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The formula giving the probability of electron escape is generalized to the case of electron
excitation involving two conduction bands in the vicinity of the Brillouin-zone boundary when
the gap between the bands is of critical importance. The escape probability in this case can be
significantly larger than that found for excitation from the occupied states lying well within the first
Brillouin zone. It is also shown that the Fowler law (commonly used to describe photoemission in
the threshold region) is not restricted to the usually accepted assumption of indirect, momentum
nonconserving, electron transitions but is a consequence of the linear dependence of the escape
function on the electron energy near threshold and is valid for both direct and indirect electron

transitions.

The basis of the theory of photoemission was mostly
developed in the 1960s and 1970s.13 The process has
been successfully described in terms of a three-step model
consisting of excitation of the photoelectrons, migration
to the surface with inelastic collisions en route, and
escape overcoming the appropriate potential barriers.!
More recent progress in photoemission is connected
with such problems as multiphoton excitation,* surface
states,® and photoemission enhancement due to the sur-
face plasmons excitation.®:7 However, there are some im-
portant points remained in the theory which need to be
examined in more detail. In particular, we show in this
paper that the well-known formula for the probability
of electron escape must be modified when excitation oc-
curs in vicinity of the first Brillouin-zone boundary. We
also demonstrate that the Fowler law, which describes
the spectral dependence of photoemission in the thresh-
old region, is more generally valid than one might expect
based on the well-known assumptions used to obtain this
law. '

Let us consider first escape of excited electrons from a
surface. Our main hypothesis is the following: In order to
escape over the surface barrier the electrons must have
a component of momentum normal to the surface, p,,
greater than a critical value p,.! Here P is defined by the
equation Ey(p.) = Ep+®, where E F is the Fermi energy,
® the work function, and E, (P) the energy of the excited
electron with total momentum P. We assume that the
distribution of excited electrons is isotropic, as is the case
for polycrystals. If 9 is the angle between the direction of
electron momentum upon excitation with respect to the
normal of the photoemitting surface, z, the electron must
move a distance z/cos to reach the surface. The prob-
ability of electron escape without loss of energy following
excitation to energy E; = E; + k' (E1 = E and Aw' are
the initial electron energy and the total photon energy,
respectively) is 1 f*° Hpe/ ) e~(rs53) sin 040 ifp > p.
and is 0 otherwise.! Here [ is the mean free path for in-
elastic scattering which is a function of electron energy.
For n-photon excitation (A’ = nhw) the energy distri-

bution of the photoelectrons per unit surface and time,
D(E), is given by
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D(E) = % /0 " dze=mop()

cos™ Y (p. /p) z
y / ef(mﬁ) sin6d#, (1)
0

where P(F) is the energy distribution of the excited elec-
troans per unit time and volume, and « is the linear ab-
sorption coeflicient.

The energy dependence of the excited electrons on its
momentum, E,(p), near the bottom of the upper band,
Eq, can be presented in general as E3(p) = E(p)+hw' ~
By + yp? (y = B2 /2m* where m* is the effective mass;
see below). We restrict ourselves to consideration of the
photoemission in the threshold region when hw' — @ <
Ef + ® — E, (the condition Ep + & > Ey is assumed to
be fulfilled) and, therefore, [P—pe| < pe. From the latter
condition the following relation is valid for the upper limit
of the integral in (1): cos™(p./p) ~ R(1-p./p))/? <« 1.
Using this approximation and performing the integration
in (1) one obtains

D(E) = {E)T(E)[P(E)R./n), 2)
where
()= Tl ®)
is the transmission function and
T(8) =5 (1- 2) W

is the escape function and R, = a~! is the light pene-
tration depth. For n = 1 formulas (2)-(4) were obtained
in Ref. 1 (see also Ref. 3). Note that in the frame of
our consideration T(E) <« 1. The energy distribution
P(E) for one-photon excitation is found in Ref. 2 and for
two-photon excitation in Ref. 8. In the threshold region
only electrons within a narrow energy interval are excited
and, therefore, one can neglect the energy dependence of
P(E) and t(E). This allows us to put P(E) ~ P(EF)
and ¢(E) ~ t(Er) in (2). Thus, all energy dependence
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in the energy distribution curve of photoelectrons [D(E)]
is controlled by the escape function [T'(E)] alone. Note
that the first term of the decomposition of T'(E) is zero
[T(E + lw' = Ep + ®) = 0] and therefore the energy de-
pendence of T(E) is of critical importance. Let us now
find the form of T(F).

