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Abstract: A randomly distributed gold nano-net is studied numerically via FDTD simulations. The dis-
persion of gold is implemented through a generalized dispersive material (GDM) model built on Padé 
approximants. The simulation of the dispersive random nano-net structure demands both fine nanoscale 
geometry and large span area in order to cover the complexity of interactions at the scattering surface. 
Along with additional equations for dispersive response this poses a severe challenge in terms of an effi-
cient numerical implementation, especially in 3D. To reduce the simulation time we studied and deter-
mined the minimal size of the individual 2D-frames, which can be calculated independently and in paral-
lel on a multiprocessing system. The impact of the individual frame size on accuracy is analyzed for a 
representative nano-net sample. 
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1. Introduction 
 

Random metal composite films, or specifically surface composites, have attracted a great deal of re-
search interests recently [1]. Due to their broadband resonance and their fractal morphology, they can lo-
calize electromagnetic energy into nano-scale regions and produce large near-field enhancements extend-
ing from the ultraviolet to the mid-infrared [2]. This feature, besides the merits of simple and low-cost 
fabrication requirements, give rise to numerous applications, such as surface-enhanced Raman scattering 
spectroscopy (SERS) [3-5], surface enhance infrared absorption for sensing [6-7], enhanced solar cell ef-
ficiencies [8-9], and others. In particular, random gold nano-nets that have low metal coverage (such that 
they are highly transparent) but are still close to the percolation threshold (such that they exhibit good 
electrical conductance) could be a promising candidate for anode designs in coherent light trapping for 
thin-film photovoltaic devices [10]. It is shown that such gold nano-nets could be operated either above or 
below the percolation limit depending on the application and cell configuration [11]. However, due to the 
strongly coupled metallic elements, theoretical methods such as Bruggeman’s effective medium theory 
(EMT) [12] and the Maxwell-Garnett theory (and modifications thereof) [13] can only provide limited 
guidance for the design of these films [14]. Therefore the numerical study based on full-wave analysis is 
of importance. Numerical simulations of random nano-net structures demand both fine nano-scale geome-
tries for the very thin nanowires as well as a large span area in order to cover the complexity of the inte-
ractions at the scattering surface. Moreover, in time-domain the frequency dispersion of material is intro-
duced with additional differential or integral equations (auxiliary differential equation method, ADE or 
recursive convolution method, RC), which also sufficiently increase the computational complexity of nu-
merical schemes. In this paper we show FDTD simulations with two featured methods used to reduce the 
computational costs. First, we give references to the implementation of GDM model, which is used to 
effectively implement the frequency dispersion of gold to FDTD method. Second, we investigate the mi-
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In addition, the far-field T/R/A spectra for bare silicon (assuming pure dielectric with εr = 3.5) is illu-
strated by green dash-dot line in Fig. 7, as we can see, the gold nano-net layer decrease the transmittance 
of the entire structure by 0.33, while increasing its reflectance and absorptance by 0.18 and 0.15 respec-
tively across the whole spectrum. 

This study shows that individual frame can be taken at least as small as 1 µm × 1 µm, which reduce 
the request on memory to 1/16 of the initial requirement. The reduction of the required size of RAM en-
larges the choice of the hardware suited for the simulation, and may have a significant impact on effective 
memory access, resulting in less simulation time. 
 

5. Conclusions  
 

In summary, the optical properties of a randomly distributed gold nano-net sample have been studied 
numerically via FDTD simulations. For these simulations we have demonstrated two effective approaches 
to reduce the problem-specific large computational costs in terms of memory and long simulation times. 
First, we have implemented the dispersion of gold using the critical points model, with less dispersion 
terms compared to standard Drude-Lorentz models. Moreover, we have implemented this efficient disper-
sion model using a more economical GDM algorithm. Second, it is important to find the smallest possible 
size of representative 2D-frames, which could be calculated independently. This splitting approach, used 
on top of standard parallelization techniques for shared or distributed memory systems, is expected to 
provide the ultimate implementation for multiprocessor systems, as in the independent subdomains small-
er amount of data can be accessed more effectively and the processor communications are not required. In 
the future, we will extend this problem-specific numerical study on minimal independent frame size and 
reveal theoretical prediction that long range correlations are distinct features for such gold nano-net com-
posed by long metallic sticks [22]. Also we expect to use the proposed improvements of the numerical 
realization for simulation and optimization of complex random scattering surfaces for applications such as 
photovoltaic devices. 
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