+ 84,y 0ps+ 005 05,15
45 pyo =3[0ap 0y5+ 00y 0p5— 20,5 0p, ] (18)

Here the terms F, 4™ and F, A~ are, respectively, to-
tally and partially symmetric (turning to zero when
symmetrizing in S« and y<6) parts of ¥'3. The
averaged susceptibility of an isolated impurity mole-
cule is similarly expressed as

=1, Adpystfudapys. (19)

The presented theory aims at describing ampli-
tudes E, F, via f,, f,.

Next, we take into account the nonlinear behavior
pf the impurity susceptibility and describe the fractal
In terms of the nonlinear response theory. Then the
nonlinear amplitude of the dipole moment of the im-
purity center (at w, frequency) will have the form:

NL _ ’
4= 1 S EDC B, (20)
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where E®¢ are the local (2) field amplitudes; the su-
perscript indicates the respective field frequency.

Since in an OPC process the generated frequency
coincides with the exciting one, the dipole moment
(20) creates a field which self-consistently polarizes
the nearest pair of monomers. It is important that
the distance between them is shorter than A, and the
generated amplitudes mix coherently. Thus, radiation
is actually emitted by the sum (effective) dipole d°f
which is readily found from

A5 =My (@) Yyp d)F+dF,
waﬁ=R_3(5aﬁ—3ng ng)r (21)

where the first term in (21) corresponds to the nonlin-
ear-impurity-induced total moment of the pair of
monomers, nearest to the impurity. This term, when
averaged over the fractal realizations, gives a substan-
tially larger contribution than the second one in (21)
(the dipole moment of the impurity itself), and there-
fore the latter will be neglected in what follows.

In CARS the generated wave frequency differs
from the incident ones, though insignificantly, as a
rule. That is why the effective nonlinear dipole is also
described by (21).

By definition- of x*P, the emitting dipole moment
is expressed through the mean (macroscopic) wave
amplitudes as follows:

sty = (3> P EV E@, (22)

where E® are the mean (macroscopic) amplitudes of
the exciting waves. With the use of (2), (16), (20) and
(21), {d*™) is obtained in form (22) with the nonlinear
susceptibility '

i =
'_<Mzz—¢z'1’(ws) ‘ﬁa"a’ x‘(z?[g')'}'é' T/'i'ﬂ ’I;’y ’I;5> lKle KL,
T=IIM"1, (23)

where only relevant frequency values are indicated
(see below).

In (23) averaging (operation {...)) goes over ran-
dom factors: impurity orientation (tensor x*©), vec-
tor n¢ angles, (materices IT), angles of the mutual ori-
entation vector of the approached monomers n'/, and
distances between them (T matrices).

Assuming this averaging to be independent, we
rewrite (23) in the form: :

<XS??&> = <X§3;§:')'y”.s~> |KL[2 K,
W Dy My T
A M (w) Mg (0,) M) (0,) M55 *(,)). (24)

The matrices I7 (2)' product, involved in (24), is poly-
nomial in R™*. However the major contribution to
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the enhancement of nonlinear processes is given by
the highest- (12-th) order term. This term is kept in
our further calculations, the terms omitted being
small (smallness factor (R/Ro)>).

Using (19) and the angular averaging (see above),
we derive the susceptibility {xF)) in the form (18)
with the coefficients;

F=|K K, R™'2 f,[53( 4% (@,) A* (@) Al
+34(C?(@,) C*(@2) C(@e) ] (25)

F,=|K 2K R™1? f,X A (0)) A*(@5) A@)).  (26)

Expressions (25) and (26) have been obtained with
neglect of the interference terms, containing the prod-
ucts A and C which having been averaged appear
to contribute little to F, and F,.

For {...) in the main order in Q /T, by an analo-
gous transformation and with (12)~(15) one obtains

(A% (W) A*(w2) A5
=2i42(4w) A2 Aw) R§? Im s,(x),
(C?*(wy) C*(w2) Clagh
—iA%(Aw) AQ4w) RS Im s,,(—-’zﬁ), 7

where a resonant factor 4 (without random quanti-
ties) has been introduced (see below)

AE(Xl—X’f)—l, X1,2=—R3x51(w1,2) (28)

which at Q> I' by means of (4) is reduced to

AA0)=Q;do+2il)7!, do=0;—0,. (29)
The function s,(x) in (27) is determined by the relation
s,(x)=S,(x+i0) where x= —R3 Re g 1~Q/Q, .

