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Abstract

Highly localized optical modes laser-excited on silver colloid fractal clusters were
observed using photon scanning tunnelling microscopy (PSTM). The spatial distribution of
the modes excited shows the frequency and polarization selectivity suggested by numerical
simulations. The localization of the optical excitations on fractals results in very high local
fields leading to the huge enhancement of resonant Rayleigh, Raman and, especially,
nonlinear light scattering. The experimental results verify the main concepts of the
developed resonant optical theory of fractals.

The localization of dynamical excitations in disordered systems and, specifical-
ly, in fractals is of interest because of its universality and its role in many physical
processes {1-5]. In particular, localization of dipole eigenmodes can lead to a
dramatic enhancement of many optical effects in fractals [6]. The scaling theory of
collective dipole excitations developed in [7-9] predicts that the dipolar eigen-
modes of fractal clusters are localized in regions smaller than the wavelength {7,9]
and can, therefore, concentrate electrical energy in areas smaller than the
diffraction limit of conventional optics. It is this localization of optical excitations
in fractal clusters that account for the very high local fields leading to the huge
enhancement of resonant Rayleigh, Raman and, especially, of nonlinear light
scattering [10,11]. In addition to the localization of light-induced dipole excita-
tions fractality can result in the localization (trapping) of the light itself within a
range of the order of a wavelength [12]. An important property of the interaction
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of light with fractals is the very strong frequency and polarization dependence of
the spatial location of the light-induced dipole modes. In this paper we present
numerical simulations and direct experimental observations of localized optical
modes on silver colloid fractal clusters.

The number of particles, N, forming a fractal aggregate is given by N = (R /
R,)” where R, is the radius of gyration of the cluster and R, is a typical
separation between neighbour monomers. Light-induced dipole—dipole inter-
action between the polarizable particles in the aggregate is determined by the
complex polarizability y, of an isolated monomer. Defining Z=y,', X=—-Re Z,
and §=-Im Z, X plays the role of a spectral variable and & expresses the
dielectric losses. If the monomers are spherical particles with x, = R.. (e —1)/(e +
2), then X = ~R_*(|2¢ + 1)* = 9)/(4|e = 1]*), and 8 =3R_’¢"/|e — 1|* where € =
€’ +ie” is the dielectric constant of the material of which the particle is
comprised. In the vicinity of the localized surface plasmon (L.SP) resonance with
frequency w, (defined by €'(w,) = —2), X xw — w, where w is the frequency of
light. Q =(R;8)"" defines the quality factor of the resonance. Q for the LSP
resonance induced on a fractal aggregate of spherical particles is given by
Q=(R,/R,)’|e —1|°/3¢" [6,7,9]. For Ag at 500nm Q is ~10> [10].

An external electrical field, whose value at the site of the ith monomer
G= ,N)is equal to E, =EY exp(—iwt + ik - r,), induces the transitional
d1pole moment d.=d exp(— 1wt—|—1k ‘r;) (a=x,y,z). We introduce the 3N-
dimensional vectors |d) and |E”) with components (ia|d) =d,, and (ia|E?) =
E”. Similar notations will be also used for other vectors. The equation for |d)
acquires the form

zZld)=|E®)-Vv|ad), (1)
where
3b” (U) gj)
(iaV]jB) = 3 exp(ikrij —ik- rij) ) (2)

i

oV =1—ikry—(kry)*,  b"=1-ikr,—$(kr,)*.

Here V is the dipole—dipole interaction operator (V=0 for i =j), r; =r, —r; and
n” =r,/r,. The interaction (2) includes the near-zone (nonradiative), transitional
and far-zone (radiative) terms of the dipole field.

