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A theory is developed which describes the optical properties of fractal clusters (i.e. of
aggregates of non-trivial Hausdorff dimension consisting of interacting monomer parti-
cles). It is shown that with respect to these properties fractal clusters differ significantly
from both gases and condensed media. The interaction between the monomers is assumed
to be dipole-dipole. The theory is based on the self-consistent field equations; it takes
into account the fluctuation nature of the fractal cluster (considerable probability for
approach of monomers to each other despite an asymptotically zero integral density).
An expression is obtained for the linear susceptibility. Combination of the monomers
‘with the formation of a cluster entails the splitting, shift and broadening of the monomer
spectra. These changes depend strongly on the fractal (Hausdorff) dimension of the cluster

but do not depend on the number of monomers in it (for a cluster of non-trivial dimen-
sion). On the other hand, the monomers partially retain their individuality and the suscep-
tibility — its quasi-resonance nature. Broadening, like the imaginary part of the susceptibil-

ity, does not depend on dissipation in an individual monomer. It is predicted that giant |

Raman scattering may occur at an impurity particle fixed near one of the cluster
monomers when excitation takes place in the absorption band of the cluster. The enhance-

ment factor for the scattering is also determined by the fractal dimension.

PACS: Bl 6 4,60

1. Introduction

Interest has recently been grown to the so-called frac-
tals — objects of fractional dimension, immersed into
a three-dimensional space [1, 2]. Their physical coun-
terparts are in particular fractal clusters which are
aggregates of particles (called monomers) bound to
each other. The number of monomers within a sphere
of radius R inside a fractal is asymptotically (at R— o0)
defined as the ratio

N=(R/R,)? - €

where R, is the length scale constant, D is the indexi
called the fractal (Hausdorfl) dimension. Generally!
speaking, D is non-integer; a fractal is called non-!
trivial when D is smaller than the space dimension. l

Due to the bonds, there arises a long-range pair |
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correlation between the monomers, the respective
density-density correlation function being

g(ryoor®™3,  R,<SrsR,, )

where r is the distance between the monomers, R,
is the entire fractal size, the function g is also depen-
dent on the fractal dimension {(as a consequence of
scale invariance). :
Fractal clusters are produced in particular by dif-
fusion-limited aggregation [3-5]. Henceforth, parti-
cles of different physical origin in colloids and suspen-
sions are also fractals (see e.g. [6-9]). Another exam-
ple of fractal aggregates can be the solid surface
grown under diffusion-limited conditions and insuffi-

cient surface relaxation or sputter-deposited [5, 10].
Most macromolecules (polymers) are fractals [11] as
well as percolation clusters formed by random cou- :
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pling of monomers which are a good approximation

for polymerization processes and phase transitions.
Reference [12] gives axcomprehensive description of
linear optical properties of metal clusters, which when
growing under nonequilibrium conditions may form
< fractal structures.

likewise as d'(t)=d, e~ '**+c.c. Indices w by the am-

plitudes will be omitted in further treatment. For the
sake of simplicity, the monomers are assumed to be

- identical and isotropically polarized. Then the re-

sponse amplitudes will have the form

Reference [13] treats the light scattering by frac-
tals in terms of the mean-field theory. In [14] the
dielectric response is calculated within a model of the
effective medium. It should be noted that both papers
ignore such a decisive property of the fractal as its
fluctuation behavior [15]. In this paper it will be
shown that fractals possess the unique optical proper-
ties essentially different from those of both gases and
condensed media. The monomers lines in a fractal
are broadened and split into doublets: the latter how-
ever remain -centered close to the initial position
where the fractal absorption is minimum. Thus the

individuality of monomers (resonant line profiles) is .

partially retained. This is due to the fact that the inte-
gral density of the particles in a fractal tends to zero
as its radius grows coR?~ 3, For this reason, a simulta-
neous ‘interaction of many monomers is not likely
to occur, while the binary interaction becomes highly
probable because of the pair correlation (2). The

- strong binary interaction at an asymptotically zero
density is the consequence of the fluctuation nature
of a fractal. At D—3, i.e. in a trivial fractal, the lines
are very much broadened (in the “thermodynamic”
limit N — 00, R.— 00, Ry=const.) which is associated
“with the long-range dipole-dipole interaction. This in-
dicates that the monomers tend to lose their indivi-
duality (i.e. they tend to form a wide range of levels)
in a condensed medium.