Ultimately, in the main order of magnitude with
respect to from (25)+(27) we find

R 12
Fs“—‘%ifleleKL<7{9) A2 (dw) AQ4)

Im [IGSa(x)—i- 3s, (”%)] (30)

E=2if, K> K, (1—{9)12/12(11 ) A2 4w) Im's, (%)
R 31)

Amplitudes of nonlinear susceptibility (30), (31)
together with its form (18) are the major results of
the theory developed for CARS. They define suscepti-
bility of the impurity intriduced into a fractal matrix
in terms of the susceptibility of an isolated molecule.
The corresponding expressions for OPC are derived
from (30), (31) if 4w is put equal to zero (the initial

single-particle amplitudes f; and f, for these two ef-
fects may certainly differ).

Now we analyze in short the main expressions
(30), (31). Nonlinear response amplitudes bear infor-
mation on the impurity center (amplitudes f; and f),
the fractal absorption (functions s,), and on the unper-
turbed spectrum of a particular monomer (factor A).
Most exhausted information could obviously be de-
rived from CARS (due to variability of 4 w).

The distinctive feature of amplitudes (30), (31) is
that they are proportional to the imaginary part of
the fractal (cf. (15)) and hence to the fractal absorption
(for a given detuning sign, only one of the values,

— x .
Ims,(x) or Ims, (T)’ is non-zero; see the properties

of s,-function [5]). Thus, the predicted giant enhance-
ment (see below) of CARS and OPC effects on impuri-
ties is to be expected only when the frequency of excit-
ing radiation lies within the absorption band of the
fractal. .

The symmetry, typical of the susceptibility of an
isolated impurity (see 19) and the discussion thereaf-
tér), is reproduced, just as was expected, by the impu-
rity susceptibility of the fractal (18). The totally sym-
metric part of the impurity susceptibility “generates”
a totally symmetric part of the fractal susceptibility
(F.0f,), the same goes for partially symmetric parts.
It is interesting that in the longwave absorption band
of the fractal (at 2 <0), amplitude F, is zero, ie. the
nonlinear response becomes totally symmetric. Note
that both amplitudes F, and F, and hence the response
symmetry can directly be measured by polarization
techniques.

The enhancement coefficient G’ has the form:

GO= G ef) e e Xy &P &) e 1
(32

where ¢, ¢, ¢@ are the polarization vectors of
the incident waves. Amplitudes (30), (31) grow rapidly
with the decrease of R and are maximum at an ex-
tremely small (permissible within the framework of
dipole interaction model) value R~R,. For a
monomer in the form of a macroscopic sphere.one
may put R=R,,(R,, is the sphere radius).

Assuming for definiteness identical linear wave
polarizations, from (19), (30), (31) one calculates the
maximum enhancement for CARS

. GCARS — GO LFARS(Q);

max

R 24 . Q 6
Go=(5) 1Kol () aorsaoy

gldw)=[1+dw2I1};
[EARS = ()2 {[16 Tm s, (x)]? +[3 Ims, (221)]2} (33)
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Fig. 1. The enhancement factor ICARS yersus the parameter x =Q/Q;
(@ is the frequency detuning of the exciting radiation) for CARS
and OPC

Expression for OPC is derived from (33) by putting
Aw=0.
The value of GSRS is determined by the constant

R 6
(R Q /R% ) = (R—O %’"—) > 1, and the spectral behav-

jor of this factor depends on the smoothly varying
function ISARS and the resonance profile g(4w). The
latter is characterized by a small spectral value, equal
to 2I". The width I' is typical of an isolated monomer,
while the spectral width of a fractal is normally Q,
>T.

The factor G, (33), to an accuracy of the inessen-
tial factor |K|° (the effect of the Lorentz field) agrees
with the upper estimate in (11) at n=3 (cf. discussion
after (11)). The variable x, relating the enhancement
factor GEARS (33) to the frequency of the exciting radi-
ation, with the use of (4) is equal to the relativereson-
ance detuning Q/Q,. Figure 1 illustrates the described
smooth dependence of IFA®S(Q) (33). It has the form
of a doublet with shortwave and longwave peaks. In
the fractal absorption band, shown in Fig. 1, the en-
hancement factor changes by five orders of magni-
tude. A strong dependence on the fractal dimension
is observed, e.g. for D ranging from 1.5 to 2.5 the
longwave maximum is frequency-shifted by an order
of magnitude.