It was shown in [10] that if R3|X|> (R,/A)*~” for D <2 and if Ry|X|> (R,/
MN'"?'P for D >2, then particles positioned at distances ry~Aandr;>Afroma
given monomer, i, contribute negligibly to the local field actmg on thls monomer.
In this case one can reduce V in (1), (2) to the Hermitian near-zone dipole—
dipole interaction operator [10]

(ia|W|jB) = (3)

G —30nyr >, itk <1, i#j,
, otherwise .
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Introducing eigenvectors |n) and the corresponding eigenvalues w, of the W
operator, one finds that the polarizability of the ithe monomer [7] has the form
[12]

X =S .

aie=(aln),  x=2akxe tw) 4)
Thus, strong dipole interaction leads to a renormalization of the problem from
one of the N dipoles in a cluster to one of 3N collective dipolar eigenmodes with
polarizabilities X(C) (n|ld)=d, = X(C) E™) which contribute to the polarizability
_ of the ith monomer with weight a®) . It is shown in [7,9] that dipole eigenmodes
are localized on fractals within correlatxon length L, given by

Ly~ Ry(Ry|X]) e~ 1/C=P) (5)

where d, is an index called the optical spectral dimension (0<d,<1) [7].
Formula (5) was obtained by assuming that collective excitations of large
coherence length L, are invariant with respect to the scale transformation
R,—> R}, due to self-similarity [7]. These scaling arguments are valid only when
R, <Ly <R, \. ’

Note, that the localization of dipole excitation on fractals is a nontrivial fact.
Since the dipole—dipole interaction for compact aggregates (D —> 3) is long range,
dipole modes are generally delocalized over the entire cluster.

In Fig. 1 three different dipole eigenmodes of the fractal are presented. Each
mode is determined by certain value of the dimensionless spectral variable
R}|X|(R,=1). The cluster was simulated by the cluster-cluster aggregation [13].
Points in the figure correspond to the centres of particles touching each other and
forming the cluster. Radii of the circles drawn around the particles give the value
of dipole moments induced on them. These dipole moments were calculated by

X=0.22

‘ ; X=0.08
KasvD

X=-0.18

Fig. 1. Localized dipole modes on the fractal.
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determining the eigenvectors and eigenvalues of the interaction operator W in (3)
and substituting them to Eqs. (4). It is clear from the figure that strong
localization of the collective dipole modes occurs for the fractal.

Below we present numerical simulations and direct experimental observations
of local fields due to excitation of the localized dipole modes on silver colloid
fractal clusters by means of photon scanning tunneling microscopy (PSTM). By
operating in the near-zone of the dipole fields PSTM can overcome the traditional
diffraction limit thereby imaging details smaller than the wavelength [14]. Optical
excitations of fractal aggregates can be observed with PSTM by placing the
clusters in the evanescent (external) field of a laser beam totally internally
reflected in a glass prism.

We will make the simplifying assumption that the signal detected by the tapered
optical fiber tip of the PSTM is proportional to the squared modulus of the local
field which is the sum of the evanescent field of amplitude E” and the fields of
the dipoles with amplitudes d') = XS;ELO) induced in the particles forming the
cluster. The intensity is given by

1= |EOe™ = S VD DED e o ©)
J .

The inverse decay length of the evanescent field along the normal to the surface,
z,is @ = (2w/A)(n* sin’@ — 1)"'>. Here A is the vacuum wavelength of the light, n
is the refractive index of the prism, and @ is the incident angle.

The results of our numerical simulation of the intensity distribution, I(x, y, z =
z,), of local fields due to the excitation of dipole eigenmodes on fractal aggregates
are shown in Fig. 2. A three-dimensional cluster with N =512 was generated
assuming cluster—cluster aggregation [13] (D =1.78). The 3D cluster was col-
lapsed to its two-dimensional projection simulating closely the experimental
situation. The dipole excitations and local fields values were calculated using
equations (3), (4), (6), and assuming the following parameter values: & =0.01
(Ry=1), z,/R, =2 where R, is the radius of particles and A/R_ =50. (This
corresponds to the experimental situation where R_ =10 nm and A =500 nm.)
The figure shows I(x, y) at two values of the light frequency and for both, s and p,
polarizations. Note that the intensity of local fields strongly fluctuates and it is
significantly larger than the external field in spatially localized regions of the
cluster. The localization of the high-field regions reflects the localization of the
dipole eigenmodes presented in Fig. 1. It also follows from Fig. 2 that several
quasiresonant eigenmodes can be excited simultaneously by the external field.
The linear dimension of the high-local-field regions in Fig. 2 varies from mode to
mode. On average a mode spans several hundred A when R_=100 A. The
frequency and polarization sensitivity of the mode localization is evident in Fig. 2:
a change of either light frequency (parameter X) or polarization results in the
excitation of new resonant modes with different spatial locations and intensities.

