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A scaling theory of local-field fluctuations and optical nonlinearities is developed for random metal-
dielectric composites near a percolation threshold. The theory predicts that in the optical and infrared spectral
ranges the local fields are very inhomogeneous and consist of sharp peaks representing localized surface
plasmons. The localization maps the Anderson localization problem described by the random Hamiltonian with
both on- and off-diagonal disorder. The local fields exceed the applied field by several orders of magnitudes
resulting in giant enhancements of various optical phenomena. The developed theory quantitatively describes
enhancement in percolation composites for arbitrary nonlinear optical process. It is shown that enhancement
strongly depends on whether a nonlinear multiphoton scattering includes the act of photon subtraction (anni-
hilation). The magnitudes and spectral dependencies of enhancements in optical processes with photon sub-
traction, such as Raman and hyper-Raman scattering, Kerr refraction, and four-wave mixing, are dramatically
different from those in processes without photon subtraction, such as in sum-frequency and high-harmonic
generation. At percolation, a dip in dependence of optical processes on the metal concentration is predicted.
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I. INTRODUCTION

Local electromagnetic field fluctuations and related en-
hancement of nonlinear optical phenomena in metal-
dielectric composites near percolation threshold (percolation
composites) have recently become an area of active studies,
because of many fundamental problems involved and the
high potential for various applications. Percolation systems
are very sensitive to the external electric field since their
transport and optical properties are determined by a rather
sparse network of conducting channels, and the field concen-
trates in the “‘weak’ points of the channels. Therefore, com-
posite materials can have much larger nonlinear susceptibili-
ties at zero and finite frequencies than those of its constitutes.
The distinguished feature of percolation composites, to am-
plify nonlinearities of its components, have been recognized
very early,' ™8 and nonlinear conductivities and susceptibili-
ties have been intensively studied during the last decade (see,
for example, Refs. 7-12).

Here, we consider relatively weak nonlinearities when
conductivity o(E) can be expanded in the power series of
the applied electric field E, and the leading term, i.e., the
linear conductivity o, is much larger than others. This
situation is typical for various nonlinearities in the optical
and infrared spectral ranges considered here. Even weak
nonlinearities lead to qualitatively new physical effects. For
example, generation of higher harmonics can be much en-
hanced in percolation composites and bistable behavior of
the effective conductivity can occur when the conductivity
switches between two stable values, etc.'> We note that the
‘‘languages’’ of nonlinear currents/conductivities and non-
linear polarizations/susceptibilities (or dielectric constants)
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are completely equivalent and they will be used here inter-
changeably.

The local-field fluctuations can be strongly enhanced in
the optical and infrared spectral ranges for a composite ma-
terial containing metal particles that are characterized by the
dielectric constant with negative real and small imaginary
parts. Then, the enhancement is due to the surface plasmon
resonance in metallic granules and their clusters.””'*!> The
strong fluctuations of the local electric field lead to enhance-
ment of various nonlinear effects. Nonlinear percolation
composites are potentially of great practical importance'S as
media with intensity-dependent dielectric functions and, in
particular, as nonlinear filters and optical bistable elements.
The optical response of nonlinear composites can be tuned
by controlling the volume fraction and morphology of con-
stitutes.

In our previous paper,'® we performed numerical simula-
tions for enhancement of various nonlinear optical effects in
2d percolation films and developed a scaling approach for
high-order moments of the field magnitudes, {|E(r)|").
However, nonlinear optical effects depend not only on the
magnitude of the field but also on its phase, so that a non-
linear signal, in general, is proportional to {(|E(r)|*E™(r)).
In this paper, we describe a scaling theory for enhancement
of arbitrary nonlinear optical process (for both 24 and 3d
percolation composites) and show that enhancement differs
significantly for nonlinear optical processes that include pho-
ton subtraction (annihilation) and for those that do not. The
photon subtraction implies that the corresponding field am-
plitude in the expression for the nonlinear polarization (cur-
rent) P is complex conjugated.'” For example, the optical
process known as coherent anti-Stokes Raman scattering is
driven by the nonlinear polarization P x E2(w,)E*(w,),
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which results in generation of a wave at the frequency w,
=2w,— w,, i.€., in one elementary act of this process, the
w»photon is subtracted (annihilated); the corresponding am-
plitude E(w,) in the expression for P is complex conju-
gated.

The theory of nonlinear optical processes in metal-
dielectric composites is based on the fact that the problem of
optical excitations in percolation composites mathematically
maps the Anderson transition problem. This allowed us to
predict localization of surface plasmons (sp) in percolation
composites and describe in detail the localization pattern. We
show that the sp eigenstates are localized on the scale much
smaller than the wavelength of the incident light. The sp
eigenstates with eigenvalues close to zero (resonant modes)
are excited most efficiently by the external field. Since the
eigenstates are localized and only a small portion of them are
excited by the incident beam, the overlapping of the eigen-
states can typically be neglected, that significantly simplifies
theoretical consideration and allows one to obtain relatively
simple expressions for enhancements of linear and nonlinear
optical responses. It is important to stress again that the sp-
localization length is much smaller than the light wave-
length; in that sense, the predicted subwavelength localiza-
tion of the sp quite differs from the well-known localization
of light due to strong scattering in a random homogeneous
medium. '8

We also note that a developed scaling theory of optical
nonlinearities in percolation composites opens new means to
study the classical Anderson problem, taking advantage of
unique characteristics of laser radiation, namely, its coher-
ence and high intensity. For example, our theory predicts that
at percolation there is a minimum in nonlinear optical re-
sponses of metal-dielectric composites, the fact that follows
from the Anderson localization of sp modes and can be stud-
ied and verified in laser experiments.

In spite of big efforts, most of theoretical considerations
of the local optical fields in percolation composites are re-
stricted to mean-field theories and computer simulations (f01
references, see Refs. 10-12). The effective medium theory'?
that have the virtue of relative mathematical and conceptual
simplicity, was extended for the nonlinear response of per-
colating composxtes”“0 26 and fractal clusters.® For linear
problems, predictions of the effective medium theory are
usually sensible physically and offer quick m31ght into prob-
lems that are difficult to attack by other means.” The effec-
tive medium theory, however, has disadvantages typical for
all mean-field theories, namely, it diminishes the role of fluc-
tuations in a system. In this approach, it is assumed that local
electric fields are the same in the volume occupied by each
component of a composite. For example, the effective me-
dium theory predicts that the local electric field should be the
same in all metal grains regardless of their local arrangement
in a metal-dielectric composite. Therefore the local field is
predicted to be almost uniform, in particular, in metal-
dielectric composites near percolation. This is, of course,
counter-intuitive since percolation represent a phase transi-
tion, where according to the basic principles, fluctuations
play a crucial role and determine system’s physical proper-
ties. Moreover, in the optical spectral range, the fluctuations
are anticipated to be dramatically enhanced because of the
resonance with sp modes of a composite.
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In our prev1ous papers we developed rather effective nu-
merical method®’ and performed comprehensive simulations
of the local field distribution and various nonlinear effects in
two dimensional percolation composites, namely in random
metal-dielectric films.!%?~3! The effective medium approach
fails to explain results of the performed computer simula-
tions. It appears that electric fields in such films consist of
strongly localized sharp peaks resulting in very inhomoge-
neous spatial distributions of the local fields. In peaks
(““hot’” spots), the local fields exceed the applied field by
several orders of magnitudes (see, Figs. 1 and 2 here and,
e.g., Figs. 2 and 3 in Ref. 10). These peaks are localized in
nm-size areas and can be associated with the sp modes of
metal clusters in a semicontinuous metal film. The peak dis-
tribution is not random but appears to be spatially correlated
and organized in some chains. The length of the chains and
the average distance between them increase toward the infra-
red part of the spectrum.

In this paper, we develop the scaling theory of the field
spatial distributions and show that there is an important pa-
rameter in the scaling theory (missed in our previous consid-
eration), the Anderson localization length £, . We also gen-
eralize our previous approach limited to 2d systems to
include both 24 and 3d percolation composites. As men-
tioned, enhancement factors for arbitrary optical nonlineari-
ties are found in the general form.

Note that in the optical range, field distributions in metal
fractals have been studied experimentally using near-field
scanning optical microscopy allowing a subwavelength
resolution.**3* The predicted giant local-field fluctuations in
the percolatlon composites have been detected in recent
microwave™ and optic experiments.*

The rest of the paper is organized as follows. In Sec. II,
we consider local fields and their high-order moment distri-
butions in percolation composites. We also show there that
the field distribution maps the Anderson localization problem
in quantum mechanics and employ this fact to describe in
detail a localization pattern of sp modes. The mapping and
scaling arguments are used to obtain the field high-order mo-
ments and their dependencies on the frequency of an incident
wave and metal concentration, for arbitrary optical nonlin-
earity. In Sec. III, we calculate enhancement factors for a
number of optical processes, namely, Raman and hyper-
Raman scattering, Kerr-type nonlinear refraction and absorp-
tion, and nth harmonic generation. We show that most of the
enhancement originates from strongly localized nanometer-
scale areas, where the local electric field has its maxima.
Enhancements in these ‘‘hot zones’’ are giant and exceed a
“background’’ nonlinear signal by many orders of magni-
tude. Concluding discussions are presented in Sec. IV.

II. SCALING THEORY OF FIELD FLUCTUATIONS
AND HIGH-ORDER FIELD MOMENTS

In metal-dielectric percolation composites the effective dc
conductivity o, decreases with decreasing the volume con-
centration of metal component p and vanishes when the con-
centration p approaches concentration p, known as a perco-
lation threshold.”'>* In the vicinity of the percolation
threshold p,., the effective conductivity @, is determined by
an infinite cluster of percolating (conducting) channels. For



PRB 60

concentration p smaller then the percolation threshold p,.,
the effective dc conductivity o,=0, that is the system is a
dielectriclike.  Therefore, “metal-insulator  transition ~ takes
place at p=p,. Since the metal-insulator transition associ-
ated with percolation represents a geometric phase transition
one can anticipate that the current and field fluctuations are
scale invariant and large.

In percolation composites, however, the fluctuation pat-
tern appears to be quite different from that for a second-order
transition, where fluctuations are characterized by the long-
range correlation, and their relative magnitudes are of the
order of unity, at any point of a system.””*8 In contrast, for a
dc percolation, local electric fields are concentrated at the
edges of large metal clusters so that the field maxima (large
fluctuations) are separated by distances of an order of the
percolation correlation length &, which diverges when the
metal volume concentration p approaches the percolation
threshold p,. 363940

We show below that the difference in fluctuations be-
comes even more striking in the optical spectral range, where
the local-field peaks have the resonance nature and, there-
fore, their relative magnitudes can be up to 10, for the linear
response, and 10 and more, for nonlinear responses, with
distances between the peaks much larger than the percolation
correlation length &.