Another important property of fractals, as will be
shown below, is the appearance of giant Raman scat-
tering (GRS) from the impurity centers. As is conven-
tionally thought (see reviews [16, 17]). GRS occurs
when an impurity attaches to the rough surface of
a polarized solid. In this regard a fractal represents

an extremely rough “surface” (with D dimension). The |
results obtained allow us to account for the earlier * -
obscure fact [17] that the strongest GRS signal from :

impurity molecules is observed on metal colloidal ag-
gregates (which are known to be fractal clusters).

£

2 Linear susceptibility of a fractal

+ Consider a fractal consisting of N monomers located :
in {r'} sites and coupled via dipole-dipole interaction.
We seek to calculate the linear response of the dipole
moment in terms of time-dependent self-consistent|
field equations. Let the field have the form E(1)
=E,e " +c.c. The quantum mechanical average of ‘
the dipole moment of the i-th monomer is written

di=1o(E+E); ®

where E is the external field, E' is the field of other
monomers in the point of location of the given one;
Yo=7o(w) is the polarizability of an isolated

monomer, the Latin superscript hereafter lables the !

number of the particle and the subscripts refer to the
tensor components;

Ei=—Y"(8,5—3ni nij) (r'9)~3dj, @
Jj

where n'/ is the unit vector in the direction ¥/ =rf —r’;
a prime at ) ' shows that the summation extends over
all monomers, except the i-th one. Our further simpli-
fying assumption is that the light wavelength 1 ex-
ceeds the cluster size R,.

A distinctive feature of the dipole-dipole interac-
tion (and, in general, of multipole interaction with

a non-zero moment) is that the self-consistent field
(4) turns to zero when averaged over spherically sym-
metric distribution. Hence only (anisotropic) fluctua- '
tions of the particle density contribute to (4). Because -
of the rarefied structure (asymptotically zero mean %
density; cf. Introduction) of a non-trivial fractal, near-
ly all the monomers are a long distance from the -

given one and form approximately isotropic cloud
negligibly contributing to (4).

Proceeding from the above consideration, we ex- °
tract from the self-consistent field E’ the contribution -

from few nearest monomers (the fluctuating compo- |

nent). The field of the rest (distant) monomers can
be taken into account in a usual way (see e.g. [18]),

if one implies that E (3) is the mean (instead of exter-

nal) field and adds the Lorentz field EX. As a result,
the self-consistent (local) field has the form

Ey= =" (0= 30 nif) ()2 dj+ EL. ).
j ) .

Here Z" means summation over the monomers con-
tained within a sphere of some, sufficiently small, radi-
us R;.

The Lorentz field can also be calculated for frac- :

tals. It is reasonably done by using the integral rela-

tions (similar to e.g. [197). Making use of (2), for the :
monomer density around a fixed i-th monomer, we -

obtain
Dd /R,\P-3 :
El= Ry .
3R} (R) ’ ©



where d is the mean (with respect to the response
amplitude) dipole moment of the monomer. In con-
trast to the three-dimensional limit, the Lorentz field
(6) depends on the radius of the “cut out” sphere,

As seen from (5) and (6), the total contribution
to E from all monomers that are outside the sphere
of R, radius does not exceed the contribution from

~ a single monomer at a r <R, distance from the given
one. Such approach of the monomers is quite prob-
able inspite of the asymptotically zero integral density
of the non-trivial fractal. From (1), (2) it follows that |
the average number of monomers within a sphere
of radius R, around the given one is unity.

Proceeding from the above indicated properties;
in the sum )" in (5) we shall only keep one term
corresponding to the nearest, say j-th, monomer (bi-
nary approximation). The requirement for that is that
within the Lorentz sphere there should be only one
(on the average) monomer. According to (1), (2), this
means that R, =R,,.