It is- worthwhile comparing (33) with the maxi-
I(I;I;ISm enhancement attained for Raman scattering

max -

GEARS (GRS )2 g2 (4 w) g2 A w). (34) -

The typical value is [9]
GRS + 108 35
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which yields for CARS
GCAES ~ 1012 (36)

Of course, these values are attainable only provided
the local fields (which may be several orders of magni-
tude higher than the external ones) saturate neither
the impurity nor the monomer susceptibilities in the
fractal.

4. Enhanced harmonic generation

Let us first consider third-harmonic generation. This
effect is also determined by a third-order nonlinearity.
The nonlinear dipole moment of the impurity is
= 55 (00, 0,0,0) EP EOEP; 0,=30,
(37

where E© is the local amplitude of the exciting field
at o frequency in the impurity location site. Nonlinear
susceptibilities of the fractal-bound and isolated im-
purities are described, respectively, by

<X3:;6>=FA:BM; <Xfﬁa> ':fA:ﬂy&' (38)

Note that susceptibilities (38) are totally symmetric,
either of them is characterized by one amplitude F(f).
In the case under discussion, unlike CARS and OPC,
interaction between the generated radiation (with wj
frequency) and the fractal may be ignored, ie. one
may put 4 =d"x.

The expression for @ is derived quite similarly
to (23):

IS =Ky o Typ Ty Tood- (39) .

Then, as it has been done when proceeding from (23)
to (24), we “break” the chain of averaging and write
down (39) in the form: .

&Ry =K a5y o> Mg My U5
MG M, My (40)

By angular averaging of vectors n° and n'/ we make
sure that the structure (38) is reproduced; the response
amplitude is defined as

F=4fRPK}(BA*+3C3+2A4C(4+C). 41)

Averaging over the distance between monomers
in (41) is carried out with the help of (14) similarly
to the calculation of amplitudes (25), (26). One even-
tually obtains:
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Note that the singularity at x=0 is absent.
Maximum enhancement factor GT# is found just

as (33)

TH RO 18 6 yTH
GHE =(=2) |K.°LH(Q);

R,
s3] s3]
2
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3 x(dx x)[sa(x)—s,( 2 )] )

Expression (43) differs from the analogous result
(33) for CARS and OPC in mainly the following. In
(43) there are no large factors {(powers of the Q,/T'
ratio) as well as no narrow-band spectral structures.
Besides, GTH is determined by both the imaginary
and the real parts of s, function, which results in a
slower frequency drop in the far wings of the absorp-
tion band.

Quantity GIH (43) is determined by the high
power of the ratio Ro/Rp, which may exceed unity.
However, in a general case this is not too high (cf.
[4]). For example, for a dense fractal formed, in par-
ticular, by diffusion-controlled aggregation of spheri-
cal particles, Ro/R,=1.11. Ratio Ry/R,, attains large
values only for the fractal in which polarized
monomers are coupled by long “neutral” bonds. In
any case, from comparison of (43) with (33), one may
conclude that the third-harmonic generation is far less
enhance than CARS and OPC effects.

In Fig. 2 the spectral behavior of the enhancement
factor is shown for the third-harmonic generation.
Note that the dependence on the fractal dimension
is as strong as it is for CARS and OPC (cf. Fig. 1).

Second-harmonic generation is described by the
second-order susceptibility of the impurity. For this
process the amplitude of the nonlinear dipole moment
of the impurity has the form (cf. 37):

(43)

¥4 = 20 (— w,; 0, 0) Ef E®, o=20. (44)
The symmetry properties of susceptibilities of an iso-
lated impurity x> and a fractal x are due to non-
central symmetry of the system, and exactly due to
the presence of the polar orth m. In virtue of these
properties either of the amplitudes is expressed in
terms of three independent amplitudes Fy, F,, F (f1,
f», f5)- Tensor structure of the susceptibility is conven-
iently written as :

LTH
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Fig. 2. x-dependence of the enhancement factor IF¥ for third-har-
monic generation

<X£2ﬂFy)> = m,[F; 5ﬂy+F2(5ﬂy_3mﬂ mw)]
+ F3Gm, 85,—m, 85— Mg Oay)s

<X§2;7Cy)> =m,[f 85y + f2(0p,— 3 m,)]
+f3Gm, 85, —m, 8,5— My Oay)- (46)

The direction of m depends, in particular, on an-
isotropy of the matrix (crystal) into which the fractal
is inserted, or on the normal to the surface on which
the fractal is located, or else on the external electric
field.