In the optical and infrared spectral ranges, the surface
plasmon resonances play a crucial role in metal-dielectric
composites. To get insight in the high-frequency properties
of metals, we first consider a simple model known as a
Drude metal that reproduces semiquantitatively the basic op-
tical properties of a metal. In this approach, the dielectric
constant of metal grains can be approximated by the Drude
formula

e,,,(w)=e,,—(wp/w)2/[l+iw,/w], (1)

where €, is contribution to €, due to the inter-band transi-
tions, w,, is the plasma frequency, and w,=1/7<w), is the
relaxation rate. In the high-frequency range considered here,
losses in metal grains are relatively small, w < w. Therefore,
the real part €, of the metal dielectric function €, is much
larger (in modulus) than the imaginary part €, (|€,|/€,
=w/w,>1), and €, is negative for the frequencies w less
than the renormalized plasma frequency,

&3[,=wp/\/g. (2)

Thus, the  metal conductivity o= —iwe,f4T
=(€,0,/4mw)[i(1~0*/®,)+ 0, /o] is characterized by
the dominant imaginary part for w,>w>w,, ie., it is of
inductive character. Therefore, the metal grains can be mod-
eled as inductances L while the dielectric gaps can be repre-
sented by capacitances C. Then, the percolation composite
represents a set of randomly distributed L and C elements.
The collective surface plasmons excited by the external field,
can be thought of as resonances in different L— C circuits,
and the excited surface plasmon eigenstates are seen as giant
fluctuations of the local field.
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A. Local-field distribution in percolation composites
with €,= —¢,,

We suppose that a percolation composite is illuminated by
light and consider local optical field distribution. A typical
metal grain size a in the percolation nanocomposites is about
few nanometers,” that is much smaller than the wavelength X
of the light in the visible and infrared spectral ranges. When
wavelength A is much larger than the particle size a we can
introduce potential ¢(r) for the local electric field. Then the
local current density j can be written as j(r)=o(r)
[—Vé(r)+Ey], where Eq is the applied field and o(r) is
the local conductivity. In the considered quasistatic case the
field distribution problem reduces to solution of the Poisson
equation, representing the current conservation law divj
=0, namely

V- (o(r)[-Veé(r)+E =0, ©)

where the local conductivity o(r) takes either o, or o4 val-
ues, for metal and dielectric components, respectively. It is
convenient to rewrite Eq. (3) in terms of the local dielectric
constant €(r)=4mio(r)/w as follows

V-[e(r)Vé(r)]=¢, 4)

where €=V -[e(r)Ey]. The external field E; can be chosen
real, while the local potential ¢(r) takes complex values
since the metal dielectric constant €,, is complex e,,,=e,'”
+ i€, in the optical and infrared spectral ranges. Because of
difficulties to find solution to the Poisson Eq. (3) or (4), a
great deal of use is made of the tight binding model in which
metal and dielectric particles are represented by metal and
dielectric bonds of a cubic lattice. After such discretization,
Eq. (4) acquires the form of Kirchhoff’s equations defined on
a cubic lattice.” We write the Kirchhoff’s equations in terms
of the local dielectric constant and assume that the external
electric field E, is directed along ‘‘z’’ axis. Thus we obtain
the following set of equations

; eij(‘ﬁj_d)i):; €;E;, &)

where ¢; and ¢; are the electric potentials determined at the
sites of the cubic lattice and the summation is over the near-
est neighbors of the site i. The electromotive force (EMF) E;
takes value Eqgag, for the bond (ij) in the positive z direction
(where @, is the spatial period of the cubic lattice) and
~ Eqay, for the bond (ij) in the —z direction; E;;=0 for the
other four bonds at the site i. Thus, the composite is modeled
by a resistor-capacitor-inductor network represented by
Kirchhoff’s Eq. (5). The EMF forces E;; represent the exter-
nal electric field applied to the system. In transition from the
continuous medium described by Eq. (3) to the random net-
work described by Eq. (5) we suppose, as usually,”'>33 that
bond permittivities €;; are statistically independent and set
ag to be equal to the metal grain size, ag=a. In the consid-
ered case of two component metal-dielectric random com-
posite, the permittivities ¢;; take values €, and €;, with
probabilities p and 1—p, respectively. Assuming that the
bond permittivities €; in Eq. (5) are statistically indepen-
dent, we considerably simplify computer simulations as well
as analytical consideration of local optical fields in the com-



16 392

posite. We note that important critical properties are univer-
sal, i.e., they are independent of details of a model, e.g.,
possible-correlation-of-permittivities -€;;-in-different-bonds.
For further consideration we assume that the cubic lattice
has a very large but finite number of sites N and rewrite Eq.

(5) in matrix form with the ‘“Hamiltonian” H defined in
terms of the local dielectric constants,

Ho=¢, (6)
where ¢ is a vector of the local potentials ¢
={d,b,,...,0dy} determined in all N sites of the lattice,
vector £ equals to &;=2€,;E;;, as it follows from Eq. (5).
The Hamiltonian H is NXN matrix that has off-diagonal
elements H;;= —¢; and diagonal elements defined as H;
=2;€;;, where j refers to nearest neighbors of site i. The
off-diagonal elements H;; take values €,>0 and €,=(—1
+ik)|e;,| with probability p and 1—p, respectively. The
loss factor k= e,/|€,,| is small, x<1. The diagonal ele-
ments H;; are distributed between 2d¢,, and 2de,, where d
is the dimensionality of the space (2d is the number of the
nearest neighbors in d-dimensional cubic lattice).

It is convenient to represent the Hamiltonian H as a sum
of two Hermitian Hamiltonians H=H'+i«H", where the
term ixkH" (k<1) represents losses in the system. The

Hamiltonian H' formally coincides with the Hamiltonian of
the problem of metal-insulator transition (Anderson transi-
tion) in quantum systems.*'~** More specifically, the Hamil-

tonian A’ maps the quantum-mechanical Hamiltonian for the
Anderson transition problem with both on- and off-diagonal
correlated disorder. Since the off-diagonal matrix elements

in B’ have different signs, the Hamiltonian is similar to the
so-called gauge-invariant model. This model, in turn, is a
simple version of the random flux model, which represents a
quantum system with random magnetic field* (see also re-
cent numerical studies“s”‘”). Hereafter, we refer to operator

H' as to Kirchhoff’s Hamiltonian (KH).
Thus, the problem of the field distribution in the system,
i.e., the problem of finding solution to Kirchhoft’s Eq. (5) or

(6), becomes the eigenfunction problem for the KH, A’ ¥,
=A,¥,, whereas the losses can be treated as perturbation.
Since the real part €,, of metal dielectric function €, is nega-
tive, €,,<<0 , and the permittivity of dielectric host is posi-
tive, €;,>0, the manifold of the KH eigenvalues A, contains
eigenvalues that have the real parts equal (or close) to zero.
Then eigenstates W, that correspond to eigenvalues
|A,/€,|<€1 are strongly excited by the external field and
seen as giant field fluctuations, representing the resonant sp
modes. If we assume that the eigenstates excited by the ex-
ternal field are localized, they should look like local-field
peaks. The average distance between the field peaks can be
estimated as a(N/n)", where n is the number of the KH
eigenstates excited by the external field and N is the total
number of the eigenstates.

Now we consider in more detail behavior of the eigen-
functions ¥, of the HK H', in the special case when €, =
—é€,, corresponding the plasmon resonance of individual
particles in a 2d system. Since a solution to Eq. (5) does not
change when multiplying €,, and €, by the same factor, we
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can normalize the system and set €,= —¢€,=1.

According to the one-parameter scaling theory the eigen-
states-¥, -are-all-localized-for the 2d -case-(see, however;
discussion in Refs. 44 and 48). On the other hand, it was
shown in computer simulations®® that there is a transition
from chaotic®®>! to localized eigenstates for the 2d Ander-
son problem,*’ with an intermediate crossover region. We
consider first the case when metal concentration p is equal to
the percolation threshold p,.= 1/2 for the 2d bond percolat-

ing problem. Then the on-diagonal disorder in the KH H' is
characterized by (H;)=0, (H,?)=4 that corresponds to the
chaos-localization transition.*’ The KH has also strong off-
diagonal  disorder, (Hj)=0 (i#j), which favors
localization.*>* Qur conjecture is that eigenstates ¥, are
localized for all A, in the 2d system. (We cannot rule out a
possibility of inhomogeneous localization, similar to that ob-
tained for fractals,>? or the power-law localization;*">* note,
however, that these possibilities are in strong disagreement
with the one-parameter scaling theory).

In the considered case of €;,=—¢,=1 and p=1/2, all

parameters in the KH H' are of the order of unity and its
properties do not change under the transformation e;& €, .
Therefore, the real eigenvalues A, are distributed symmetri-
cally with respect to zero, in an interval of the order of one.
The eigenstates with A,=~0 are effectively excited by the
external field and represent the giant local-field fluctuations.
When metal concentration p decreases (increases), the eigen-
states with A, ~0 are shifted from the center of the distribu-
tion toward its lower (upper) edge, which typically favors
localization. Because of this, we assume that the eigenstates,
or at least those with A,~0, are localized, for all metal
concentrations p in the 2d case.

Despite the great effort and all the progress made, the
Anderson transition is not yet fully understood in the 3d case
and very little is known about the eigenfunctions of the
Anderson Hamiltonian, even in the case of a diagonal disor-
der only.*=*% We mention here recent computer
simulations*’ for a 3d system similar to our system with €,
=—¢,=1, p=1/2. The authors of Ref. 46 investigate the
Anderson problem with diagonal-matrix elements w;; distrib-
uted uniformly around zero —wg/2<w;<wgy/2 and off-
diagonal elements ¢;;= exp(i¢h;), with phases ¢;; also dis-
tributed uniformly 0<¢;;<2. It was found that in the
center of the band, the states are localized for the disorder

wo>w.=18.8. In our 3d HK A’ Hamiltonian, the diagonal
elements are distributed as —6=<H,;;<6 and, therefore, the
diagonal disorder is smaller than the above critical disorder
w.. On the other hand, our off-diagonal disorder is stronger
than in calculations.*® It is shown*** that even small off-
diagonal disorder strongly enforces localization. We conjec-
ture here that the eigenstates corresponding to the eigenval-
ues A, =0 in the 34 case are also localized for all p.