Taking into account the dipole-dipole interaction |
symmetry with respect to the particles exchange !
(change of the sign of n¥/ in (5)) and the fact that .
the approached monomers appear to be in identical |
fields of the distant monomers, we conclude that d’
=d". Then the self-consistent field (5) is rewritten as

Ef=—dj(5,—3nJ n)) ()3 + EX; E*=Dd/3R}. (7)

Although both contributions to (7) are of the same !

order ‘of magnitude (it should be taken into account |
that r'/<R,), they differ basically in their effects. The |
field proportional to @’ (binary) and describing fluctu- |
ations in close vicinity of the monomer leads to the ;
spectral shift and broadening, independent of the Ini- |
tial relaxation (dissipation) in the monomer. More-:
over, analytical properties of the susceptibility are;
modified: instead of the poles in the complex fre-!
quency plane there appear points of branching. Un-
like the binary contribution, the second term (Lorentz:
field) in (7) is not of a random origin and hence, as
is obvious, does not affect the analytical behavior of

the response, only leading to some renormalization.

of the latter (with the account of the Lorentz field
only the response function remains meromorphic). |

Therefore, not to obscure with details the results
associated with the fluctuation nature of a non-trivial
fractal (high probability of binary interaction at zero
mean density), first we adopt pure binary interaction,
neglecting the Lorentz field EX. Next (see Sect. 4) EX
will be taken into account precisely to confirm the
above suggestions.

So, omitting E* in (7) gives a solution for 3), (7
in the form:

di=Moy' Eg; Map=(15"+0) 6,5—3niinijf o,

i

!
1

®)

3

where ¢ =(r")~3. The response matrix M ! is defined

as

Mg =A6,5+Bnini, A= '+ o) 1;

B=(15'~20)"'~ 4.

" Now, we take into account the probability for any
of the fractal’s monomers to approach the given one.
Then, ¢ should be written as

o=Y0")">. - (10)

A self-consistent use of the binary approximation 8-
(10) should only yield, when averaged over the config-
urations {r'}, the pair eorrelator (2).

With the account of isotropic particles distribu-
tion, for the mean dipole moment one obtains

1=1/3Sp(M~1y, (11)

where (...} is the average over the {r'} ensemble;

d=Zl E, .

©) |

i
i

the trace is taken by tensor indices; 71 is the mean '

monomer susceptibility in a fractal. The value of 11
is, obviously, independent of the number of the parti-
cle. Hence the dipole susceptibility of the fractal is

1 2 1
=Nz =N—< (12)

~ +— )
3\xo ' +o xo‘—2<p>

Physical meahing of the result obtained is appar-
ent. The first term in angular brackets refers to the

dipoles direction normal to the vector r’. Statistical |

weight of such disposition equals 2. The second term

I
i

i
|
H

describes collinear geometry of dipoles (when the field '

. . . . . |
reverses its direction and becomes twice as high; cf. |

(4)). The statistical weight is 1. The additive character
of averaging over the configurations, following from
(12), is associated with the binary approximation.

To calculate g, it is necessary to find the average
of the quantities (z4¢)~!, where z is the complex
parameter (cf. (12)). For this purpose we make use
of the Laplas transformation

1 7 L
<m>=zoj dtexp(—izt) F(r), (13)

where ‘Imz<0. The result for Im z>0 can be found

by analytical extension;

F(t)=<exp(—ite)>

=T{1~{1—exp[—it()>]}}. (14).

As a consequence of the binary approximation, aver- |

aging over all pairs of monomers in (14) is done inde- |
pendently to yield ]




F@O)=[1-701",

f(r)={;f‘[1—exp(——i—i)g(r)d%]}{:fcg(r)d%}—l.

(16)

Substituting correlator (2), from (16) one obtains
in the limit R,— oo (actually it is required that R,
>1%0]*/?) an asymptotical expression.