Assuming the excited electrons follow the free-electron
model perfectly, then

E + hu' = Bp?, (5)

and one has for the critical momentum p, = g~ 2Er+
®)!/2 where 8 = A?/2m and m is the electron mass.
Accordingly, from (4) and (5) one obtains for the escape
function the commonly used formula3

re=1- ()Y o

if E+ Aw' > Ep + ® and 0 otherwise. However, it is
clear that the validity of the above escape function (6) is
restricted to the perfectly free-electron model {or one or-
thogonalized plane wave (OPW)] with dispersion relation
(5)- ;

Below we obtain the escape probability within the
frame of the two-OPW approximation taking into ac-
count electron reflection at the Bragg plane. Electron
transitions between the two conduction bands can be suc-
cessfully described on the basis of this approximation.?®
In particular, photoemission from some noble metals in
the threshold region occurs mostly due to transitions be-
tween conduction bands near the L-symmetry point.2

The electron energies in the two conduction bands are
given by?®

2E;(k) = B[(k — G)* + k7]
+{A*[(k - G)* - K*]? + 4V},
(M
2E, (k) = B[(k —~ G)? + k¥
—{F((k - G)? - K} + 4VZ}3,

where G is the reciprocal-lattice vector which generates
the second band and 2Vj; is the energy gap between the
bands.

If the condition

B(G? - 2kG) > 2V, (8)
is fulfilled, then from (7) one finds that
E,(k) = fk? E;=p8(k-G)>. (9)

Using the substitution p = G — k, one obtains from (9)
the dispersion relation of excited electrons in the form of
Eq. (5) and, therefore, in this case the escape function
has the form of Eq. (6). Thus, condition (8) identifies
the region of validity of the escape function T.(E). The
escape function T, is valid for solids with no gap such as
the alkali metals. In those metals the occupied states lie
well within the first Brillouin zone and one may ignore
the gaps at the zone boundaries.

Let us now consider electron escape upon excitation in
the vicinity of the first Brillouin-zone boundary (ko =
G/2) when hw' — 2Vg « Fw' and p = |G/2 - k| «
G/2 so that 8p® <« 2V;. Under these conditions, with
substitution of p = G/2 — k, it follows from (7) that

E(p) = 16G7 ~ Ve + [L- (BG*/2Va)lBp* (10
and
Ex(p) = 396 + Vo + [+ (G°/2Va)lBp®.  (11)

We also restrict our consideration to photoemission from
noble metals such as Ag and Cu with work functions
typically close to the energy gap. For those metals only
electron transitions in the vicinity of Ly — L1 contribute
to the near-threshold photoemission and the work func-
tion just slightly exceeds the energy gap. Of course, the
present considerations are appropriate for other solids as
well if the work function is pulled down close to the value
of the energy gap. Then electrons at the Brillouin-zone
boundary dominate in near-threshold photoemission.

Substitution of the critical energy Ep+® for E in (11)
gives p. = v~ Y2(Ep + ® — 1BG? — V5)'/?, where y =
B[1 + (BG?/2Vz)]. The distinction of v from 8 reflects
the renormalization of the electron mass near the bottom
of the upper energy band. It follows from (4) and (11) .
that the escape probability of electrons upon excitation
in the threshold region is given by
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1
T(E)”i[l—(Emw'—-}ﬂGz-VG

if E+ ko' > Ep + ® and 0 otherwise. If the electron
excitation occurs near the L-symmetry point one should
put %ﬂG’z + Vg = Ef,, where Ey, is the bottom energy
of the second band. This gives

o= 3- ()

Recall that we assumed that Er + ® > Eg, where Fy =
%,BGZ + Vg for the escape function (12) and Eg = Ep,
for the escape function (13) [see the paragraph preceding
formula (2)].

Note that the difference between the escape probabil-
ities given by (13) [or (12)] and (6) is important. For
example, using values for the parameters® Er = 5.5 eV,
®=4.3eV,Er, =94¢eV, E+/w' =10 eV, one finds for
the escape probability in the threshold region T(E) ~ 0.1
while the value T, = 5 x 1073 found on the basis of (6)
significantly underestimates electron escape.

Let us consider now a spectral dependence of photoe-
mission in the threshold region. Since one can neglect the
energy dependence of P(E) and ¢(FE) in the threshold re-
gion, the total photoelectric yield J is approximated by

J =~ (Ep)[P(Er)R./nlK, (14)

where
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Ep
K=
Ep+®&—fw’

~(Ep + &~ Eo)[(

T(E)dE = -;-(rw' _ %)

ﬁa)’-f-EF—Eo i
¢>+EF—E0) _l]' (15)

Near the threshold Aw’ — & « Ep +® — Ey and K has
the form
_ 1 (A — ®)?