Suppose we found all eigenvalues A, and eigenfunctions
W, of H'. Then we can express the potential ¢ in Eq. (6) in
terms of the eigenfunctions as ¢=2,4, V¥, and substitute it
in Eq. (6). Thus, we obtain the following equation for coef-
ficients A, :
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(ikb,+ MDA ik D, (U AW, DA, =5, ()
m#n )

where b, = (¥ ,[A"|¥,), and £,=(¥,|£) is a projection of
the external field on eigenstate ¥, . (The product of two
vectors, e.g., ¥, and £ is defined here in a usual way, as

E,=(¥,|5)==,¥} &, where the sum is over all lattice

sites). Since all parameters in the real Hamiltonian H” are of
the order of unity, the matrix elements b, are also of the
order of unity. We approximate them by some constant b,
which is about unity. We suggest that eigenstates ¥, are
localized within spatial domains £,(A), where £,(A) is the
Anderson localization length, which depends on A. Then,
the sum in Eq. (7) converges and it can be treated as a small
perturbation. In the zeroth approximation,

AQ=¢g /(A,+ikb,). 8)

The first-order correction to A, is equal to
A= =ik 3, (W[ ,)E, (At ikby).  (9)
m¥n

For k—0, most important eigenstates in this sum are those
with |A,,|<bk. Since the eigenstates A, are distributed in
the interval of the order of unity the spatial density of the
eigenmodes with |A,|<b«x vanishes as a " “k—0 at k—0 .
Therefore, A" is  exponentially small  |A{"]
~ |2I11$H(WII|I:I”|\I’IH)5"1 /l,"l!cx exp{——[a/gA(O)]K_ l/d} and
can be neglected when x<<[a/&,(0)]?. Then, the local po-
tential ¢ is equal to d)(r)=E,,A,(,O)\I’,,=2,,8,,\If,,(r)/(A,,
+ixb) [see Eq. (8)] and the fluctuating part of the local field
E,=—V¢(r) is given by

Edr)=—2 VT (r)/(A,+ikb). (10)

The average field intensity is as follows:
(IE[*)=(|Es+Eo|*)

2 5,75'5[V\If”(r)v\lf”'; l‘)]
‘E°+<”2,,:a A, ik Ap—ixty | 1V

where we took into account that (E;)=(Ef)=0. We con-
sider now the eigenstates ¥, with eigenvalues A, within a
small interval [A,— A|<AA <« centered at A. These states
are denoted as ¥,(A,r). Recall that the eigenstates are as-
sumed to be localized so that eigenfunctions ¥ ,(A,r) are
well separated in space. The average distance between them,
I, can be estimated as [(AA)~a[p(A)AA]™ ", where

p(A)=a?, 8(A=A,)IV (12)

is the dimensionless density of states for the KH A’ and V is
the volume of the system. We assume here that the metal
concentration p is about one half so that all quantities in the
KH H' are about unity and, therefore, the density of states
p(A) is also about unity at the center of the spectrum, i.e., at
A=0. Then the distance /(AA) can be arbitrary large for
AA—0; we assume, of course, that /(AA) is still much

ANDERSON LOCALIZATION OF SURFACE PLASMONS . ..

16 393

smaller than the system size, and the total number of eigen-
states ¥, (A,r) is macroscopically large. When the interstate
distance {(AA)-is much-larger than the localization length
&4(A) the localized eigenfunctions ¥, (A,r) can be charac-
terized by special positions of their ‘‘centers’ r, so that
V¥, (A, r)=PT(A,r—r,) and Eq. (11) acquires the following
form:

(IEP=Es+ >

< 2 gllgx[vxp(Al = rn) ! V"P*(AZ I rm)]>
(A, +irb)(A,—ixh) ’
(13)

where the first sum is over positions of the intervals |A,,
—A,| and |A,,— A,| in the A space, whereas the sum in the
numerator is over spatial positions r, and r,, of the eigen-
functions. For each realization of a macroscopically homo-
geneous random film, the positions r, of eigenfunctions
W(A,r—r,) take new values that do not correlate with the
value of A. Therefore, we can independently average the
numerator in the second term of Eq. (13) over positions r,
and r,, of eigenstates ¥, and ¥,,. Taking into account that
(V¥,(r))=0, we obtain

(Em[VE (A, r—1,) V¥*(Ag,r—r,)])
=<|£n!2!V\P(A1’r—rll),2>5AlA25Hm’ (14)

where we neglected possible correlations of eigenfunctions
from different intervals A, and A, since the spatial density
of the eigenfunctions excited effectively by the external field
is estimated as a"”p(A)K, i.e., it vanishes for k—0. Sub-
stitution of Eq. (14) in Eq. (11) results in

2 1ENXIVE (A D]

2= 2 n
(1E[*)=E5+2 yeTws .as)

The localized eigenstates are not, in general, degenerate, so
that the eigenfunctions ¥, can be chosen as real. Then we
can estimate |£,|2=|(V,|&)|*=|= ¥, .&|* in Eq. (15) by
replacing the sum over all N sites of the system with integra-
tion over the system volume V, which gives |£,|?
~a~ 2| [¥ ,Edr|?. Using Egs. (5) and (4), we find

2
|8”12~a4—2(1

j ¥, (Ey-Ve)dr

2

4-2d , (16)

=a

f (E,-V¥,)dr

where to obtain the last relation we integrated by parts and
took into account that the eigenstates WV, are localized within
the localization length £,(A). Since the local dielectric con-
stant |€| are of the order of unity, |e|~1, and the spatial
derivative VW, is estimated as ¥,/&,(A) in Eq. (16) we
find
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N 2
E Wn,i’ >
i=1

(17

where we returned back to summation over sites of the tight-
binding model. Since the eigenfunctions ¥, are normalized
to unity, ie., (¥, |¥,)=3" ¥, [*=1 and localized
within £,(A) we estimate them as ¥, ;,~[£,(A)a] "% in
the localization domain. Substituting this estimate in Eq. (17)
we obtain

2 4

2
0

E3(A)

E%a4
a* &3 (A)

€2~ ‘ [ w.ar

|€ 12~ Ega®[ £4(A) /a2 (18)

In a similar way we can estimate the average spatial deriva-
tive in the numerator of Eq. (15),

(VL ADP)~ £ ANTAD)
N
~EHONTIZ

~& (AN, (19)

where N=V/a? is the total number of sites. Now we use the
estimates (18) and (19) and rewrite the numerator of Eq. (15)
as

1 2 —
2 [EXIVYLADP)~ 5 X Bl (A)a)'

~Eg[£4(A)al?*p(A)AA,
(20)

where we took into account that the total number of the
eigenstates within interval AA is equal to Np(A)AA. By
substituting Eq. (20) in Eq. (15) and replacing the summation
by integration over A, we obtain the following estimate for
the field intensity

2 o [ P(A)[aré (M)
<[E|2>~55+Eafp A;l+(Ab;<)2 )

Since all matrix elements in KH H' are of the order of unity
(in fact, the off-diagonal elements are *1), the density of
states p(A) and localization length £,(A) change signifi-
cantly within an interval of an order of one. In contrast, the
denominator in Eq. (15) has an essential singularity at A=
+ibk. Then the second moment of the local-electric field
My=M,o=(|E|*)/E} is estimated as

M5~1+p(al “"”f————-dA
2 plaléy) A+ (br)

~plal&)* k1> 1, (22)

provided that k<<p(a/é,)* ™9 [we set £4(A=0)=¢&,, p(A
=0)=p and approximated b by unity]. Thus, the field dis-
tribution, in this case, can be described as a set of the KH
eigenstates localized within £, , with the field peaks having
the amplitudes

El~Eok™"(al&y)?, (23)
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which are separated in distance by the field correlation length
&~a(prb)™"~a(pr)™", 24

where again we used that b~ 1. All the above speculations
leading to Eqs. (22)—(24) hold when the field correlation
length & is much larger than the Anderson localization
length, i.e., £ &, . This condition is fulfilled in the limit of
small losses when «—0.

Note that hereafter by the superscript * we mark the quan-
tities, which are given for the special case —€,,=¢€,=1 con-
sidered here. (The sign *, of course, should not be confused
with complex conjugation denoted by *.) Using the scale
renormalization described in the next subsection, we will see
how these quantities are transformed when |€,,/€,]> 1, ie.,
in the long wavelength part of the spectrum. Note also that,
for £, and p we omit the * sign in order to avoid compli-
cated notations; it is implied that their values are always
taken at — ¢€,,= €,= 1, even if the case of |¢,,/€,4/> 1 is con-
sidered.

In the above estimates we supposed that the localization
length &, is proportional to the eigenstate ‘‘size.”” This as-
sumption might not be exact for the Anderson system, in
general (e.g., see discussion in Ref. 41), but it is confirmed
well by our numerical calculations (see Figs. 1 and 2 and
Figs. 2 and 3 in Ref. 10) for the case of 2d percolation
composites.

The above results for the field distribution are in good
agreement with comprehensive numerical calculations per-
formed in Refs. 27, 28, 29 for a 2d system with €, /e,~
—1 and p=p,=1/2. It was shown there that the average
intensity of the local field fluctuations, i.e., the second mo-
ment M is estimated as M3~ k~?, where the critical expo-
nent y=1.0. The authors also found that the correlation
length £ of the field fluctuations diverges as &,~« " at
«—0, where the critical exponent v,=~0.5. For d=2, these
values of y and v, are very close to y=1 and v,= 1/2 found
here.

Above we assumed that metal concentration p is about
one half, which corresponds to the percolation threshold for
d=2. The derivation of Egs. (21) and (22) was based on the
assumption that the density of states p(A) is finite and about
unity for A=0. This assumption, however, is violated for
small metal concentration p, when the eigenvalue distribu-
tion shifts to the positive side of A, so that the eigenstates
with A=~0 are shifted to the lower edge of the distribution.
Then, the density of states p in Eq. (22) becomes a function
of the metal concentration p. In the limit of p—0, the num-
ber of states effectively excited by the external field is pro-
portional to the number of metal particles. Then the function
p(p) can be estimated as p(p)~p, for p—0. The same
consideration holds in the other limit, when a small portion
of holes in otherwise continuous film resonate with the ex-
ternal field and the density of states can be estimated as
p(p)~1—p, for p—1. When the density of states de-
creases, localization becomes stronger and we estimate the
localization length &4 as £4(A=0p—0)~&,(A=0,p—1)
~a. It follows then from Eq. (22) that strong field fluctua-
tions (M,>1) exist in a metal-dielectric composite with €,
= —¢,, in the wide concentration range

k<p<l—«, «<l. (25)
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FIG. 1. Distribution of x component of local ‘“THG field source” (real part) g§=Re[E2(r)Ev\.(r)] in semicontinuous silver films at
wavelength A =1.5 um, for different metal concentration p. (a) and (b): p=0.3; (c) and (d): p=p,=0.5; (¢) and (f): p=0.7. The positive
[(@), (c), (e)] and negative [(b), (d), (f)] values of the local nonlinear fields are shown in different figures. The applied field Ey=1.

Although we estimated above local fields for the special case
of €,= —¢,, all the above speculations, which are based on
the assumption that the eigenstates of KH are localized, hold
in a more general case, when the real part of the metal di-
electric constant €,, is negative and its absolute value is of
the order of €,. The important case of the large contrast
when |€,,|> €, will be considered in the next subsection.
Note that the above speculations leading to prediction of
giant field fluctuations described by Egs. (21) and (22), do
not require long-range spatial correlations (such, for ex-
ample, as in fractal structures) in particle positions. The large
field fluctuations have been seen in computer simulations, in

particular, for the so-called random gas of metal particle,”®

i.e., for metal particles randomly distributed in space. This,
however, is not true when the contrast is large |€,|>¢€,; we
show below that in this case the internal structure of a com-
posite becomes crucial.

To get a further insight in the optical field distribution in
percolation metal-dielectric composites, we employ the
original idea for computer simulations described in details in
our previous publications?’ ! and calculate the local electric
field distribution for a two-dimensional percolation compos-
ite (see Figs. 1 and 2). We model a film by a square lattice
consisting of metallic bonds, with the conductivity o, =
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FIG. 2. Distribution of local *‘Kerr field’ (real part) g;(= Re[ E2(r)| E(r)|?] in semicontinuous silver films at wavelength A=1.5 um, for
different metal concentration p. (a) and (b): p =0.3; (¢) and (d): p=p,=0.5; (e) and (f): p=0.7. The positive [(a), (c), (¢)] and negative [(b),
(d), ()] values of the local fields are shown in different figures. The applied field Eq=1.

