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8.1 INTRODUCTION

The optical properties of nanostructured materials have been intensively studied
during the last decade. Among particularly important problems in this field are
the focusing and guiding light on nanometer scales beyond the diffraction limit
of the conventional far-zone optics. In object imaging, the near-field part of the
radiation contains all information about the scatterer. As the distance from the object
increases, the evanescent portion of the
in information loss on the “fine” (subwavelength) features of the scatterer. The usual
way to solve this problem suggests either using shorter wavelengths or measuring
in the near zone; both these methods have their limitations. A new way to solve
this imaging problem has been proposed by Pendry, who further developed earlier
Studies on negative refraction [1,2]. According to Pendry, when the scattered light
Passes through a material with a negative refractive index (specifically, it should be
equal to —1), the evanescent components of the scattered fi
allowing the restoration of the scatterer image with subwavele
the obvious importance of such a superlens, it is worth n
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Express [4] and Refs. 5 and 6). In our earlier papers [4,7], we proposed a first
LHM (based on a nanowire composites [8]) that can have negative refraction in the
near-IR and visible spectral ranges. A similar nanowire system was later considered
by Panina et al. [9].

In this chapter we discuss the electrodynamics of nanowires materials and study
the behavior of nanowire plasmon modes. We also describe how nanowire composites
can be used for developing LHMs in the near-IR and visible parts of the spectrum.

The rest of the chapter is organized as follows. In the next section we discuss
the interaction of a single metal nanowire with an electromagnetic wave (we refer to
such a wire as a “conducting stick™). Section 8.3 describes the effective properties of
composites comprising conducting sticks. In Section 8.4 we present computer simu-
lations for the local electromagnetic field in stick composites. Section 8.5 discusses
the magnetic response of two parallel conducting sticks and effective properties of
composites comprising pairs of such sticks. In Section 8.6 we show that the forward
and backward scattering by planar nanowire system can be characterized by their
effective dipole and magnetic moments. Section 8.7 summarizes our results.

8.2 ELECTRODYNAMICS OF A SINGLE METAL NANOWIRE

Composite materials containing conducting sticks dispersed in a dielectric matrix
have new and unusual properties at high frequencies. When frequency w increases, the
wavelength A = 2m¢/w of an external electromagnetic field can became comparable
in size with the stick length 2a. In this case, one might think that the sticks act as
an array of independent micro-antennas and an external wave should be scattered in
all directions. Yet, we show that composite materials have well-defined dielectric
and magnetic properties at high frequencies. Such “effective-medium” description
is possible because a very thin conducting stick interacts with an external field like
a dipole. Therefore, we can still use the effective dielectric constant . or effective
conductivity 0, = —iwe,/4n to describe the interaction of stick composites with
an external electromagnetic wave. However, we note the formation of large stick
clusters near the percolation threshold may result in scattering.

Since conducting stick composites are supposed to have effective parameters for all
concentrations p outside the percolation threshold, we can use the percolation theory
to calculate the effective conductivity o.. However, the theory has to be generalized
to take into account the nonquasi-static effects. The problem of effective parameters
of composites beyond the quasi-static limit has been considered in Refs. [8] and
[10-15]. It was shown there that the mean-field approach can be extended to find the
effective dielectric constant and magnetic permeability at high frequencies. Results
of these considerations can be briefly summarize as follows. One first finds the
polarizability for a particle in the composite illuminated by an electromagnetic wave
(the particle is supposed to be embedded in the “effective medium” with dielectric
constant ). Then, the effective dielectric permittivity &, is determined by the self-
consistent condition requiring that the averaged polarizability of all particles should
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vanish. Thus, for the nonquasi-static case, the problem is reduced to calculation
of the polarizability of an elongated conducting inclusion. That is, we consider
the retardation effects resulting from the interaction of a conducting stick with the
electromagnetic wave scattered by the stick.

The diffraction of electroma
lem of the electrodynamics. A
several textbooks [16,17]. We
cally in the case of very
In(a/b) > 1.

gnetic waves on a conducting stick is a classical prob-
rather tedious theory for this process is presented in
show below that the problem can be solved analyti-
elongated sticks when the aspect ratio a /b is so large that

nontrivial charge distribution q(2) along the stick in this case, The charge distribution
q(z) determines the polarizability of the stick. To find J (2) and q(2),

the potential U(z) of the charges ¢(z) distributed over the stick surfa
equation for the electric charge co

we introduce

ce. From the
nservation we obtain the following formula:

dl(z)
7 = iwq(z) 8.1)

» the polarization
displacement D so that div D —0.
However, in calculating the high frequency field in a conducting stick it is convenient
to explicitly consider charges generated by the external field.