S=RIP(PPr1—Dp/3); a7

where the branch of the power-law function is fixed |
by the choice of the phase: i=¢'™2. The averaging |
procedure employed is analogous to the one used in |
the theory of static damping of incoherent excitations
[20]. From (17) it is evident that f(r)—0 at R.— co.
Therefore, with the account of (1), from (13), (15), 17) |
in the “thermodynamic” limit (at N— oo, R,— o0,
Ro=const.) one finds

<(:+(P)_l>=R3 Sa(_R(:’; Z)s

S,(z)=i F.exp[izt—(it)’]"(l—oz)], (18)
0

where x=D/3, I'(...) is the Gamma-function, S, is
“the function of the complex variable z, determined
from (18) at Im z>0. Its analytical extension to the
lower semiplane is fulfilled through the relation

S.(=*)=8}(2). (19)

As can be shown, the function S,(z) is analytical in
the complex plane with a cut along the real axis from
0 to o0; z=0 is the point of branching. At a=1/2
“the function S,(z) is represented as the standard func-
tions [21] . -~ :

Sl,/z(:)= -

TL'Z 1/2 s T 1/2 .
A e ()T e
The dipole susceptibility of the fractal, as follows :
from (12), (19), has the form: ’

NI)--

=Ny, 1:=1/3R3[2S,(~R3 15"
—1/28,(1/2R3 15 1)]-

From this expression it can be seen that the cluster
susceptibility, as a function of the monomer suscepti-
bility, is determined by the fractal dimension, while
the dependence scale is fixed by the parameter R,
of the fractal.

In order to find the dependence of 7, (21) on the
radiation frequency, we have to specify the form of

@,

(15) |

the dependence for an isolated monomer Zo- For sys-
tems having an isolated resonance, in its vicinity

%o=—Ryw,(Q+i", (22)

where Q is the resonance detuning, I is the relaxation
constant (resonance width); w,,, R, are, respectively,
the typical excitation frequency and geometrical size
of the system. In a two-level model

R, wp=1d;,|? (23)

where d,, is the dipole moment of the transition (we
adopt the system of units where A=1). For the case
of importance when a monomer has a shape of a
macroscopic sphere of R,, radius with the dielectric
permiability ¢, the familiar expression

Xo=R3(e~1)/(e+2) (24)

in the vicinity of an isolated resonance is reduced
to the form (22) with the parameters

W, =3(0e/0w)™, F'=1/3w,¢"; £=Ree; e’=Ime.
(25)

In (25) the values of ¢”, 3¢'/6w are taken in the point
in which &' = —2, Note that for a plasmon resonance
in a metallic sphere

e=60—(0,/0), w,=3/2w,(s,+2)732,
Wo=w,(eq+2)" 12, (26)
where ¢, is the constant contribution to ¢ due to inter-
zone transitions; w, is the electron plasma frequency;
w, is the resonance frequency corresponding to Q=0.

From (21) with the account of (22) it is evident
that incorporating a monomer into a fractal leads
to broadening and shift of the monomer's spectral

‘lines by the amount of order of characteristic “frac-

tal” frequency

Qr=w,(R,./Ro). 27)

As has been mentioned, the spectral broadening is
due to large density fluctuations in a non-trivial frac-
tal.

Existence of the thermodynamic limit (or scale in-
variance, i.e. independence of the susceptibility per
monomer of the cluster radius R,) is typical of a non-
trivial fractal (D < 3). For D=3 this property vanishes. |
In the latter case, as can be seen from the initial rela-}
tion (16), a logarythmic divergence appears and the'
line broadening (shift) of the monomer is estimated
as

0~ 0p(Rof/Ro)® In(R/Ro). (8),

i
'
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Fig. 1. Real and imaginary parts of function (18). Curves: | —x=0.5, !
D=15;2—-0=0.83,D=25

- If the fractal broadening Q  (27) appreciably ex-'J
ceeds the initial (relaxation constant) width I', the
latter in (21) may be tend to zero. In this case however’
the imaginary part of the function S, does not 20|
to zero: it is finite and has the sign determined by
the sign of the imaginary part y,. The susceptibility
in the case discussed is defined as a complex function
of a purely real argument

5, {x)=S,(x +i0). (29)