—ie, w4 (L-R bonds) and concentration p, and dielectric
bonds with the conductivity o,= —i€;w/47 and concentra-
tion 1 —p (C bonds). The amplitude of the incident wave
Eo=E'" (for the applied field we use interchangeably the
notations Eq, and EV) is set equal one, Eq=1, whereas the
local fields inside the system are complex quantities. The
calculations are performed for silver-on-glass film. The di-
electric constant of silver has the form of Eq. (1), with the
interband-transitions contribution €,= 5.0, plasma frequency
®,=9.1 eV, and relaxation rate w,=0.021 eV.”’ We also
used €;,=2.2 for a glass host. In Fig. 1, as an example, we
show the distribution for the local field product g5(r)

=Re[EX(N)E())/|E®|?, for wavelength A=1.5 um,
which corresponds to €,,=~ — 118+ 3.2 (three different con-
centrations, p=0.3, p=p.=0.5, and p=0.7 were used in
simulations). The quantity g4(r) determines the local nonlin-
ear source (polarization) for third-harmonic generation,
third-harmonic generation (THG) (see Section III). In Fig. 2,
we also show the local field product gg(r)
=Re[ EX(r)|E(r)|*)/|E®|* for the same parameters A
=15 um, p=0.3, p=p,=0.5, and p=0.7 of the silver
semicontinuous film. The integral of gx(r) determines the
average enhancement for the Kerr nonlinearity. For simplic-
ity, all the distances in Figs. 1 and 2 are given in a units. As
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seen in the figures, the fluctuating nonlinear fields are well
localized. They form a set of peaks with the magnitudes up

ANDERSON LOCALIZATION OF SURFACE PLASMONS . ..

6108 for g g(r) andup to'5X 107 for g (r) that are different
in sign; the peaks and their spatial separations become larger
with further increase of N (see also Fig. 3 in Ref. 10). Quali-
tatively similar distributions were obtained for the imaginary
parts of g3(r) and gg(r) (not shown).

B. High-order moments of local electric fields

Now, we consider arbitrary high-order field moments de-
fined as

1
M, =—— f E(r)|"E™(r)dr, (26)
" VEG|E|" (=00

where, as above, EOEE(O) is the amplitude of the external
field and E(r) [which is defined so that E*(r)=E(r)
-E(r)] is the amplitude of the local field; the integration is
over the total volume V of a system.
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The high-order field moment (M, ,, E"”‘E*"’) repre-
sents a nonlinear optical process in which in one elementary
act k+m photons are added and k photons are subtracted.'’
This is because the complex conjugated field in the general
expression for the nonlinear polarization implies photon sub-
traction so that the corresponding frequency enters the non-
linear susceptibility with the negative sign.” Enhancement
of the Kerr optical nonlinearity G is proportional to M,
third-harmonic generation (THG) enhancement is given by
|Mg3)%, and surface-enhanced Raman scattering (SERS) is
represented by M, (see next section). Integrands in Eq. (26)
for M 22 and My;, i.e., the local nonlinear fields 83
=|E(PE@)I(Eo|Eo|>) and gi=|E(m)|2EX(r)/(EF| Eol)
are shown in Figs. 1 and 2.

We are interested here in the case when M, ,,> 1, which
implies that the fluctuating part of the local electric field E,
is much larger than the applied field E,. We substitute in Eq.
(26) the expression for E; given by Eq. (10) and obtain for
the moment M,,,, (p and g are integers) the following
equation

Moy 0=
P2q Ry,

Map Mg, iy,

gm m,(vxpml Vq’m,) m,

o, F 1K) (A,, +ibR) -

where (-

N n?(V‘If V\I’ ) . ”’7,: . HZI(V\P,,? '\I':‘Z )
(A,,l+zbk)(A,,2—zbk) (A, FibK)(A,, —ibk)
m (V‘Pm V\I’m )
2q 2g—1 29 (27)
( mzq_l+lbk)(Am, +lbk)

-} denotes as above the ensemble average, which is equivalent to the volume average and the sums are over all

eigenstates of KH H'. As a next step, we average Eq. (27) over spatial positions of eigenstates ¥,(r)=¥(r—r,) as it has
been done in transition from Eq. (13) to Eq. (15); this results in the following estimate

2oy B E Y VI (V- V)

IAn_
sz,zr/NEA‘f

where the summation in the numerator is over eigenfunctions
¥, =W(A,r—r,) with eigenvalues within the interval |A,,
—A|sAA<k, while the external sum is over positions A
of the intervals that cover the whole range of eigenvalues
A,,. The average in the numerator of Eq. (28) can be esti-
mated as follows [see derivation of Eq. (19)]

<(V‘I’,, V\II*)P(V\II” ) Vq’n)”)

2, 2q
N§‘“’+q)(A) 2 |\Ifﬂl p\pn,i

d(p+q-1)
) (29)

1
N§'(p+q)(A)

§A

where, as above, §4,(A) is the localization length, a is the
period of the square lattice in the tight-binding model [see
discussion after Eq. (5)], and N is the total number of cites in
the lattice. We substitute this equation and expression for &,

, (28)

A+ (BEYDY (A +ibk)>

{

given by Eq. (18) in Eq. (28). Then the sum in the numerator
of Eq. (28) takes the following form

|A %<AA |€n|2p55(l<(v\lj‘n-V\p;k)p(v'\lfn.V\I]n)q>

~p(A)[al E4(A)HPHD-IAN, (30)

where p(A) is the dimensionless density of states [see Eq.
(12)]. By replacing the first sum in Eq. (28) by integration
over the spectrum we obtain

p(M)[alg4(A)]* P07
Maraa j[A2+(bx)2]P(A+ibK)2qu' G

Note that to obtain the above expression we neglected all
cross terms in the product of eigenstates, when averaging Eq.
(27) over the spatial positions of the eigenfunctions ¥,
=W(A,r—r,). It can be shown that after integrating over
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A, these cross terms result in negligible [in comparison with
the leading term given by (31)] contribution to M, ,, for
K=0.

Assuming that the density of states p(A) and the local-
ization length £4(A) are both smooth functions of A in the
vicinity of zero and taking into account that all parameters of

the KH H' for the case €,= — €,,= 1 are of the order one, we
obtain the following estimate for the local-field moments

My~ p(p)Lal Ex(p) M7t (32)

for n+m>1 and m>0, where we set for simplicity b=1.
Note that the same estimate can be obtained by considering
the local fields as a set of peaks (stretched over the distance
£,), with the magnitude E}, and the average distance &,
between the peaks given by Egs. (23) and (24). Recall that
the superscript * denotes physical quantities defined in the
system with €,= —¢€,,= 1. In Eq. (32), we indicated explic-
itly the dependence of the density of states p(p) and local-
ization length £€,(p) on the metal concentration p [as men-
tioned above p(p) and £,(p) are always given at ;= —¢€,,
=1 and the sign * for them is omitted]. The notations p(p)
and £,(p) should be understood as p(p)=p(p,A=0) and
E,(P)=E4(p,A=0), ie., they are given at A=0.

The Anderson localization length £4(A) has, typically, its
maximum at the center of the A distribution.*® When p de-
parts from 1/2, the value A =0 moves from the center of the
A-distribution toward its wings, where the localization is
typically stronger (i.e., &, is less). Therefore, it is plausible
to suggest that £4(p) reaches its maximum at p=1/2 and
decreases toward p=0 and p=1, so that the absolute value
of the local-field moments may have a minimum at p=1/2,
according to Eq. (32). In 2d composites the percolation
threshold p.. is typically close to p,.==0.5. Therefore, the mo-
ments M, ,, in 2d composites have a local minimum at the
percolation threshold as a function of the metal concentration
p. In accordance with this, the amplitudes of various nonlin-
ear processes, while much enhanced, have a characteristic
minimum at the percolation threshold [see Sec. IIL, Figs. (5)
and (6)].

It is important to note that the moment magnitudes in Eq.
(32) do not depend on the number of ‘‘subtracted’’ (annihi-
lated) photons in one elementary act of the nonlinear scatter-
ing. If there is at least one such photon, then the poles in Eq.
(31) are in different complex semiplanes and the result of the
integration is estimated by Eq. (32).

However, for the case when all photons are added (in
other words, all frequencies enter the nonlinear susceptibility
with the sign plus), i.e., when n=0, we cannot estimate the
moments My ,,=Eq"V~![E™(r)dr by Eq. (32) since the
integral in Eq. (31) is not further determined by the poles at
A==xibk. Yet all the functions of the integrand are about
unity and the moment M,,, must be of the order of unity
Mg, ~0(1) for m>1. Note that the moment M, de-
scribes, in particular, enhancement G,ys of n-order har-
monic generation, through the relation G, yc=|M,,|* (see
Sec. IM).

Above we assumed that |e,|/e;~1. To estimate the
local-field fluctuations in percolation composites for the
large contrast, |€,|/€,5 1, we use the scaling approach de-
veloped in our previous paper'® and generalize it for an ar-
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bitrary field moment. Here we recapitulate briefly the main
points of the scaling renormalization. Consider first a perco-
lation composite where the metal concentration p is equal to
the percolation threshold, p=p.. We divide a system into
cubes of size ! and consider each cube as a new renormalized
element. All such cubes can be classified into two types. A
cube that contains a continuous path of metallic particles is
considered as a ‘‘conducting’’ element. A cube without such
an ‘‘infinite’” cluster is considered as a nonconducting, ‘‘di-
electric,”” element.”® The effective dielectric constant of the
“conducting’’ cube €,,(/) decreases with increasing its size [
as €,()=(/a)"""¢,, , whereas the effective dielectric con-
stant of the ‘‘dielectric’” cube €,({) increases with [ as
e, ()=(l/a)*"Ve; [t, s, and v are the percolation critical
exponents for the static conductivity, dielectric constant, and
percolation correlation length, respectively; for 24 case, ¢
=s=p=4/3, in 3d, the exponents are equal to #==2.0, s
=0.7, and v==0.88 (Refs. 7 and 36)]. We set now the cube
size [ to be equal to

[=1,=a(|€,|les)"" . (33)

Then, in the renormalized system, where each cube of the
size [, is considered as a single element, the dielectric con-
stant of these new elements takes either value ¢€,((,)
=0 e, [0+ (¢, I]€,]), for the element renormalized
from the conducting cube, or €4(/,)=¢€4"*V|e, |, for
the element renormalized from the dielectric cube. The ratio
of the dielectric constants of these new elements is equal to
el €y(l,)=¢€,/|€,]=—1+ix, where the loss factor «
=¢n/|€,|<<1 is the same as in the original system. Accord-
ing to the basic ideas of the renormalization group
transformation,”® the concentration of conducting and di-
electric elements does not change under the above transfor-
mation, provided that p=p_.. The field distribution in a two
component system depends on the ratio of the dielectric per-
mittivities of the components. Thus after the renormalization,
the problem becomes equivalent to the considered above
field distribution for the case €;,= —€,,= 1. Taking into ac-
count that the electric field renormalizes as Ey=Eq(/,/a),
we obtain from Eq. (23) that the field peaks in the renormal-
ized system are

|€m| V/(I+.Y) !eml
Eszo(a/fA)z(lr/a)K"=Eo(a/§A)2( ) — I,
€4 €
(34)
where &,=&,(p,.) is the localization length in the renormal-
ized system. In the original system, each field maximum of
the renormalized system locates in a dielectric gap in the
“dielectric’’ cube of the [, size or in-between two ‘‘conduct-
ing’’ cubes of the size [, that are not necessarily connected to
each other.”® There is no a characteristic length in the origi-
nal system that is smaller than /,, except the microscopical
length in the problem, which is a grain size a. Therefore, it is
plausible to suggest that the width of a local-field peak in the
original system is about a. Then the values of the field
maxima E,, do not change when returning from the renor-
malized system to the original one. Therefore, Eq. (34) gives
the values of the field maxima in the original system. Note
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FIG. 3. High-order field moments of local electric field in semi-
continuous silver films as a function of the wavelength A at p
=p.. (a) Results of numerical calculations of M,=M,,
=(|E/Ey|") forn=2, 3, 4, 5, and 6 are represented by + , 0, *, x,
and #, respectively. The solid lines describe M, found from the
scaling formula (41). (b) M,o={|E/Ey|*) [scaling formula (41) -
upper solid line, numerical simulations - *1; Mg 4={((E/Eg)*)
[scaling formula (42) - upper dashed line]; M, o={|E/Ey|?) [scal-
ing formula (41) - lower solid line, numerical simulations - + J;
Mya={(E/Ey)?) [scaling formula (42) - lower dashed line, numeri-
cal simulations - 0]. In all presented analytical calculations we set
&,=2a and p=1 in Eqs. (41) and (42).

that value E,, of the field maxima is different from previ-
ously obtained estimate (23) due to the renormalization of
the applied field E,.