T 8Erto_Ry (16)

For comparison, the factor K, found on the basis of the
escape function (6) is given by

1 (hw' — 3)?

Ko=-~— "/
8 Er+9d (17)

It is clear that the total yield J determined by substitu-
tion of K for K in (14) would significantly underestimate
photoemission in the threshold region.

According to (14) and (16) the total photoyield de-
pends quadratically on %w’ — & in the threshold region.
This dependence constitutes the essence of the Fowler
law'® and it is widely apparent in the literature (see, for
example, Ref. 3). The usual way to obtain this law is
based on integration over all k states satisfying the con-
ditions BkZ > ® 4 Er — hw’ and B(kZ+k2) < Ep (kp and
k. are the parallel and normal to the surface components
of the total electron momentum):

1

EZ (Br—A2K2 J2m) §
J / L dk, / kpdky.  (18)
(Br+&—hw')} 0

In the threshold region one obtains from (18) that J «
(Aw' ~ )2, Formula (18) is based on the energy con-
servation requirement only. The reduction of the part
of k space contributing to photoemission due to the re-
quirement of momentum conservation is not taken into
account (see below). In other words, the assumption
that photoemission is dominated by indirect transitions,
where electron momentum is not conserved, is implied.
With the present analysis we have shown that the Fowler
law has a wider range of applicability. Since we did
not make any assumptions in (14) and (16) about the
character of electron excitation (direct or indirect), the
law remains valid for photoemission governed by direct
transitions. Note that since the light penetrates hun-
dreds of atomic layers, while translational invariance is

broken only for few atomic layers near the boundary,
one anticipates a strong volume rather than a surface

effect. Photon momentum is negligible compared to
electron momentum. Accordingly, photoemission from
smooth (warmly deposited) films can be successfully in-
terpreted in terms of direct (vertical) transitions within
the bulk.2® For direct electron transitions the surface
of constant interband energy at Aw' is determined by
Ez(k) — By(k) — b’ = 0 or, in accordance with (7),
by

B(G? - 2kG) ~ [(hw')? — 4V} = 0. (19)

For the perfectly free-electron model, with energy de-
pendence (9), one should put in (19) 2Vg = 0. Only

the electrons that have momenta satisfying (19) can be
excited via direct transitions. Equation (19) defines the
plane normal to G (i.e., parallel to the zone boundary).
It means that for direct electron transitions, in contrast
with (18), one of the momentum components, namely,
the projection on G, is fixed. Thus, the momentum con-
servation requirement reduces the volume of k space de-
termined by the limits of integration in (18) to the surface
defined by (19) and by the condition E < Ep.? But, still,
the Fowler law is valid in accordance with (14) and (16).

An important issue in this paper is that the Fowler law
has nothing to do with the direct or indirect character
of electron excitation: It is purely a consequence of the
linear dependence of the escape function near threshold,
and this is valid in general. T'(E) must be equal to zero at
E+hw' = Ep+® and, therefore, for small values of (E +
Fw’ — Ep —®) the first nonzero term of the decomposition
of T(E) gives

T(E) x (E + ' ~ Ep — ®). (20)

The linear dependence (20) of the escape function near
threshold ultimately results in a quadratic dependence
of the total photoyield on (Aw’' — @) regardless of the
character of electron excitation:

Ep
J / T(E)E o (' — 82, (21)
Ep+®—hw'

In Ref. 7 Fowler plots were reported for one-photon
(Aw’ = 4.5 eV) and two-photon (hw = 2.3 ¢V) photoe-
mission for rough (coldly deposited) and smooth (warmly
deposited) silver films. The two-photon photoemission
from rough films was strongly enhanced and dominated
by indirect transitions due to localized surface plasmons
while photoemission from smooth films was mostly due to
direct electron transitions for both one-photon and two-
photon excitation.® Thus, in accordance with the present
considerations for these very different films (smooth and
rough) the quadratic dependence near the photoemission
threshold was obtained independently of the character of
electron excitation: direct or indirect.”8 This experimen-
tal observation supports our conclusion about more gen-
eral validity of the Fowler law than one can expect based
on the well known assumptions used to obtain this law.

There are two important points in this paper. First, we
generalized the formula giving a probability of electron
escape for the case of the electron excitation in the vicin-
ity of the first Brillouin-zone boundary when a large gap
between two conduction bands is of importance. Second,
we showed that the Fowler law is not restricted to the
usually accepted assumption of nonconservation of the
electron momentum but, rather, is a consequence of the
linear dependence of the escape function on electron en-
ergy, and is valid independently of the detailed character
of electron excitation.
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