This function satisfies the following rule of sums for
the imaginary and the real parts:

[ Res,(x)dx=0.

bl * o}

FIm s, (x)dx=r, (30

For x <0, the function s, is real and acquires the form !

s, (x)= thexp[xt—t“l"(l—oc)]. (31)
0

The imaginary part Ims,(x) is positive at x>0; in
the point x=0 it is zero with all its derivatives. The!
properties described can readily be illustrated by an§
example of a fractal cluster with the dimension 1.5,
for which from (20) it follows '

Ims; ;5 (x)=1/2nx" 32 exp(—n/4x) 6(x),

(32)

where §(x) is the Heavyside step function.
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Fig. 2. Real and imaginary parts of susceptibility (34) (per monomer)
calculated in the binary approximation as a function of the variable
x=—R3Rey;'=0Q/Q,. Curves: 1 -D=1.5,2—D=25

The function s,(x) describing the spectral line in I
the case of large fractal broademng 1s shown in Fig. 1 |
for values D=1,5;2,5. It is just in this interval that l
the values of Housdorﬂ' dimension of most known
fractals lie. Note that when fractals are on the surface
and the electric field E is perpendicular to it, the sus-
ceptibility is solely determined by the function S,:

11=R3 Sz(x); x=—R} Rezgle/Qf,

where the approximate value of x has been calculated
with the account of (22).

Zero value of Im S, observed in Fig. 1 at negative |
detunings is due to the displacement of the exc1ted,
monomers levels upwards from their initial position |
(positive interaction energy). Thus, the resonance.and |
consequently the absorption described by Im % are|
possible only for positive detunings from the! i
monomers lines. Of course, the absorption at negative
detunings is actually not exactly zero, but its parame-
ter (I'/max (L, 2,))* is negligibly small.

The spectral dependence of the fractal susceptibili-
ty (21) in a three-dimensional space at Q,>I and
with (19), (22) acquires the form:

x=Nx1=1/3NR3[2s,(x)~1/2sF (—1/2x)],

)
|
|

34

where x is defined by (33). This dependence is plotted

~in Fig. 2. As seen from the figure, with decreasing !

fractal dimension the resonance becomes narrower
and the peaks are shifted to the axis =0, ie. the |




(E+E),=y5" M3 E,.

E;

b

monomers retain more of their individuality. Note
that the real part of the susceptibility is no longer
proportional to the imaginary part derivative. Split-
ting of the spectral contour into doublets is associated

- with contributions of different dipole configurations
(see the-discussion following formula (12)). Resonance

at negative detunings is generated by contributions
of collinear dipole pairs having a down-shifted excited
level (negative interaction energy). At detunings larger
than the fractal width, susceptibility (34) is indepen-
dent of the fractal dimension and tends to approach
the susceptibility of an isolated monomer.

The resonance width and the imaginary part of
(34) are finite and independent (at Q3 > I') of the width
I'. They are determined by the phase mismatch. Dif-
ferent pairs of monomers, which are probable to ap-
proach each other because of the fractal correlation
(2), have randomly shifted levels and resonate at dif-
ferent frequencies, which results in a rapid relaxation
of the dipole moment (polarization). This effect is sim-
ilar to the Landau damping in that the finite width
and the imaginary part of the susceptibility are inde-
pendent of dissipation, limiting the lifetimes of popu-
lations.

3. Giant Raman scattering on impurities
in a fractal

Consider the enhancement of Raman scattering on
an impurity particle due to the local field in a fractal
exceeding the mean one. Let the particles on which
the Raman scattering occurs be a small distance from

some (i-th) monomer. Its radius-vector from the point -

r will be denoted as R. The field E° acting on the
particle is essentially a combination of the mean field,
the self-consistent field of the fractal in the point of
the particle location and the field of the nearest (i-th)
monomer considered as an induced dipole:

=‘ZO H:zﬂ (E + Ei)ﬁ: -
I, p=ad,z+bning; a=yg*—R™3, b=3R"?

where ¢ is the unit vector in the R direction. Neglect-|
ing the Lorentz field, from (3), (8) for the sum of the:
mean and self-consistent field one obtains l
|
!