Equation (34) gives the estimate for the local field ex-
trema when the real part €,, of the metal dielectric constant
becomes negative. For metals €,, increases in absolute value
with the wavelength, when the frequency w is smaller than
5’, [see discussion below Eq. (1)]. Therefore, the field peaks
E,(w) increase strongly with the wavelength (see, for ex-
ample, Fig. 3 in our previous paperlo). For a Drude metal it
happens for the frequencies w< w »» when the dielectric con-
stant €,, can be approximated as

~ ~ €p .Ebwr
ep(wsw,)=2(0—w,)—+i—. (35)
w, w,

By substituting this expansion in Eq. (34), we obtain
E (0= (:)p)
260w,

on((l/gA)z( =

Wy

4

(v+1+8)/(1+5s) ~
) ®
vi(t+s)

€4

W €p
(36)

Since losses in a typical metal are small, w,< 5,,, the field
peak amplitudes first increase steeply and then saturate
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(see below) with the magnitude E,,=Eq(a/é,)*(€y!
)" Nw,lw)~Eyw,/w, at ©=0.50,. Therefore, the
intensity maxima /,, exceed the intensity of the incident
wave o by 1,,/Ip~(w,/w,)*>1. For a silver-glass perco-
lation composite we obtained 1, /15~ 10° (see also the field
distribution in Figs. 1 and 2).

Now we consider the case of small frequencies w<w,
when the dielectric constant €,, for a Drude metal (see Eq. 1)
takes the form

w\? LW,
ex(w<kw,)=— —(;)—p— l—z? , 37)
where we again assume that w> w,.. By substituting this
expression in Eq. (34), we obtain

2 2v/(t+s)
E (w<w,)=E —C-l—) el (i) (38)
m D 0 fA w.l

€W T

For the 2d case, the critical exponents are equal to v=t=gs
=4/3 and Eq. (38) gives E,,,~(a/§A)2E0wp/(\/Z,;wT)
=(alé))EgVey/eq(®,/w,), that coincides with the esti-
mate obtained from Eq. (36) for @=0.5w,, . This means that
the local-field peaks increase steeply when the real part of
the metal dielectric constant €,, becomes negative €,,<<0 and
then remain almost the same in the wide frequency range
w,<w<w,, for 2d composites.

For 3d percolation composites, the critical exponents are
equal to »=0.88, r=2.0, s=0.7.7 To simplify estimations
we put below v=(r+ 5)/3 for d=3. Then Eq. (38) takes the
following form E,,,~E0(Eb/ed)mﬁﬁmwm/wf, that is the

local-field peaks increase up to E,/Eq~w,/w, when €,
becomes negative and then the peaks decrease as E,,/E,
~(w,/w)(w/®,)'", with further decrease of frequency.
For silver composites, we estimate that the maximum value
of the peaks is achieved at wEO.ScSP that corresponds to A
=0.6 um.

Since we know the peak amplitudes for the local electric
field we can estimate the moments M, ,, of the local field. To
obtain M, ,,, we consider first spatial distribution of the field
maxima for |€,|>¢€,. The average distance between the
field maxima in the renormalized system is equal to £, given
by Eq. (24). Then the average distance £, between the field
maxima in the original system (provided that p~1) is equal
to

lenl |+ e |
§e5(1r/a)§2~a(e—d) = - 09

m

In the original system, each field maximum of the renormal-
ized system splits into n(/,) peaks of the E,, amplitude lo-
cated along a dielectric gap in the ‘‘dielectric’” cube of the £,
size. The gap ‘‘area’” scales as the capacitance of the dielec-
tric cube, so does the number of peaks

n(l,)«(l,/a)?= 2+, (40)

There are, on average, (£, /a)? excited clusters. Thus, we
obtain the following estimate for the local-field moments
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Em) n+m I’L([,.)

~ af ”m "
Mn.m (fA/a) (En (ge/ﬂ\d

[r/a n+m—1
Np(gA/a)d—Z(rﬁm)(__’_(_) (l,_/a)sly—l

|Em| vi(t+s)n+m—~24s/v
"’P(ff\ /a)(l—Z(n+m) ( )
€4
If | n+m—1
x(——,-‘—) (41)
€m

that holds for n+m>1 and n>0. Since |¢,|> €, and the
ratio |€,,]/€,>1 the moments of the local field are very
large, M, ,,> 1, in the visible and infrared spectral ranges.
Note that the first moment M ;~1 that corresponds to the
equation (E(r))=E,. We stress again that the localization
length &4 in Eq. (41) corresponds to the renormalized system
with €,=—¢€,,=1. The localization length in the original
system, i.e., a typical size of the eigenfunction is estimated
as ({,/a)¢,>a. In other words the eigenstates become mac-
roscopically large in the limit of large contrast |€,,|/€,> 1
and consist of sharp peaks separated in space by distance

much larger than a. The eigenstates of HK A cover the vol-
ume (&40, /a)¢~ (&, wp/w)”> a? for two-dimensional Drude
metal composites and w<w,, .

We consider now the moments M, ,, for n=0 that corre-
spond to the volume average of the mth power of the com-
plex amplitude E(r), namely, M, =(E"™(r))/Eg. In the
renormalized  system, where [€,(l,)|=|€,(l,)] and
€1 ) €4l y=—1+ixk, the field distribution coincides with
the field distribution in the system with e;~ —¢,,~1. In the
system with €,~—¢, ~ 1 the field peaks E}, are different in
phase and because of the destructive interference, the mo-
ment Mg, ~O(1) [as it follows from Eq. (31)]. In transition
to the original system the peaks increase by the factor [, /a,
leading to the corresponding increase of the moment M, .
We suppose that within a single ‘‘dielectric’” cube the field
peaks are in phase, i.e., the field maxima form chains of
aligned peaks that are stretched out in a dielectric cube. This
assumption is confirmed by results of numerical simulation
shown in Fig. 1, where the field maxima with different signs
are concentrated in different places of a percolation compos-
ite. Then we obtain the following equation for the moment:

n(t) 7
M IINM*n([l’/a)m NK([,‘/Cl)m_'_F'Y/"
P e (et
e |€ml (m=2+s/vyv/(1+s)
~(W)(e—d) ’ “2)

which holds when M, given by this equation is larger than
one.

Using the critical exponents for 2d percolating compos-
ites, 1=s=v=4/3 we can simplify Eqgs. (41) and (42) as
follows

I3/2

ieln
Mn,m'vp{

n+m—1
T d=2), 43
(éla)? 6(1‘5:::] ( ) “
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for n+m>1 and n>0, and

eml€nl ="

om” (m-1)12 (d:2)9 (44)
€4

for m>1, n=0 and (|€,|/ )"~ V"?>|e,|/ €l [the last in-
equality corresponds to the condition that the moment given
by Eq. (44) is larger than one]. The moments M, ,(n+#0)
are strongly enhanced in 2d Drude metal-dielectric compos-
ites. The moments reach the maximum value

ntm—1

(d=2), (45)

Y
w\eq(éqla)?

when frequency w decreases so that the condition w<w,, is
fulfilled. The spatial moments of the local electric in a 2d
percolation composite are independent of frequency, for @
<w,. For metals it typically takes place in the red and in-
frared spectral ranges. For a silver semicontinuous film on a
glass substrate, the moment M, , can be estimated as
M, o ~[(alé4)*3X10*]1" """ for w<w,.

It follows trom Eq. (41) that for 3d metal-dielectric per-
colation composites, where the dielectric constant of metal
component can be estimated by the Drude formula (1), the
moments M, , (n#0) achieve the maximum value at fre-
quency wmax~0.5a~)p. To estimate the maximum value, we
note that the following relations »/(1+s)~1/3, s~v are
valid for the 34 case, where 1=2.0, s=0.7 and »=0.88.”
Then the maximum value of the moments is estimated as

M,,,,,,"'P

M".lﬂ( w= wmax)

(d=3).
(46)

For small frequencies w<w,,, the moments of the local field
decrease with the wavelength as

n+m=—1
(a/§A)2w2’3w”3 +
Mn,m(w<wp)~p(§A/a){—1/3p—"—’ (d=3).
Ed W,

~p(éa/a)l(al€a) ey €9) Pyl )"t

47)

In Fig. 3, we compare results of numerical and theoretical
calculations for the field moments in 2d silver semicontinu-
ous films on glass. We see that there is excellent agreement
between the scaling theory [formulas (43) and (44)] and nu-
merical simulations. To fit the data we used §,~2a. [Re-
sults of numerical simulations for M, 4 are not shown in Fig.
3 since it was not possible to achieve reliable results in the
simulations because of large fluctuations in values of this
moment.] The small value of ¢, indicates strong localization
of surface plasmons in percolation composites, at least for
the 2d case. As seen in Fig. 3(b) the spectral dependence of
enhancement M, , differs strongly for processes with (n
#0) and without (n=0) subtraction of photons.

As discussed above, nonlinear optical processes, in gen-
eral, are phase dependent and proportional to a factor
|E|"E™, i.e., they depend on the phase through the term E™
and their enhancement is estimated as M, ,
=(|E/E®|"(E/E®)™). According to the above consider-
ation, M, ,,~ M, .0, for n=1. For example, enhancement



ANDERSON LOCALIZATION OF SURFACE PLASMONS. ..