To find an equation for the current I(z) we treat a conducting stick as a prolate
conducting spheroid with semiaxes a and b. The direction of the major axis is
supposed to coincide with direction of the electric field E, exp(—iwt) in the incident

Wwave. The electric potential of the charge ¢(z) is given by the following solution to
Maxwell’s equations (see, e.g., Ref. (171, p.377):

U(z) = j{[Q(Z')/zﬁp(Z’)] exp(ik |r — ) 1ot o /j q(2") exp(ik |z — 2D g

/
r=x * V=) 4 ol

(8.2)
where the integration in the first integral is performed over the surface of the stick,
r and r’ are two points on the surface of the stick with the coordinates z and 2/,
Tespectively, p(z) = b /1 — 22 /a2 is the radius of the cross section at the coordinate
%z and k = w/c is the wavevector of the external field. In transition to the second
€Xpression in equation (8.2), we neglect terms of the order of p(z)/a<bla < 1. We
divide the last integral in equation (8.2) into two parts, setting ¢(2’) exp (ik |z — 2/ |) =
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q(2) + [¢(2") exp(ik |z — 2'|) — q(2)], that is,
oo [ * () exp ikl = )~ a(2)
U(Z)—q()j—-a\/(z_z/)2+p(z)2+/_a lz'—zll d

(8.3)
The first integral in equation (8.3) is given by

d —2In (2%) (8.4)

/-a V=) + p(2)?

The second integral in equation (8.3) has no singularity at z = 2/, and therefore
its value is ~ g(2), which is an odd function of the coordinate z. We assume for
simplicity that g(z) is proportional to 2 and in this approximation

-—a

where the Ei(z) function is defined as
Ei(z) = / [exp (it) — 1] /t dt (8.6)
0

By substituting equations (8.4) and (8.5) in equation (8.3), we obtain
U(2) = q(2)/C (8.7)

where the capacitance C is given by
_ 1
~ 2[In(2a/b) — e*@* + Ei(a k)]
The capacitance C takes the usual value C = 1/ [2In(2a/b) — 2], in the quasi-static
limit ka — 0. The retardation effects result in additional terms in equation (8.8)
that have small magnitudes in comparison with the leading logarithmic term. This
result is obtained within the logarithmic accuracy: its relative error is on the order of
1/ In(a/b), and the ratio a/b is assumed so large that its logarithm is also large.

By substituting equation (8.7) into equation (8.1), we obtain the following equa-
tion:

C (8.8

dI{z)

dz
which relates the current I(z) and the surface potential U(z). The electric current
I(2) and electric field E(z) on the stick surface are related by the usual Ohm’s Law

E(z) = RI(2) (8.10)
where R is the impedance per unit length. Since the stick is excited by the external
field Eg exp(—iwt) which is parallel to its axis, the electric field E(z) is equal to

E(z) = Eo - -‘f%i—zl + i%Az(z) (8.11)
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We consider now the vector potential A, (z) induced by the current [ (2) flowing in

the stick and obtain A, (z) by the same procedure as was used to estimate the potential
U. Thus, with the same logarithmic accuracy we find

any =1 [* L) lile 2
—a \/(z =2/ 4+ p(2)?
= SI(Z) In (%) + % * I(z) exp(ik |z — 2/|) — 1t2)

-a [z — 2/

dz’

d?  (8.12)

where c is the speed of light. To estimate the second integral in equations (8.12),
we approximate the current (2), which is an even function of z, as I(z) =

I(0) [1 — (z/a)zJ; thus we obtain for z < 4 that

%/“ I(z')exp (leclj;lzlf) —I(z) ~ %I(z) [~1+1(ka)] (8.13)

where the function I(z) is given by

Uz) = 242" (iz—1) +2°] 272 4 2 Ei(z) (8.14)

By substituting equation (8.13) in equation (8.12), we obtain the following relation
between the vector potential and current:

A (z) = él(z) (8.15)

where L is the inductance per unit length,

L~2In (%) —1+1(ka) (8.16)

The last term in equation (8.16) is much small
1. Nevertheless, we keep this term since,

role in the electromagnetic response. Equation (8.16) is invalid near the ends of the
stick; however, in calculating the polarizability, this region is unimportant,

By substituting equations (8.11) and (8.15) in equation (8.10), we obtain the
following form of Ohm’s Law:

er than the first one when 2 In(2a/b) >
as we show below, it plays an important

du wl
) _ (R_ ZTZ) I(2) - B (8.17)

To obtain a closed equation for the current I(z), we differentiate equation (8.9) with
Tespect to z and substitute the result into equation (8.17) for dU(z)/dz. Thus we

obtain ) )
a°I(z) . wlL
dz2 +iwC [(R—’Lc—z) I(Z) ——Eo] =0 (818)




318 PLASMONIC NANOWIRE METAMATERIALS

with the boundary conditions requiring the vanishing current at the ends of the stick,
I(—a) =0, I{a) =0 8.19)

A solution for equation (8.18) gives the current distribution /() in a conducting stick
irradiated by an electromagnetic wave. Then we can calculate the charge distribution
and the polarizability of the stick.