Expression for (y*F) is obtained by the same
procedure as (40):

GOPS = KEGEED Mg My <My My - 47)

Keeping the terms with the maximum (RO/R,,,)?
parameter and averaging over the vectors n° and n”,
one can express the amplitudes F; through f;(i=1+3):

F, =3R7°f,Ki24%+C?),
Fps=4sR7® f,,, K}{(TA*+2C* +6AC). 48)

As in the above, the fractal susceptibility repro-
duces the symmetry of an isolated impurity, and the
tensor structures in (45), (46) appear to be the eigen-
functions of the transformation from an isolated im-
purity to a fractal (each of the amplitudes f; is ex-
pressed only through the respective quantity f;).

Averaging over {r'} allows one to obtain the ulti-
mate ratios for the susceptibility amplitudes (45)

R e n 0
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Fig. 3. x-dependence of the enhancement factor IS¥ for second-har-
monic generation

ot () ke {5 [rs0-st (5]
T

For definiteness, the enhancement factor of second-
harmonic generation is calculated for circular polar-
ization. From (45), with the account of (50), we have

SH 4 RO 12 SH
Gmax_lKLl 7{" L (Q)’

m

@ L] L rn09-s2(~3)]

2

Har-o(-3

In Fig. 3 the factor IS¥ is plotted versus the detun-
ing function Q/Q (parameter x). Note that the depen-
dence on the fractal dimension is also strong, though
not so strong as for the third-harmonic generation
(Fig. 2). This fact is quite understandible: the higher
the order of nonlinearity, the stronger the properties
of the system.

As seen from (51), unlike CARS and OPC, the
enhancement coefficient as well as for the third-har-
monic generation bears no information on the initial-
ly narrow spectral width of the monomer; it does
not involves the large coefficient (power of the Q,/T
parameter). Thus one should expect a substantially
smaller enhancement for harmonics generation com-
pared with CARS and OPC effects.

(51)
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5. Evaluation of the enhancement factor
for arbitrary-order processes

Let us estimate the enhancement coefficient G for co-
herent higher-order processes. In particular, we seek
to find out when G is proportional to the large factor
— power of Q/I" (as is the case with CARS and OPC,
and not with harmonics generation, see above).

The n-th-order susceptibility has the form:

1N(—o;0,1,0;7, ... Wy p, — W32y, — W3, e — W),

where p, m are the number of absorbed and emitted
(in external fields) photons; n=p+m; w, is the gener-
ated radiation frequency.

Consider first the case m> 0, i.e. the processes with
photons emission into the external fields (such as
CARS and OPC). For the sake of simplicity, all ab-
sorbed photons in (52) are assumed to have equal
frequencies @, =w, x. Then, following the result (24)
and with neglect of the interference terms containing
products A and C, the impurity susceptibility of the
fractal is estimated as

A
GO

~KE K¥m R;3(n+ép-m.1)

- [a; (A% -1 () AP (1) A*™(@2))
+a,{C% -1 () CP(w,) C*™(@2)>],  (53)

where a,, a, are the numerical coefficients dependent
only on m, p and the type of symmetry in the part
of the susceptibility under consideration (cf,, e.g. (25),
(26)); ™9 is the corresponding to x"F part of the
susceptibility of the impurity center. Formula (53) at
p—m=1 takes into account the additional enhance-
ment due to the impurity-fractal interaction at the
generated radiation frequency w, (cf. discussion of
(21)) This enhancement is observed when w, lies with--
in the absorption band of the cluster.

Employing 4 and C in the form (12), (14) for the
averages and the definition of X, , (28), we rewrite
(53) as '

<x(n1")> m Ro 3(n+0p 1)
oy~ KLKT (R

1 gp-t gmt
,____—_.A5p—m.1 X)) ——
-1l m—1)! X, Xo) oxr =7 xam1
AX,,X,)Im [2a1 5, (0)+aj s(—-’25>] (54)

Functions s, in (54) vary versus , , frequencies
typically over an interval of ~Q,. The strongest spec-
tral dependence in (54) is contained in 4 factor.
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Differentiating A in (54) gives rise to maximum
powers of the large parameter Q,/I. From (54) one
estimates:

<XnF)> m RO 3(n+0p—m.1)
—‘<Xn0)>~K{K§ R,
-Cmt A%-mi(pAdw) A" H{Aw)
-Im [2 a; s,{x)+a,s, (—;)], (55)

where Cy is the binomial coefficient.