16 401

Kerr nonlinearity in metal-dielectric composites. To develop
our previous considerations,'® we obtain here scaling formu-
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FIG. 4. Fourth-order field moments M, , (m+n=4) of the
local electric field in 24 metal-dielectric composite with €;,=1 and
metal permittivity e, =—100(1 —i«), as functions of «: M,¢-®,
M3'1_ A, M2'2_ ..

of the Kerr-type nonlinearity Gg=M,,~Gps=M 4; (see
also next section). For nearly degenerate four-wave mixing
(FWM), the enhancement is given by Gryy~|Gl®
~|M,|? and can reach giant values up to ~10'%

Above, for the sake of simplicity, we assumed that p
= p. when considering the case of €,,<0. Now we estimate
the concentration range Ap=p—p,., where the above esti-
mates for the local field moments are valid.?®** We note that
the above expressions for the local field and average field
moments M, , hold in almost all concentration range given
by Eq. (25) when €,=— €,. The metal concentration range
Ap, where the local electric field is strongly enhanced,
shrinks, however, when e,'n<0. The above speculations are
based on the finite-size scaling arguments, which hold pro-
vided the scale [, of the renormalized cubes is smaller than
the percolation correlation length &é=a(|p—p.|/p.)~". At
the percolation threshold, where the correlation length £ di-
verges, our estimates are valid in a wide frequency range

w,<w<5p, which includes the visible, infrared, and far-
infrared spectral ranges for a typical metal. For any particular
frequency from this interval, we estimate the concentration
range Ap , where the giant field fluctuations occur, by equat-
ing the values of [, and £, which results in the inequality
IAPIS(EdllelnD”(H—X)'

In Fig. 4, we show the moments M 4, M;,, and M, as
a function of « for 2d percolating system with €,,=100
(—1+ix), €,=1 and metal concentration p=0.7>p,
=0.5. All the moments are close in magnitude and increase
with decreasing losses « according to a power-law depen-
dence with the same exponent, as it is predicted by Eq. (43).

III. GIANT ENHANCEMENTS OF OPTICAL
NONLINEARITIES AND RAMAN
SCATTERING IN PERCOLATION

COMPOSITES

In this section, we consider enhancements for nth har-
monic generation, Raman and hyper-Raman scattering, and

las~for enhancement factors for different nonlinear optical
processes, including those that depend on the field phase.
The enhancement is expressed in terms of the high-order
field moments considered above. We again assume that the
light wavelength A is larger than any intrinsic spatial scale in
the film, including the skin depth, A>a \/m We do not
consider here the effects of light propagation and suppose
that E; is the macroscopic, average electric field acting in the
system. The field E, changes on the spatial scale of the order
of X, which is much larger than the scale of the microscopic
averaging. For simplicity, we also assume that E; is linearly
polarized so that it can be chosen real.

A. High harmonic generation

We consider here enhanced nth harmonic generation
(nHG) at frequency nw when a percolation metal-dielectric
composite is irradiated by a light beam at frequency . For
estimations, we assume, as above, that metal grains are char-
acterized by the Drude dielectric function given by Eq. (1).
As shown in previous sections, Anderson localization of sur-
face plasmon excitations results in giant scale-invariant field
fluctuations of the local electric field. This makes the consid-
ered here high harmonic generation different from the well-
known phenomena of harmonic generation from smooth®-%
and rough%~% surfaces.

We assume that the material components forming a com-
posite possess nonlinear conductivity ¢ that results in
nHG; o™ can also be due to adsorbed molecules in the
composite. As shown in Sec. II, the local field concentrates
mainly in dielectric gaps between metal clusters. Therefore,
largest enhancement of nonlinear effects is achieved when
either nonlinear adsorbed molecules are located in the dielec-
tric gaps or the dielectric itself possesses the nonlinearity.

The local electric field E,(r) induced in a composite by
the external field E,, generates the nw current
o "E,(r)E""'(r) in the system. This expression, strictly
speaking, holds only for the scalar nonlinear conductivity
and odd n (i.e., n=2k+1), when E"~'=(E-E)*. However,
for estimates, the formula can be used in the general case, for
arbitrary n. The nonlinear current interacts with the system
and generates the ‘“‘seed’” nw electric field, with the ampli-
tude ES)=0c™E""'E, /a'V, where o'V is the linear con-
ductivity at frequency nw. The electric field E{) can be
thought of as an inhomogeneous external field exciting the
composite at nw frequency. The nHG current j,,, induced in
the film by the ‘‘seed”’ field E©) can be found in terms of the

nonlocal conductivity tensor 3(r,r') that relates the applied
{(external) field at point r’ to the current at point r,
j,,m,ﬁ(r)=J'E,,,,,.ﬁ,,(r,r’)E,(,"z‘a(r’)dr', where 3., g, is the
conductivity tensor at frequency nw and the integration is
over the entire film area.!%*® The Greek indices take values
{x,y} for d=2 and {x,y,z} for d=3. The summation over
repeated indices is implied. It is the current j,, that eventu-
ally generates the nonlinear scattered field at the frequency
nw. Figure 1 shows the normalized real part of the 3w local
field gi=Re[EX(r)E(r))/|[EP]® in a 24 silver-on-glass
film. As seen in Fig. 1, the fluctuating 3 w fields form a set of
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sharp peaks, looking up and down, and having the magni-
tudes ~ 10%+ 10%. Such huge fluctuations of the local fields
--are-anticipated-to-strongly enhance the -3w-and-higher har-
monic generation.

For simplicity, we assume that the metal and dielectric
components of a composite have the same nonlinear conduc-
tivity o (e.g., resulting from adsorbed molecules uni-
formly distributed in the composite). We are interested in
enhancement of the nw harmonic generation due to the giant
local field fluctuations. Therefore, we compare the nw signal
from the system with and without metal grains. It is shown in
our previous paper'® that enhancement of the nth harmonic
generation is given by the following formula

(010D E,o(1) - Eo(0]EL™'(10)]°

n+1
O-(IEm.O l

nHG™

2

<€nw(r)[Enw(r)'Ew(r)]EZ)—-l(r» , (48)

n+1
€:Eu0

where E, (1) is the local electric field exited in the system
by uniform probe field E,,  that has the same amplitude and
direction as external field E, o but oscillates with the fre-
quency nw; 0,,(r), o4 and €,,(r), €, are the linear con-
ductivities and dielectric functions of the composite with and
without metal grains, respectively. The enhancement G,
does not depend on the amplitude of the external field and is
essentially an intrinsic property of the system. The local
fields in Eq. (48), resulting in enhancement of nth harmonic
generation, experience giant fluctuations in the spectral band
of the plasmon resonances, i.e., for w,<w,nw<a~)l,, as
shown in Sec. II. This includes the optical, infrared, and
far-infrared spectral ranges, where the huge enhancement of
nth harmonic generation can be observed in percolation
composites. When frequency w of the incident wave is large
enough so that the nth harmonic nw is out of the spectral
range of the plasmon resonances, i.e., nw> 5,,, we can ne-
glect the fluctuations of the nw field in Eq. (48) and this
equation simplifies to

(0,(DE () EL (r))|®

]
T4 E @0 ‘

E n—1 2
(€no(r)EL(r)E), (ﬂ){ . “9)

GnHG.ON

n
6(/Ea),0

As shown in Sec. II, fields with different frequencies w
fluctuate in space with different spatial scales £,(w). There-
fore we can use decoupling in Eq. (48) to obtain the follow-
ing estimate

(€D (1) (Eo(DEL™ ()]

n+1
edEw,O ‘

GnHGN

(DB E(DEL (D)

22 2n
6{1Enm.0 Ea),O

ena)?

€

(Mo, (50)
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where E, (1) is the local field exited in the system by the
uniform field E,, o with frequency nw, €,(nw) is the effec-
tive -dielectric-constant-of-the-composite-at -frequency-nw,
and the moment M, is determined by Eq. (26). Strictly
speaking, this equation holds for nw< cT)p , but we can use it
in the whole frequency range since the metal dielectric con-
stant ¢,,(nw) is of the order of one for nw>w, and Eq. (50)
gives the same result as Eq. (49) for nw>5p. At the perco-
lation threshold the effective conductivity is estimated as
€,(nw)~ e (€, (nw)/ €)', where s and t are percola-
tion critical exponents for the dielectric constant and conduc-
tivity, respectively.’ Substituting this result together with Eq.
(42) for the moment M, in Eq. (50), we obtain the follow-
ing expression for the nth harmonic enhancement

Gune

~[|Em(nw)|

€4

IElll(w)i

€4

2.s‘/(l+.\')l: e ]2
m

}2(n—2+slu)vl(r+x)
|€n

5D

For a Drude metal and nw<w,, we have |e,]
~|ep(nw)|~(w,/w)* and €,/|€,|~w,/w. For estimates,
we can set s/v=1, which holds for d=2 and d=3 as well.

Then Eq. (51) acquires the following form

w 2 ® 4nv/(t+s5)
G,,Hc~(—1) (—”) : (52)

w w

For 2d systems, where the critical exponents are equal to s
=r=y=4/3, Eq. (52) gives the simple formula for G, ¢

o, 2 a)p 2n
Guwc~\ 7|\ o) > (d=2). (53)
For 3d system, where the critical exponent v~(z+s)/3, Eq.
(52) can be simplified as

' (wT)z(wp)zm/s ~

G~ | o . (d=3). (54)
We can estimate enhancement of second and third harmonics
in silver-on-glass semicontinuous film as G,y5~2X 10 and
Gapyg~2x10°, for N=15 um, and Gyyc~10° and
Giyg~5%X10°, for A=3.0 um. These estimates are in
agreement with our numerical calculations.'® In particular,
the simulations indicate that G,yc~w™® in the long-
wavelength limit, which is exactly the result given by Eq.
(53).

We note that the obtained formulas define enhancement
for a coherent signal of harmonic generation propagating in
the reflected or transmitted direction. As shown in Ref. 70,
the coherent harmonic generation is accompanied by a diffu-
sive broad-angle nonlinear scattering at frequency nw, with
the integral enhancement exceeding the coherent signal by
many orders of magnitude. This phenomenon dubbed in Ref.
70 as percolation enhanced nonlinear scattering (PENS) has
been observed in experiments,”' but was not explained at the
time.

It follows from Eq. (53) that enhancement increases with
1,50 that G, 4146/ G e =(w,/w)* is much larger than one.
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It is interesting to note that the fact that enhancement
strongly increases with the order of the optical nonlinearity
can result in unusual situation when, for example, second-
harmonic generation (SHG) is dominated by higher-order
nonlinearity x‘¥(—2w;w,w,— 0,), rather than being due
to x*(—2w;w,w). This is because M, ,, which is respon-
sible for enhancement of the above ¥ (—2w;w,w,
—w,w), at some wavelengths (~1 um) can exceed Mg,,
by many orders of magnitude. For example, in semicontinu-
ous metal films the ratio of the moments M, and M, at the
percolation can be estimated from Egs. (43) and (44) as
Moyl Moo~ (alé))0 €, 4€l, where we set the density
of states p=1. Substituting here €,~2.2, which corresponds
to the glass substrate, and parameters for the silver dielectric
constant we obtain the estimate M ,/Mg,~(alé4)°107, for
©<w,. Another possible situation is when hyper-Raman
scattering (considered below) is as efficient as ‘‘conven-
tional’” Raman scattering. Also, we note that when higher-
order nonlinearities compete with lower-order nonlinearities,
a bistable behavior can be obtained, which can be used in
various applications in optoelectronics.