As mentioned, we consider the conducting stick as a prolate spheroid with semi-
axes such that ¢ > b. To determine the impedance R in equation (8.18) we recall
that the cross-section area of a spheroid at coordinate z is equal to mb?[1 — (z/a)?];
thus we have the following expression for the impedance:

_ 1
T w2l — (z/a)?]or,

R (8.20)

where o}, is the renormalized stick conductivity taking into account the skin effect.
We assume that the conductivity o, changes due to the skin effect in the same way
as the conductivity of a long wire of radius b (see, e.g., Ref. [18], Section 61),

1—4 Ji[(1 +14) 4]

n=owf@),  FA)="F Fiaa 62

where Jy and J; are the Bessel functions of the zeroth and first order, respectively,
and the parameter A is equal to the ratio of the stick radius b and the skin depth,

A = by2ronw/c (8.22)

When the skin effect is weak (i.e., A < 1) the function f(A) = 1 and the renor-
malized conductivity o}, is equal to the stick conductivity o}, = op,. In the opposite
case of a strong skin effect (A > 1), the current I flows within a thin skin layer at
the surface of the stick. Then equation (8.22) gives o3, = (1 — 9)om /A K 0.

For further consideration, it is convenient to rewrite equations (8.18) and (8.19)
in terms of the dimensionless coordinate z; = z/a and dimensionless current I; =
I/ (0%, mb?Ep) . We introduce the dimensionless relaxation parameter

) b2 * b2 .
7:21% =&, [g+ (1 —e“”‘—l—Ei(ak))] (8.23)

where €, = idng}, /w is the renormalized dielectric constant for metal, and
g = (b/a)? [In(2a/b) — 1] (8.24)

is the depolarization factor for a very prolate ellipsoid (see, e.g., Ref. [18], Section
4). We also introduce the dimensionless frequency

1+et2®(—1+4ak+a?k?)

8.25
2 (ak)*log(2a/b) (8.23)
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Above, we assumed that the stick is aligned with the electric field of the incident
electromagnetic wave. Stick composites can be formed by randomly oriented rods.
In this case, we have to modify equation (8.31) for the stick polarizability. We
consider a conducting stick directed along the unit vector n and suppose that the stick
is irradiated by an electromagnetic wave with the electric field

E=Egexpli(k-r)] (8.32)

where k is the wavevector inside the composite. The current I in a strongly elongated
stick is excited by the component of the electric field, which is parallel to the stick

E, (z) =n(n- Eg) exp[i (k- n) 2] (8.33)

where z is the coordinate along the stick.
The field E, averaged over the stick orientations is aligned with the external field
Eo and has the following magnitude:

«,_ FEo [sin(kz) — cos (k2
Ej (2) = (kz)2 [—_k:z (k )] (8.34)

The current in the stick is a linear function of the filed E,. Since the average field E,
is aligned with Eo, the current averaged over the stick orientations is also parallel to
the external field Eq.

To obtain the current ((I(z))) averaged over the stick orientations and the average
stick polarizability ({Py,)), we substitute the field Eg (z) given by equation (8.34)
into equation (8.18) for the field Fy. Hereafter, the sign (.. .}) stands for the
average over stick orientations. Then, the current ((I)), the polarizability ({Pm))»
and the effective dielectric permittivity depend on frequency w and, in addition, on
the wavevector k. This means that a conducting stick composite is a medium with
spatial dispersion. This result is easy to understand, if we recall that a characteristic
scale of inhomogeneity is the stick length 2a, which can be of the order of or
larger than the wavelength. Therefore, it is not surprising that the interaction of an
electromagnetic wave with such composite has a nonlocal character and, therefore,
the spatial dispersion is important. One can expect that additional waves can be be
excited in the composite in the presence of strong spatial dispersion.

Below we consider wavelengths such that A > Ag; therefore, we can expand
E}(z) in a series as
Eo (kz)?