(36);

Not to shadow the main physical principles, at'

first we shall neglect the enhancement of Raman scat-:

tering due to the impurity interaction with the fractal:
at the scattered radiation frequency. Anyway, this'
holds true for fairly large frequency detumngs .

The GRS enhancement factor G is defined as the-

35) |

ratio of the average square of the field influencing.
the particle to the square of the mean field. From:
(35), (36) in the limit of spherical symmetry it is estl—‘
mated to be

G=—<|Ec|2>/IE|2=1/3Sp<TT+>, T=HM™1 (37

.Supposing random orientation of the particle with

respect to the fractal bonds, G (37) can be represented
as a convergence of two tensors:

_3<H Hﬂ'y> <M/6 M&al‘>'

Using the response matrix in the form (9) and averag-
ing over orientations, one finds

Mgt Mg,"> =0, <|AP +3| B +% Re(4B*)).  (39)

The expression for {II, s I}, has the same form, with
the substitution A—a and B—b. Then (37) will have
the form:

G=3R™°2zs '+ oI D +15 ' 20172} (40)
One can readily see that

- xo '+l = —R3 ImS,(—R3 15 ))/Im 5! (41) |

Kl ' 2017 =4R3Im S, (3R 15 V/Im x5 . (42)

(38

Of the three fields considered (see discussion of (35)) !
the essential contribution is given only by the field
of the monomer nearest to the scattering particle. Its |

dipole however is generated by the self-consistent field

of the entire fractal and depends on the Housdorff !
dimension D. With the account of the above estimates, :

from (40), (41) the enhancement factor is evaluated
as : i

| 1
m|48.(-R3 )-S5 Kbz )]

(43)

_ 1R3R°S

— 1
3Imyg!

The enhancement factor reaches its maximum.
Gmax at R~R,,. For dielectric sphere we may put ex-
actly R=R,,. Then from (43) or large fractal broaden-
ing (2,> I') with the account of analytical extension

(19) it follows that

2

3 Q F (44)

Im [4s,(x)+s,(—x/2)],

max

where x is defined by (33). It is interesting to note
that, the spectral profile of the enhanced GRS, as
seen from (44), reproduces the spectral form of ab-
sorption given by Im y, (34). Relation between the
absorption (Im y,) and the factor G, can be written
in an explicit form, provided (44) is expressed in terms
of (34)




2
2_2".'_

QT

Gmax— R(—)-S Im X1- (45)

It is worth comparing (44) with the expression
for enhanced GRS on the impurity particle located
on the dielectric sphere surface [17]

Gra=4le— e+ 2P =402/,

where the latter equality has been obtained for the

sphere susceptibility in the form (22), I’ being the reso-

nance width. For I" the observed resonance width

_ is conventionally used while the frequency shift due
to the interaction of various spheres is calculated from
the theory of mean Lorentz field (see e.g. [16]). Note
that both the resonance broadening and the reso-
nance shift are large. Hence the phenomenological
parameter I” corresponds to the value Q in the theory
under discussion. From this one can see that (46),
being used for a fractal cluster, underestimates Grax
by a factor of Q,/I'>1 as compared to the estimate
(44), derived from the consistent theory which evalu-
ates the shift and broadening of the monomers reso-
nance jointly.

Appearance of the factor (2,I)! in the GRS
enhancement coefficient is not accidental and is inde-

- pendent of the particular approximations. The point
is that spontaneous Raman scattering is a noncoher-
ent effect. Therefore it is the square of the absolute
value of the field influencing the particle that should
be averaged over the ensemble of fractals (cf. (37)).
The phase of the field, which is essential for coherent
effects, is of no importance here. As a consequence,
emission from the impurity is determined by the local
field of the nearest monomer. If the latter is resonant
to the applied field, then, according to (46), the en-
hancement factor G is proportional to I'~2. The prob-
ability of this event is-estimated as the relative spectral
width I'/Q,. The product of these factors is responsi-
ble for the predicted dependence (44) (within a unit
factor).