B. Raman and hyper-Raman scattering

Surface-enhanced Raman scattering (SERS) from various
nanostructured random media (rough films, colloidal aggre-
gates, etc.), is one of most intriguing optical effects discov-
ered in the last two decades.”>”"* Recent studies indicate that
SERS is especially large in strongly disordered media, such
as fractal small-particle composites and self-affine thin films,
where the local-field fluctuations are especially large because
of strong spatial localization of optical modes in different
random parts of the object.” Because of the sp localization in
percolation composites, SERS also experiences giant en-
hancement in these media.*

In most studies, the average (integrated) SERS was con-
sidered. Recently, it was shown that the local enhancements
in the hot spots can exceed the average enhancement by
many orders of magnitude making possible SERS from
single molecules.®""7*

It was shown in our previous palperslo’31 that the SERS
enhancement is given by Ggs~Mo=(|E(r)/Eg|*). Using
Eq. (41), we obtain

| 6I"I | 6”1 [

(Zv+s)y(t+s) 3
GRs~p(p)[§A(p)/a]”‘8(e—d) (—“) ;

em

(55)

where we indicated explicitly dependence of the density of
states p(p) and localization length £,(p) on the concentra-
tion p of metal grains. Thus, the obtained Raman enhance-
ment Ggg depends strongly on localization length &, . When
the states are delocalized £4,— < and G g vanishes very rap-
idly.

Now we consider frequency and concentration depen-
dence of Raman scattering predicted by Eq. (55). For 2d
composites and frequency w<<w, Eq. (55) results in the en-
hancement G s~ p(p)a/é,(p)](w,/w,)* €)?, which is
independent of frequency. For silver-on-glass percolation
films we set £,~2a according to our computer simulations
[see Figs. (1) and (2)] and density of state p(p.)~1 [see
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discussion after Eq. (12)]. Thus, we obtain the SERS en-
hancement Ggg~ 10° silver semicontinuous films at the per-
colation” threshold. For 3d composite at w<w,, SERS de-
creases with decreasing frequency as Ggrs~p(p)
X(§A/a)'5w5w/wi~ 106w/w,,, where we used for esti-
mates £,~2a, p~1,v~s~(t+s5)/3 and substitute the data
®,=9.1 eV and w,=0.021 €V for silver.”’

The localization radius &4 of the eigenstates W, with ei-
genvalues A=0 decreases when we shift from p=p toward
p=0 or p=1 since the eigenvalue A=0 shifts from the
center of the A distribution to its tails, where localization of
the eigenstates is stronger. Therefore, according to Eg. (55),
Raman scattering has a minimum at the percolation thresh-
old. As a result, the double maximum dependence Grs(p)
takes place as was observed in experiments and numerical
ca]culations,3 ' with one maximum below the percolation
threshold p,. and another above the p,..

The intensity of the local Stokes sources /gs(r)<|E(r)|*
(provided the Stokes shift of frequency is small) follows the
local-field distribution. In the peaks (hot spots), Eq. (34)
gives

4 4 8 |6ml it l6m| ’
IRS,muxoclE(r)I ~Eg(aléy) Pl

€4 €,

(56)

For a 2d Drude metal at p=p, and w<w,, we estimate
Ts mx | E@)| Y E§~(£41a) 4w,/ w,)*>1. If the density
of Raman-active molecules is small enough, then each peak
of the local field can be due to Raman scattering from a
single molecule.

Consider now hyper-Raman scattering when # photons of
frequency w are converted in one hyper-Stokes photon of the
frequency wyrs=nw—, where Q is the Stokes frequency
shift corresponding to the frequency of molecule oscillations
(electronic or vibrational). Following the approach devel-
oped in Ref. 29 we obtain the following result for surface-
enhanced hyper-Raman scattering (SEHRS)

G {lours(r) [P Eyrs(r) | E(r)>")
hRS™ -
lo 42| Eg srs|*| Eol*

<|Elst(l’)IZIEhRs(l‘)mE(l‘)]z")

= , (57)
|€al*| Eours| | Eol*"

where E,pg(r) is the local-field excited in the system by the
uniform probe field Egzs oscillating with wpgg; oprs(T)
and €,55(r) are the local conductivity and dielectric constant
at the frequency wjgs. At n=1 formula (57) describes the
conventional SERS.

To estimate G,ps we take into account that the spatial
scales for the local field fluctuations, £,, at the fundamental
frequency w and hyper-Stokes frequency wjzs are signifi-
cantly different. Therefore, we can decouple the average in
Eq. (57) and approximate it by

(| €nrs(X)* | Enrs(r)|*| E(r)]*")
~{| €nrs(r)Eprs(r) 2| E(r)|*")
= (| €4rs(r)Eyrs(1)|2)M o, 0| Eo|*".
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It follows from the scaling analysis of the current-current
correlation function fulfilled in Refs. 57 and 58 that the sec-
ond moment of the current (| €; zs(r)Ejzs(r)]*)-is-estimated
as €2 €y (wpgs)/ €417 T UTOMT | Eqps|?, Where the mo-
ment M} , is given by Eq. (32). By substituting these results
in Eq. (57), we obtain

Grs~I|€m(wprs)/ €1 T2 ITIOME M, . (58)

where the moment M 5,0 is taken at frequency w;zs . Now we
use the expressions for moments M5, and M,,, given by
Eqgs. (32) and (41) and take into account that for p=p, the
density of states in Eq. (32) is about unity p~1. Thus, we
obtain the following formula for enhancement of hyper-
Raman scattering

Girs

3s){t+s
N(fA/(l)Z(I—4(l+n) |6m(thS)J“+ \)“+\)l|€m(thS)le

€4 € wyrs)

[Iem(w”
x|

2n—1

en(@)

[2v(n— 1)+.s‘]/(t+.\'){ [fm(w)|

where n=2. For a Drude metal and frequencies w<5p,
Wprs<€ 5[, the metal dielectric constant can be approximated
as |€m(thS)I~|Em(w)| ~(wp/w)2’ E::z(w)/lem(w)!
~w,/w and Eq. (59) acquires the form

w 2n

Wy

L}

) 202v(n—1)+4s+]/(1+5)

w
Ghas™ (£ /a)“—‘“””(;”

which holds in the vicinity to the percolation threshold. For
2d composites where the critical exponents are r=s=v
=4/3 Eq. (59) simplifies to

G ) " wp 2(n+1) wp 2n (61)
~(a _r £

nrs~(@l€4)™"| — o,

which for n=2 in silver semicontinuous films is estimated as
G hrs~ 10" (al€4)8\2, where the wavelength \ is given in
microns. As above for Raman scattering, the local enhance-
ment in the hot spots can be much larger than the average
one.

C. Kerr-type third-order optical nonlinearity

For the Kerr-type nonlinearity the displacement current D
in the simplest case can be written as'’

D=[e,+ €|E|*]E,, (62)
(3)

where €, and €, are the effective linear and nonlinear di-
electric constants. The nonlinear term is responsible, in par-
ticular, for the nonlinear refraction and nonlinear
absorption.'’

As shown, for example, in Ref. 10, the effective nonlinear
dielectric constant €'> in a random composite is given by

(eP(r)E*(r)[E(1)]?)
E3|E|?

where €®)(r) is the local nonlinear dielectric constant of the
composite. The local “Kerr field” gx=E*(r)|E(r)|%/|Eq|*

G-
[4

, (63)
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FIG. 5. Average enhancement of the Kerr optical nonlinearity
Gg=M,, in silver semicontinuous films as a function of the metal
concentration p for three different wavelengths. The nonlinear Kerr
permittivity € is the same for metal and dielectric components.

in silver semicontinuous films is shown in Fig. 2. We are
interested here in the average enhancement G (given by the
integral of gy over the system volume) of the Kerr nonlin-
earity € due to fluctuations of the local fields in metal-
dielectric composites. When the local field fluctuations arse)
(

negligible, the effective nonlinear dielectric constant €,
~{e3(r)).

We consider first the case when €3 (r) in the dielectric
component is of the same order of magnitude or larger than
in the metal component. (The opposite case of almost linear
dielectric || <|€¥] will be considered below). Then the

Kerr enhancement G is estimated as
Gy~ 55:3)/<6(3)(1‘)>~M2,2

!6 l Qv+s)/{t+5) IE [
- d—8 m m
plésta) (—Ed

3
) . (64)

1"
m

where we used Eq. (41) for the moment M, of the local
field. This expression for G coincides with Eq. (55) for the
enhancement of Raman scattering. For w<€w, the Kerr en-
hancement for 2d composites (semicontinuous metal films)
is estimated as G g~ p(€, /a)"_g(w[,/wf)3 where we use the
Drude formula (1) for the metal dielectric constant €,,. For
silver-on-glass semicontinuous films &, /a=2 and p=~1, we
obtain G g~ 105,

In Fig. 5 we show results of numerical simulations for G
as a function of the metal filling factor p, for d=2. The plot
has a two-peak structure, as in the case of Raman scattering.
However, in contrast to Gy, the dip at p=p_. is much stron-
ger and at p =p_. is proportional (as simulations show) to the
loss factor «. This implies that at p=p,., the enhancement is
actually given by G g~ «M,,, where M, was found above.
This result might be a consequence of the special symmetry
of a self-dual system at p =p,. Formally, it could happen if
the leading term in the power expansion of M,, over 1/«
cancels out because of the symmetry [see the discussion fol-
lowing Eq. (31}]. When this symmetry is somehow broken,
e.g., by slightly moving away from the point p=p,, the
enhancement G increases and becomes Gg~M;,~GRrs
~Myy, as seen in Fig. 4. The fact that the minimum at p
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=p,. is much less for SERS than for the Kerr process is
probably related to the fact that the latter is a phase sensitive
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A=0.6pum
A=1S5um

effect.

As shown in Sec. II, the local field maxima are concen-
trated in the dielectric gaps when |¢,,|> €,. Therefore, the
enhancement estimate in Eq. (64) is valid when the Kerr
nonlinearity is located in these gaps (it can be due to the
dielectric itself or due to adsorbed molecules).