1— (8.35)

Ey = —
o (2) 3 10

and restrict ourselves to the first term, when considering the dielectric properties.
Since the average field is given by Ef (z) = Eo/3, then the average current is equal
to ((I)) = I/3, where the current I is defined by equation (8.30). As a result, the
stick polarizability averaged over the orientations is equal to ((Pr)) = P /3, where
P, is given by equation (8.31).
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CONDUCTING STICK COMPOSITES: EFFECTIVE MEDIUM APPROACH
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Fig. 8.1 Conducting stick composite.

8.3 CONDUCTING STICK COMPOSITES: EFFECTIVE MEDIUM
APPROACH

Here we consider composites that contain very elongated conducting inclusions,
“sticks,” embedded in a dielectric host with dielectric constant &4 as shown in Fig. 8.1.
The sticks are randomly distributed in the host. The problem here is to calculate the
macroscopic dielectric response of such a composite. Metal—dielectric composites,
where conducting inclusions are very elongated, can have various important applica-
tions (see, e.g., Refs. [8,13,15,20-22] and references therein). Here we show that
conducting stick composites can be employed as metamaterials with tunable effective
dielectric and magnetics properties.

To calculate the effective properties of a composite, we use a self-consistent
approach known as the effective medium theory (EMT) [23-25]. The EMT has the
virtue of mathematical and conceptual simplicity, and it is a method that provides a
quick insight into the effective properties of metal-dielectric composites. Usually,
the EMT is based on the assumption that metal and dielectric grains are embedded
in the same homogeneous effective medium whose properties should be determined
self-consistently. This assumption should be modified to take into account intrinsic
Structures of conducting stick composites.

Let us consider a small domain of the composite with the size [ ~ b < a.
The probability that the domain contains a conducting stick is estimated as p{l) ~
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IBN(p) ~ b3N(p), where N(p) is the stick concentration. The probability p (1)
is small even for the concentrations p corresponding to the percolation threshold
P ~ b/a [8], where it is estimated as p (I) ~ b®N(p,) ~ (b/a)? < 1. Therefore,
the dielectric constant of such a domain is equal to 4, with the probability close to
unity. On the other hand, we can prescribe the bulk effective dielectric constant e,
to the domain with the size  much larger than the stick length 2a. Thus we obtain
that the local dielectric constant £(I) depends on the scale under consideration: for
I < a, the dielectric constant ¢ (1) is equal to € (0) = ¢4 and, for | > g, & (I) = &,.
We use a simple assumption that a conducting stick is surrounded by a medium with
the dielectric constant given by

e(l) =ea+(ee —€a)l/a, l<a
e(l)=¢e, I>a (8.36)

We can summarize the main assumptions for our effective-medium theory suggested
first in Ref. [8] as follows:

1. Each conducting stick is embedded in the effective medium with the dielectric
constant ({) that depends on the scale [ as described by equation (8.36). The
value of ¢, is to be determined self-consistently.

2. The dielectric regions are assumed to be spherical and they are embedded in
the effective medium with the dielectric constant ..

3. The effective permittivity . is determined by the condition that the polariz-
ability averaged over all inclusions should vanish [10-12].

Since sticks ére randomly oriented, the dielectric regions of the composite are
supposed to have spherical shapes, as assumed above. The specific polarizability of a
dielectric region is given then by the known quasi-static equation (see, e.g., Ref. [23])

3(eq—ee)
= — 8.37
d 265 + €d ( )
The polarizability of a conducting stick embedded in the effective medium (8.36)
is obtained from equation(8.31), by replacing in the numerator &y With €3 /e..
The scale dependence of the local dielectric constant in equation (8.36) results in a
modification of the the parameter v [see equation (8.23)] to

. [ b : .
== [nga—2 (1-e m+E1(a;))]
where § = (b/ a)z [In(1+ 2ae4/be.) — 1] and z = v/Edka [8]. Then the condition

that the average polarizability should vanish gives the following equation:

1 e 1 d — Ce
4 1—p)4 — _plm 3
((4mam)) + (1 — p) dmay 3p€e 14+ 4cosf + 2e. +eq

=0 (838)
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where p is the volume concentration of the conducting sticks and the sign ({---))
denotes the average over the orientations.

To understand the composite properties at high frequencies, we consider a solu-
tion of equation (8.38) for the stick concentration p below the percolation threshold
(b/a)? <« p < b/a. Assuming that ¢4 < |e.| < a/b, we obtain the explicit
equation for the effective dielectric permittivity

2 a? 1
*¢ = 245" 5 ln(2a/b) — &7 + Ei(ka)] cos [2 (ka)] + €a/ern

(8.39)

where functions Ei(z) and Q () are defined in equations (8.6) and(8.25), respec-
tively.