As seen from the comparison with (15), the spec-

- tral dependence of the enhancement factor of the am-

plitude {}"F>/{x"C)> for the given amplitude sign
reproduces the form IM y,, ie. the form of the ab-
sorption index. Thus, giant impurity nonlinearities
should be observed only in the absorption band of
the fractal.

From (55) the order magnitude of the enhance-
ment of the effect (i.e. the output radiation intensity)
is calculated for the case under discussion m>0:

RA\S /. \2—1+8p 1)
G® ~(C" 12K, 2" o) (m
max ( n—2 I LI (Rm 21—-

- g N4 w) g1 (pAw) | (Q), (56)

where J,(Q2) denotes a smooth (in the limit of the frac-
tal absorption band) frequency dependence, described
in (55) by s, functions.

For m=0, ie. for generation at a maximum fre-
quency (the highest-order harmonic) by means of a
familiar procedure used above, one may see that the
amplitude of the effect is a ploynomial in A and C
to the n-th power:

n

A~ G R T axAKCTE, (5T)

K=0

where ay are the numerical coefficients, dependent
on #u (cf. (41) and (48)).

Averaging in (57) is performed as described above.
However, since the complex-conjugate amplitudes A*
and C* are not involved in (57), there are no large
terms c0A""! in the susceptibility. Spectral depen-
dence of the amplitude gain {}"P)/{x") is given

by the functions s,(x), sa(—g) and their derivatives

up to the n-1-th (cf. (42) and (49)); let us denote it
by J; (). Function J;() varies within a typical fre-
quency range £,; in the absorption band of the clus-
ter this is of order unity. For the enhancement of
the n-th-harmonic generation one eventually obtains
a simple expression

R.\6n
G~ 1D~ K (22) 1@ (59

Thus, the n-th-order nonlinear sysceptibility of the
impurity in a fractal, compared to that of free impuri-
ty molecules, is enhanced by a factor of (56), propor-
tional to the 2(n—1+4,_,, ,)-th power of the large
parameter o,,/I". This is always the case, except when
a higher-order harmonic is generated (58), without
the indicated parameter being involved.

6. Final discussion

Now we briefly summarize and discuss the main re-
sults and. main principles of this work. A theory has
been developed for nonlinear susceptibilities of impu-
rity molecules bound to a fractal. To describe CARS
(OPC) the respective formulas (18), (30)+33); (38), (42),
43); (45), (49)+51) have been derived.

. The nonlinear effects are believed to be enhanced
due to the existence of high local fields generated in
the vicinity of the fractal monomers which appear
to be essentially stronger (up to several orders of mag-
nitude) than the mean (macroscopic) field. Large
values of the local fields are, in their turn, due to
the interrelated properties inherent in a nontrivial
fractal: quasiresonant spectral behavior (partially
concerved monomer’s individuality and (mainly) in-
homogeneous spectral broadening; disordered struc-
ture, strong fluctuations.).

Proceeding from the above obtained qualitative
pattern, simple upper and lower estimates for the ef-
fect (11) have been calculated. These two values differ
substantially: the former contains a large factor
(82,/T')*", while in the latter it is absent. The estimates
obtained are valid to an accuracy of the inessential
factor, responsible for the Lorentz field effect.

Results of the complete theory (56), (58), obtained
for an arbitrary-order nonlinearity, allowed us to cor-
relate the different parametric effects with the limiting
estimates (11) derived (cf. discussion after (58)). The
enhancement factor G, (58) for the higher-order

max

" harmonics generation (when the frequencies of all

photons add) is always estimated by the lower limit
in (11). This formally follows from the fact that all
poles of the averaged susceptibility, as a complex fre-
quency function, lie in the same (lower) semiplane
(cf.,, e.g. analytical properties (47), (48)). Physically this
implies the destructive effect of the fluctuating phase
when averaged over the ensemble of fractals.