Fractal clusters resulting from cluster—cluster aggregation of colloid particles
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Fig. 2. Local field intensity, I(x, y), of the light-induced dipole modes calculated for a fractal
aggregate. (a), (b) X=—0.1, s- and p-polarizations, respectively; (¢) X = —0.25, s-polarization.

are random. Their scale-invariance is statistical. Spatial localization of light-
induced dipole modes and their sensitivity to polarization and frequency should
also be observed on geometrically ordered fractals. Fig. 3 shows I(x,y) for a
Vicsek cluster, using parameters similar to those used previously to generate Fig.
3 except that A/R, =25. Again, strong localization of the optical excitations is
evident. Interestingly, there is no symmetry in the positions of the light-induced
eigenmodes despite the high symmetry of the Viscek fractal. The symmetry
breaking results from the incommensurate structure of the light field with respect
to that of the cluster. Specifically it is the introduction of the two vectors, E® and
k, together with the tensor character of the dipole-dipole interaction that breaks
symmetry.

The experiments were carried as follows. A right-angle BK-7 glass prism was
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a

Fig. 3. Local field intensity, I(x, y), of the light-induced dipole modes on a Vicsek fractal. (a), (b)
s-polarization, X = —0.1 and X = —0.25, respectively.

illuminated normal to one of the small faces resulting in total internal reflection at
the hypotenuse-face. A tapered optical fiber was mounted in a piezoelectric tube
scanner with a maximum scanning area of 9 um X9 wm allowing controlled
movement of the tip on a nanometer scale in the three canonical directions. The
tapered fiber tips were fabricated by pulling a single-mode, graded-index fiber at
constant force while locally heating it in the discharge produced by the arc
electrodes of a commercial fiber splicer. In order to reduce contamination of the
signal by stray light the fibers were gold-coated obliquely in a commercial vacuum
coating apparatus, so as to avoid gold deposition at the tip. The effective optical
aperture of the tip used in this study is estimated using a technique described in
[15] to be in the range from 20 to 50 nm. The light coupled into the fiber was
detected by a photomultiplier. The tip height (z) was adjusted piezoelectrically by
means of feedback electronics so as to keep the detected light intensity at a
constant pre-set value I.. The piezo z-control voltage was then displayed as a
function of x and y to form a three-dimensional image.

Fractal aggregates of silver colloid particles were produced by first generating a
silver sol by reducing silver nitrate with sodium boronhydride [16]. Addition of an
adsorbate (phthalazine) promotes aggregation, in this case forming fractal colloid
cluster having fractal dimension D =1.78 [17]. Electron micrograph of a silver
colloid cluster resulting from the clister-cluster aggregation is given in Fig. 4.
Clusters were allowed to settle slowly out of solution onto microscope cover slides
for PSTM imaging. Index matching oil was used to mount the microscope slide to
the prism.

Before proceeding further it is instructive to consider how the optical modes
will be imaged by the PSTM. The local fields due to the resonant dipole modes
are significantly larger than the external evanescent field. The quality factor, Q,
characterizes the corresponding enhancement [6,7,10]. Accordingly, for resonant
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Fig. 4. Electron micrograph of a silver colloid cluster.