If the frequency shift due to Raman scattering is
small (dw>T ), the impurity-scattered radiation also
interacts with the fractal monomers improving the
efficiency of the process. The resultant form of the
GRS enhancement factor is (cf. (37))

G=%<Ra,8 Tﬂy'Rfﬁ Tc‘;‘;>s

R=M"'%; ;=R *{,,—3n5n5). 47

By the familiar procedure, from (47) one obtains
for the enhancement factor G, in the main order

wi 27 3
=—m 2 2 g— )| 1m y,/R3. 48) |
Gmax er3[10 10 ( ):, le/ 0 ( )

|
|
|
i

(46) |

=

. i
Comparison of (48) and (44) shows that the account ‘
of the additional enhancement due to scattering on .
the low-frequency impurity vibration leads to a rapid
increase of G, since w,,/I"> 1. !

4. Account-of the Lorentz field

Considerr the influence of the Lorentz field. With the
account of E*, solutions (3) and (7) will have the form

(cf. (8)):
di=M_' (E+E4),.

For the fractal susceptibility one finds
“9)

|

where y, is defined by (21). Hereafter the tilda marks f
a renormalized value, ie. the one calculated with the |
account of the Lorentz field. Then the spectral depen-
dence of the susceptibility will be given not by (34),
but by

T=NJi, 1=R3[R3 ;' —a]™ Y,

I=NJj=NR3{3[2s,(x)—1/2s¥(— 1/2x)] ! —Of.}_l.
(49')

It should be noted that unlike (34), susceptibility (49')
has a pole. However, since the real and imaginary
parts of y, are of the same order of magnitude, the
pole occurs far away in the complex plane and does |
not appreciably affect the spectral behavior at physi-
cal values of frequency. : f

Figure 3 illustrates dependence (49"). From com- ;

Re %,/R?
1

~

. . X
s 0 5 o W
Im X,/R3 '
05 1
1
2
I T T T T x
5 -0 5 0 5 10 15.

Fig. 3. The same as in Fig. 2, but for susceptibility (49') renormalized
with the account of the Lorentz field
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- normalization does not affect its qualitative behavior.

- where G is defined by (44) if dw>Q,, or by (48) if |

parison with Fig. 2 one can see that, as has been ex- [
pected (see discussion after (6)), the susceptibility re- f
!
Indeed, the spectrum remains splitted into a doublet !
with the components being shifted and broadened by

the same order of magnitude. Quantitatively the re- |-

normalization in the “blue” range (2>0) is notice-
able: the peaks are by about 30% higher and a little
shifted to the Q=0 axis as compared to Fig. 2. In
the Q <0 limit the renormalization is negligibly small.
Thus the linear fractal susceptibility depends mainly
on the fluctuations in the close vicinity of the
monomer. The effect of the Lorentz field is only to
somewhat renormalize ,, the renormalization being
small in the “red” region of shifts where GRS is of
most interest.

Similar to the above considerations, the account
of the Lorentz field renormalizes the GRS enhance-

These properties allowed us to construct a theory !
of perflinear response of the non-trivial fractal by rep- |
resenting the self-consistent field as the sum of the |
nearest neighbour field (binary approximation) and |
the Lorentz field. The former appears to be the de- !

ment factor. Instead of (36) we obtain:

(E+E), =35 M (E +E"),, (50)
which also results in the renormalized value /
G=G|1+az,/R3, (51)

AwT. Then, instead of (48) one has

(52

4

O, o _5[27 3 .
= == 0(—Q)|Im 7,.
max er;; (4] ,:10 10 ( )} m/.l

Thus, the Lorentz field introduces no changes in (48)
that relates the GRS enhancement factor to the ab-

sorption.

5. Final discussion

We summarize in short the basic principles used and
the main results obtained. A theory of optical proper-
ties of fractal clusters (for shortness referred to as
“fractals”) has been developed. The linear susceptibil-
ity has been calculated (see (21), (34), and (49) and,’
also Figs. 2 and 3). Giant Raman scattering has been |
predicted on the impurity centers bound to a fractal |

‘(the enhancement factor is given by (43), (51)).