A different result (56) has been obtained for the
processes with photons substraction (when suscepti-
bility (52) contains at least one negative frequency).
When excitation is nearly degenerate (the exciting



field frequencies are identical to an accuracy of I),
G, (56) is estimated by the upper limit in (11), ie.
the susceptibility xP) phase fluctuations are inessen-
tial. The described nonlinear phenomena involve

third-order nonlinear effects: OPC and CARSat~

small frequency detunings of the two exciting fields.
With the detuning increasing up to the spectral width
of the fractal Q, the value G™ decreases down to
the lower limit in (11), which is described by the factor
g(4w) in (33), (56). Thus at finite detunings the de-
structive effect of the phase fluctuations becomes im-
portant for the processes with photons substraction
as well.

The described dependence of the enhancement co-
efficient on the nature of the process (photons sub-
straction, frequency degeneracy) is not apparent, be-
cause in all the cases the local fields are equally en-

hanced (by a factor of w,,/I') compared to the mean

field.

Actually, for coherent effects, the field amplitude
is averaged and the relative phases of the waves, gen-
erated by different impurity centers, become signifi-
cant. (The earlier estimates for coherent effects have
been obtained in [10] with the only account of the
enhancement of the absolute local field, neglecting
its phase; spectral broadening due to the disordered
structure of the system was out of consideration as
well).

In the processes involving photons substraction
the frequency-difference dependence 4 o (see (33), (56))
of the enhancement coefficient is contained in factor
g(A4w). This dependence g(4 w) has a two-photon res-
onance profile: it is determined by 4« as compared
to 2I" (we emphasize that I is the natural resonance
width of an isolated monomer) and is independent
of the position of the system levels. The latter ac-
counts for the fact that this resonance is not subject
to inhomogeneous broadening, and hence for the res-
onance natural width and the resonance contribution
to the enhancement. The appearance of such nonlin-
ear resonance, in spite of the assumed linear behavior
of the monomer susceptibility, is associated with the
interaction of the monomer with the nonlinear impu-
rity. i

The value of the enhancement factor G and its
smooth dependence on the exciting radiation fre-
quency depend largely on the fractal dimension. Fig-
ures 1-3 illustrate the indicated dependences for the
second- and third-order effects. The value of reduces
with growing fractal dimension, and its spectral pro-
file becomes broadened. When D=3, the nonlinear
susceptibilities are no longer enhanced (the developed
theory is not adequate for this case).

All the above arguments lead us to conclude that
the effects with photons substraction are enhanced

91

to a much greater extent than higher-order harmonics
generation. It is important that the value of the en-
hancement (56) is independent of the number of pho-
tons substracted.

—In-the-spectral dependence of such -monomers
both the impurity center resonances and the nonlin-
ear monomer resonance are observed. As far as we
know, these nonlinear resonances haven’t yet been
considered elsewhere. Their peculiarities are due to
the interaction of strong fields with a complex, con-
sisting of the nonlinear impurity and the linear ele-
ment (a monomer in a disordered fractal medium).
The enhancement of the nonlinear susceptibilities
strongly depends on the Hausdorff fractal dimension.

Experimental observation of the predicted effects
could provide information on the properties of the
monomers, forming a fractal (the question as to what
is a monomer is, generally speaking, not trivial, cf.
[5]) and, in particular would allow to find the spectral
width from the g(4w) profile. Inserting I into the
expression for G one can evaluate G and compare
it with the independently measured value.

The most promising candidates for fractal experi-
ments are, evidently, clusters of noble metals, e.g. par-
ticles in colloids.

Spectral properties of the impurity particles, which
can be studied by CARS on fractal-bound molecules,
are similar to those of free molecules. However, the
large enhancement predicted for CARS intensity (see
discussion of (36)) would certainly extend the capabili-
ty of the method to reduce the radiation intensities
and molecular concentrations and, hence, would im-
prove its analytical application potential.

Since, being enhanced, the four-wave parametric
processes can be observed at a substantially lower
molecular concentrations, the impurity-containing
fractals seem to be promising nonlinear media,
especially to meet the requirements of miniaturization
of the sample.

Besides the parametric processes, the theory is ca-
pable of describing nonlinear absorption determined
by the imaginary part of the nonlinear susceptibility.
The latter refers to the processes with photons sub-
straction and hence is maximally enhanced, according
to (55). In particular, the two-photon absorption in-
dex is proportional to Im y'*¥(—w,, @, ®;-w,) (see
(30), (31)). According to the theory presented, the ef-
fects determined by the nonlinear absorption are en-
hanced as well: these are nonlinear impurity photo-
chemistry, ionization, dissociation, photoeffect, etc.
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