eigenmodes the second term in Eq. (6) is of the order of QE®. Thus, there are
three physically different contributions to the detected signal I(x, y) in (6): a
background signal |E©@e™**|?, the interference part, ~[E?|*Q exp[ikr, — ik - r,],
and the largest contribution, ~|E”Q|*, due to excitation of resonant fractal
modes. The dipole eigenmodes are characterised by a spatial localization
dimension, [,, whose average value determines Ly in (5). The field due to the
excitation of a given mode decreases at r>1I, as r > (r is a distance from the
mode centre to the point of observation) so that the corresponding intensity, I(r),
decreases as r~°. Thus I(r)=1, for r<I, and I(r) =I,(l,/r)° for r>1, where
I,= Q% E®|? is the enhanced intensity within the excited mode. This approxi-
mation for I(r) is valid up to » ~ A. Let us assume that the tip of PSTM, operating
in the constant intensity mode, I, =|E®|?, first scans a “dark” region of the
aggregate where there are no excited dipole modes. When approaching the
excited mode, the tip will move along a bell-like surface defined by I(r) = I, and
characterized by radius R, such that Q°(l,/R,)® = 1. Therefore, the image of an
eigenmode with localization length [, will be magnified by the PSTM so that its
characteristic radius is approximately R, =Q"*l,. For silver aggregates with
Q =10%, R, =5I,. Hence, the PSTM images of excited dipole eigenmodes are
expected to be larger than /, by approximately a factor of 5.
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Photon STM images of silver fractal aggregates are shown in Fig. 5 for different
wavelengths and polarizations. The images shown in the figure are similar to those
simulated numerically. In particular the images demonstrate the localization of
the high-field area corresponding to the dipole eigenmodes as well as the
sensitivity of their spatial location to frequency and polarization. The radii of the
images of the excited optical eigenmodes, R, are measured to range from 300 nm
to 700 nm. Accordingly, the localization length, I, lies in the range from 60 nm to
140 nm in agreement with the results of the numerical simulations. The inter-
ference fringes which arise from the term «exp[ikr, —ik-r,] in (6) are also
clearly seen. Since for some of the resonant modes in the figure, 2R, is
larger than the wavelength one can see the interference fringes within the bright
spots.

The colour scale used to indicate the height of the tip above the surface is given
on the left side of the images in Fig. 5. We estimate that for the “dark” regions
the height of the tip, z,, is noticeably less than 100 nm. At a resonant dipole
mode the tip pulls up to a height z ., =400 to 600 nm. Using the approximate
relation Q*(l,/z,,.)° =1 and 1, =100 nm, z_,, =500 nm one obtains Q =125 in
reasonable agreement with values estimated from the optical constants of silver
[10]. Hence all aspects of the observed images accord well with those expected on
the basis of our calculations.

As it was shown above dipole eigenmodes on fractals “produce” small regions
of very high energy density and, therefore, they act in some sense similar to
optical lenses. Since the modes on fractals are mostly due to the dipole—dipole
interaction in the near-zone the localization length is significantly smaller than the
wavelength. Thus the excitation of the resonant modes should lead to extremely
high local fields resulting in its turn in giant enhancement of many optical
processes on fractals.

Local fields, E,, of the resonant modes exceed the external one, E©, by a
factor Q. The fraction of monomers involved into resonant excitation is small,
~Q 7', and, therefore, linear optical processes are not ultimately enhanced (note,
however, that for metal aggregates this conclusion is restricted to the visible and
the near-infrared portion of the spectrum when one can neglect the Ohmic
current in comparison with the displacement current). For nonlinear optical
process, «|E|", one obtains [6,11]

max

(|[EJE®|") ~0"x Q7' ~0"'>1, (7)

where (.. .) indicates averaging over ensemble of clusters. The estimation (7) is
valid, in general, for systems with inhomogeneous broadening. Note that for
coherent processes on fractals, when the phase relations are of importance, the
approximation (7) remains valid only if the process includes ‘‘subtraction” of
photons [6].

The enhancement, G, of optical processes due to aggregation of initially
isolated particles into fractal cluster can be presented in general as
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G~ Q"FR;|X]), (8)

where m is an integer and F is a function of dimensionless parameter R)|X]|.
Using the model of randomly decimated (diluted) fractals [7] it was shown that F
has power-law dependence[10]:

G~ Q" (Ry|X])%" 9

for Rayleigh (m =1) and Raman (m =3) scattering. For the cluster—cluster
aggregation the optical spectral dimension d, is 0.3 [10]. In particular, formula (9)
describes well the experimentally observed spectral dependence of surface-en-
hanced Raman scattering (SERS) on silver colloid aggregates [10]. The largest
enhancement is expected for nonlinear light scattering like degenerate four-wave
mixing (DFWM). In this case one obtains [10]

G~ Q°(Ra|X|)***°. (10)

The experimentally observed enhancement of DFWM on silver fractal colloids
[11] is in qualitative agreement with that predicted by (10).

To conclude, PSTM has been used successfully to observe, directly, the strong
spatial localization of the resonant eigenmodes of fractals. This verifies the main
concept predicted for the resonant optics of fractals [6-12] and explains the giant
enhancement of optical processes in fractals.

We are grateful to A. Butenko and V. Gomer for the simulations presented in
Fig. 1 and to J. Suh for assistance in preparation of samples.
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