It has been shown that fractals possess unique:
optical properties different from those of gas-phase
@and condensed media. The point is that non-trivial
fractals have a small (asymptotically zero) mean den-:
sity (in this respect resembling gases). This is due to |
the power-law pair correlation (2). The same correla-
tion however may cause the monomers to approach
each other and hence to be involved into a strong -

interaction (as is the case in condensed phase). -

Cisive one (see the discussion following formulas (7), |
(49) and (52)).
Giantic Raman scattering from a fractal occurs |
because the impurity particle fixed at some monomer ,
is subject to a strong local field of this monomer only.

This field is strong because all fractal monomers re- |

tain their individuality (as a consequence of rarified 5
structure and disordering of the fractal). The enhance- '
ment factor G, estimated in binary approximation, ;
is given by (48). Account of the Lorentz field, renor- "
malizing the enhancement factor, does not affect its |
relation to the fractal absorption (see (52)).

Finally, let us consider qualitatively application
of the theory to real clusters, which, as has been men- ’
tioned in Introduction, are widely spread. In this con- |
nection it should be noted that when developing the
theory (see the transition from (14) to (15)) we took‘
into account only the pair correlations whose func- i
tion (2) is determined by the fractal properties, and
ignored many-particles correlations. If still the latters )
are strong, then a group of strongly correlated parti-
cles may be considered as one monomer with a renor-
malized susceptibility. By the procedure of renormal-
ization, analogous to the one used in the theory Ofl
phase transitions, it is possible to return back to weak |
many-particles correlation and to derive from (14) for-|
mula (18) and all the subsequent expressions.

For example, flexible linear macromolecules of po-
lymers are fractal clusters with D=~5/3 dimension!
[11]. A renormalized monomer in such macromole- |
cules may be considered to be the part of the chain!
limited by the so called persistent length. The latter
is a range of strongly correlated monomers where

i

" the polymer may be considered to be rectlinear. The

persistent length may range from some units (e.g. in
RNA) up to hundreds (in two-chain DNA) of
monomers,

Let us see how the theory can be applied to the
effect of GRS. Consider small spherical particles of
argentum whose plasma oscillations correspond to
the wavelength 2p=2mc/w,=140 nm. The excited
GRS spectra in such systems are normally thought
to group around the plasmon resonance frequency.
According to (26), it corresponds to the wavelength
20=380 nm. The experiments (see e.g. Fig. 13 in [17])

show that the excited GRS spectra of one and the !
same impurity, depending on the technique of prepa-
ration of metal matrices, appear to have maxima both
in the near UV (which corresponds approximately
to Z,) and in the longwave, up to the red, spectral |



ranges. Explanations of the large spectral shifts by
the account of monomers interaction which are con-
sidered to be noncorrelatedly spaced (trivial fractal
structure) in terms of the Lorentz theory encounters
difficulties. For example, in order to obtain the ab-

g .

with the variability of occurrence of the longwave

band in the GRS excitation spectra. To conclude the
discussion, we note that the dependence of G consid-

ered above (see (46) and thereafter) may account for

the earlier obscure fact [17] that the maximum GRS, .

sorption peak at 650 nm, one has to assume that the
“metal takes up 86% of the bulk volume [16]. While
in fact the experiments on aggregated metal colloids,
in which maximum GRS signal was observed, yield
2an order of magnitude smaller value (cf. [6]).

Below we shall show that the presence or absence
of a fairly longwave absorption band in a cluster de-
pends on its fractal dimension. For definiteness we
shall assume maximum density of the cluster (the
spheres are in close contact with each other), i.e. we
put Ro~R,,. Then from (26), (27) the typical fractal
frequency Q is estimated to be about 20% of the
@, . The spectral width of fractals may several times
exceed Q (cf. Fig. 3), i.e. it may be of order wg.

The above estimate implies a large magnitude of

was observed just on the metallic colloidal aggregates, -

being, as is known, (see €.g. [6]) of fractal nature.

The authors are grateful to A.K. Popov and S.G. Rautian for helpful
discussions and continuous interest to the work.
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