Consider now the case when the Kerr nonlinearity is due
to metal grains as in recent experiment.'! Provided that e,
=—¢,, the local electric field are equally distributed in
metal and dielectric components. Therefore, the Kerr en-
hancement is still given by Eq. (64) where one should set
l€,,|/€,=1. The situation changes dramatically when |e,,|
> €, since now the local field are concentrated in the dielec-
tric gaps between the conducting clusters achieving there the
values E,, given by Eq. (34). The total current J, of the
electric displacement flowing in the dielectric gap between
two resonate metal clusters of size [, can be estimated as
Jo=akE,€,l f.d_z), where aE,, is the voltage drop across the
gap, ¢, is effective dielectric constant of the composite. Be-
cause of the current continuity, the same current should flow
in the adjacent metal clusters. In the metal cluster the current
is concentrated in a percolating channel.”* The electric field
in the metal channel, which spans over the cluster, can be
estimated as E;,~J/(&,a?""). Then nth moment of the
local electric field in a metal cluster of size [, is equal to
(E"Y=E" La® /19, where La®"! is the volume of the
conducting channel, L=a(e,/€,)l, 4+2 js the effective
length of the conducting channel. Now, we take into account
that only the fraction k= €/ /|€,,|<€1 of metal clusters of size
1, are excited by the external electric field; then we obtain the
following estimate for the moments M"“D=(|E|"),..a:
=«(E7,) of the local field averaged over the metal compo-
nent only

" ’

m

n=l v{n(d— 1= t/v)+tlv+2—=2d}/it+5)
M(nwml) ( |€m!) (leml)
"

€ €4

(65)

where we use expression (33) for the size [, of the resonate
clusters. For two-dimensional systems (d=2), where t=s
=p=4/3, we obtain from Eq. (65) Gu¢~piretad
~(lenll€r)} (eq!|€n])"2. Computer simulation results for
enhancement of the Kerr nonlinearity G/1““/ for silver semi-
continuous film are shown in Fig. 6 as a function of the metal
concentration p. From Figs. 5 and 6 we see G2¢""'<Gy as
expected. Near the percolation threshold we can compare
G¢'" and G quantitatively. Considering for simplicity 2d
case, where t=~s~ v, and using Egs. (64) and (65) we obtain

Gk (leml)2 (66)

Gilr(wml €y

Thus, for |e€,|> €, the Kerr nonlinearity enhancement is
much larger when the ‘‘seed’’ nonlinearity is located in the
dielectric gaps where the local fields are much larger than in
metal. It follows from Eq. (66) and also from Fig. 6 that the
Kerr enhancement G'2“*“ may become less than one. This
means that local electric fields in the metal component can

e =k 10,0 pm

1
1
e !
L
]

T T T I T ] p
60 02 04 06 08 1.0
FIG. 6. Average enhancement of the Kerr optical nonlinearity
Gt = M5! in silver semicontinuous films as a function of the

metal concentration p for three different wavelengths. The nonlin-
ear Kerr permittivity €' is in the metal component only.

be smaller than the external field on average. For semicon-
tinuous silver films on a glass substrate it happens for wave-
length A>10 um as one can see in Fig. 6.

We also note here that enhancement for nearly degenerate
four-wave mixing G gy, such as coherent anti-Stokes Ra-
man scattering and optical phase conjugation process, is es-
timated as G ryp~|Gl|* and can be very large.!

D. Discussion of models: Swiss-Cheese dielectric

So far, we restricted our consideration to the model con-
taining only two types of elements, with metal dielectric
function €,, and dielectric constant €, and the volume con-
centrations p and 1—p, respectively. The more realistic
model of a metal-dielectric composite should take into ac-
count that metal elements can be different and characterized
by some distribution F(e,,). The same is true for dielectric
elements whose properties in real percolation composites can
vary over the system. We note that a narrow distribution of
the parameters originating, for example, from different sizes
of metal grains does not affect the critical exponents,” so
that the above estimates for the field moments remain un-
changed.

The situation changes, however, when a distribution of
the internal parameters is broad, as in the Swiss-Cheese
model” suggested for continuous media. In this model for
the 3d case, while the critical index v for the correlation
length remains the same as in the lattice model, the transport
exponents, such as z, can be different from their lattice val-
ues. For the 2d random checkerboard model’® it was argued
that the ‘‘dielectric’’ exponent s is different from the lattice
value, while the percolation exponents remain the same.”’ It
was shown in Ref. 78 that although the critical exponents for
transport in continuous media may be different from the lat-
tice values, they still satisfy the standard scaling relation of
the statistical mechanics as do their lattice counterparts. So
despite the fact that the values of the critical exponents in
continuous media can be different we speculate that the cor-
responding functional dependencies may remain unchanged
for a number of physical processes.
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Very little is known about the effect of a broad parameter
distribution on the local em fields. Consider, for example, the
- Swiss=Cheese model that can-be -mapped-onto-random R=C
network with a broad distribution f(R) of resistors R so that
the average value (R)=[f(R)dR=o diverges. The geo-
metrical structure of the conducting ‘‘R’’ bonds does not
depend on the distribution f(R); therefore, the spatial inho-
mogeneity is still given by the percolation correlation length
& for the resistor concentration p close to the percolation
threshold. When all the conducting elements are the same,
the conductance in the spatial scale &, according to the per-
colation theory, is determined by the ‘‘critical”” chain of
resistors.*® The potential drop (and the local electric field) is
approximately the same for the resistors in the critical chain
and its resistance can be estimated as (R)L, where L is the
length of the chain. On the other hand, for the Swiss-Cheese
model the distribution f(R) is so broad that the resistance of
the critical chain is due to a single element with the largest
resistance. Then the voltage drops mainly in this critical re-
sistor, which determines the conductivity in the scale £. Note
that the dependence of the critical exponent ¢ on the resis-
tance distribution f(R) follows from this fact.”*"8!

The moments M, of the local fields are power-law func-
tions of the percolation correlation length M, ~ £9"), since &
is a single spatial scale in the considered static case. When
the local field concentrates in a single element (in the scale
&) the critical exponent g(r) acquires the form of a linear
function of n, implying a constant gap between the expo-
nents g(n) for consecutive n. Therefore, the field distribution
becomes compact and looses its multifractal nature for the
Swiss-Cheese model.*

Contrary to these conclusions, in Ref. 82 it has been ar-
gued that for the Swiss-Cheese model in the “‘truly’” con-
tinuous case the local-field distribution becomes wider.
Analysis of a continuous metal film perforated by circular
voids shows that the local field concentrates in narrow splits
between the voids. This concentration of the field results in
the power-law tails in the local field distribution (this analy-
sis was also performed for the static field).

In the considered here case of optical properties, the con-
tinuous structure of a medium may affect the conductivity of
metal clusters (e.g., the bottle-neck contacts between the
metal grains) and result in renormalization of the exponent ¢
in the formulas obtained above for the spatial moments of
the local optical fields. This, however, does not affect the
functional dependencies derived above.

The situation changes when a dielectric component is
characterized by a broad distribution of parameters. Recall
that the highest electric fields are concentrated in the dielec-
tric gaps, rather than in metal clusters. In this case, not only
the critical exponents may be renormalized but the corre-
sponding functional dependencies may also be different.

We have shown in Sec. II B that the local electric field
concentrates in a dielectric gap between resonating metal
clusters of the size {*. The voltage drop between the two
resonating metal clusters can be estimated from Eq. (34) as
U,,=E,a, and the nth field moment averaged over the vol-
ume of the gap can be written as

. U dq
<E >g“P~aS f a1
gapd x(q)

(67)
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where x(q) is the thickness of the gap (depending on the
coordinate q along the gap) and the integration is over the
gap area Sg,,poca"_ln(l,.), where n(l,) is given by Eq. (40).
Hereafter, we set, for simplicity, Eq=1.

We suppose now that the thickness x of a dielectric gap
between two metal clusters is distributed as f(x). Then Eq.
(67) can be rewritten as

ﬁj"\'ma.\"f(x) . (68)

<E">gap~ a

0 xn—l

Provided that the distribution f(x) has a well-defined maxi-
mum near the granular size a, the average (E"),,,~E,,, in
accordance with previous considerations.

Now we consider the case when the gap distribution f(x)
does not vanish at x—0; for simplicity, we assume that the
gap size x is distributed uniformly between 0 and g, i.e.,
f(x)=a"" for 0<x<a. In this case the integral in Eq. (68)
diverges at the lower limit and this equation cannot be used
to estimate the field moments. In this case the integral in Eq.
(67) is determined by the distance x,,;, for the closest ap-
proach of the clusters. Since the distances x are distributed
uniformly in the segment 0<x<a the ‘‘effective’’ x,,;, can
be estimated as x,,;,~a/n(!,), where the number of capaci-
tance contacts, i.e., the “‘effective area’” of the gap n(/,) is
given by Eq. (40). By approximating the integral in Eq. (67)

as ~a®"!/x">! we obtain
n ad—Z
m n -2
<En>g(tp~_s — ~E,n(l)"
8aP A nin
"’E::I([r/a)(d_2+'YIV)("—2). (69)

By substituting this expression instead of E” in Eq. (41), we
y t=] p m q

obtain the new estimate for the field moments:

|€1n| {[s1(n—=2)+s}(s+¢t)
M~ p(€s /a)"_z(”’")( —-e—d—)
le,| n+m=1
{2 e

that holds for n+m=2. Thus, we arrive at the conclusion
that the field moments in the Swiss-dielectric model differ
from those obtained previously for the discrete network by
the factor (| €,,|/ €)= DWA=D+sls+ which is much larger
than one for n+m>2.

The spatial distribution of the local fields also changes
significantly in the Swiss-dielectric model: instead of a chain
of local maxima between resonating metal clusters we have a
single peak with the amplitude E,,.~E (xy,/a)
~E (| €|/ €)@= DHsVE+0 ywhich is much larger than the
previous estimate for E,, given by Eq. (34). We speculate
that in this case, the maximum enhancement for the local-
field is achieved since we have only one peak within the field
correlation length &, .

IV. CONCLUSIONS

In this paper we studied the local electric field distribution
and enhancement of optical nonlinearities of random metal-
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dielectric composites. We show that the surface plasmon (sp)
modes are localized in metal-dielectric percolation compos-
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was shown that the enhancement strongly depends, in terms
of its magnitude and spectral dependence, on exact nature of

ites, and the electric fields in such systems consist of sharp
peaks resulting in very inhomogeneous spatial distributions
of local fields. In peaks (‘‘hot’’ spots), the local fields exceed
the applied field by several orders of magnitudes. These
peaks are localized in nm-sized areas and can be associated
with the eigenstates of the Kirchhoft’s Hamiltonian. For any
particular frequency in the visible and infrared spectral
ranges we can find the eigenstates representing the sp reso-
nance modes. The amount of metal grains supporting these
resonance excitations is negligibly small in comparison with
the total number of metal grains. Nevertheless, the resonant
clusters cover the entire volume of the film because of their
fractality. The incident light excites the resonance clusters
and they interact with each other. As a result, the local field
is concentrated in sharp peaks placed in some subset of the
resonance clusters. The amplitudes of the peaks and the av-
erage distances between them increase with the wavelength.

The strongly fluctuating fields associated with the sharp
peaks in various random parts of a film, result in giant en-
hancements of nonlinear optical processes since they are pro-
portional to the enhanced local fields raised to a power
greater than one. Because of such pattern for the local field
distribution, the nonlinear signals are mostly generated from
very small nm-sized areas.

We have obtained scaling formulas for enhancement of
arbitrary nonlinear optical processes that in general depend
not only on the field magnitudes but also on their phases. It

the nonlinear process and can be different, even for processes
with the same order of optical nonlinearity. Namely, it
strongly depends on whether there is (at least one) act of
photon subtraction in the multiphoton scattering leading to a
generated wave. As a result, the enhancement for processes
with photon subtraction, such as Raman and hyper-Raman
scattering, Kerr-type nonlinear refraction and four-wave
mixing, is significantly different from the enhancement for
processes without photon subtraction, such as sum-frequency
and high-harmonic generation.

Both the local and average enhancements for nonlinear
optical processes strongly increase toward the long-
wavelength part of the spectrum for two-dimensional system
and decrease with increasing the wavelength for three-
dimensional percolation systems. Note also that because the
“hot”” spots are localized in nm-sized areas and provide gi-
ant enhancement in their locations, a fascinating possibility
of nonlinear spectroscopy of single molecules on a semicon-
tinuous metal film becomes feasible. These nano-optical ef-
fects can be probed, for example, with near-field scanning
optical microscopy providing sub-wavelength spatial resolu-
tion.
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