We consider now the effective dielectric permittivity . for the case of a perfect
metal (je,,| — 00). Then the electromagnetic field does not penetrate in a metal and,
as follows from equation (8.21), and the renormalized conductivity £}, also tends to
infinity. We neglect the second term in the denominator of equation (8.39) and obtain
that the effective permittivity €, has maxima whenRe Q) = n/2 +nm,n =0,1,2...,
which approximately corresponds to the wavelengths A, = (4a/,/&3) / (1 + 2n).

Now we consider the behavior of the effective dielectric constant near the lowest
resonance frequency wo = mc/ (2a+/2). By expanding the denominator of equa-
tion (8.39) in a power series of w — wg and taking into account that €, — oo and
In(a/b) > 1, we obtain

a’ 1
9rlog(2a/b) b2 (w§ —w) Jwo — ¥y

€e =&dP (8.40)

where w§ = wp [1 +2 (7 —2) / (n? log(2a/b))] ~ wo and the loss factor v =
(7%~ 4) / [7* log(2a/b)] < 1.

It is interesting to point out that the effective dielectric constant is independent of
the metal conductivity €,,, as it should be for the limiting case when the electromag-
netic field does not penetrate to the metal. At the resonance frequency w = wg the
real part of €, changes its sign and it becomes negative when w > wy. The imaginary
part of €, has a maximum at the resonance and its magnitude

dr a?
,I ~ VO —
€e (w0) - 6d9 (7r2 — 4)p—b2 (8.41)

does not depend on the conductivity of the sticks. We obtain that the imaginary
part of the effective dielectric constant does not vanish for composites with perfectly
conducting sticks. The presence of the effective losses, in this case, is due to the
excitation of the internal modes in the composite. When &,,, and the dielectric host
have no losses, the amplitudes of these modes continuously increase with time. In
real composites, there are always some losses in the conducting sticks as well as
in the dielectric host. Therefore, the internal field should stabilize at some large
values. Thus, one can anticipate the existence of giant local fields in conducting stick
composites.
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Fig. 8.2 Real (a) and imaginary (b) parts of the permittivity for a composite filled with
aluminum-coated fibers 20 mm long (thickness ~ 1 ym). The fiber volume concentration is
0.01% and 0.03%. Points indicate experimental data and line describe theoretical results.

Microwave metamaterials with negative dielectric permittivity were first obtained
earlier [13,20]. In Fig. 8.2 we present experimental and theoretical results obtained
in Ref. [13] for the microwave dielectric function of composites containing very thin
aluminum microwires. In such metamaterials the real part of €, becomes negative
for the frequency above the resonance as seen in Fig. 8.2.

8.4 CONDUCTING STICK COMPOSITES: GIANT ENHANCEMENT OF
LOCAL FIELDS

We consider now the field distribution in thin (~ 10 nm) but relatively long (~ 1 um)
metal sticks. A problem of field distribution around such metal particles can hardly
be solved analytically. We describe a numerical model based on the discrete dipole
approximation (DDA) following our papers [4,7]. This approach was first introduced
by Purcell and Pennypacker [26].
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Fig.8.3 Long stick modeled by chains of s

pheres. After Ref. [4]. Copyright (©) 2003 Optical
Society of America, Inc.

In the DDA approximation,
of small spherical particles of
is placed in a node of a cubi
particles is denoted by r;.
than the wavelength ) so

a conducting stick is represented by a large amount
some radius R as shown in Fig.8.3. Each particle
¢ lattice with period a. The position of individual
It is supposed that the particle radius R is much smaller
that interactions of particles are well described by their
dipole moments d;. Each particle is subjected to an incident field Ey and to the
field scattered by all other particles. Therefore, the dipole moments of particles are

coupled to the incident field and to each other and can be found solving the following
coupled-dipole equations (CDEs):

d,=a E, (I‘z) -+ Z é’(rz — I‘j)dj (8.42)
J#i

where a is the polarizability of a particle, E, (r;) is the incident field at point r;, and
G(r; —r;)d; gives the field produced by dipole d; at the point r; and G(r; —r;) is
the free-space dyadic Green’s function:

Gap = k°[A(kr)8ap + B(kr)rarg)
A(z) = [z +ig™2 — 279 exp(iz) (8.43)
B(z) =[-z71-3iz~2 + 3x‘3] exp(iz)

with Gd = Gupdp.

Summation over the re
dipole is given by Lo

The Greek indices represent Cartesian components and the
peated indices is implied. The polarizability o of an individual
rentz—Lorenz formula with the radiative correction introduced
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(a) (®)

Fig. 8.4 EM field distribution for a long needle. The wavelength of incident light is 540 nm.
The angle between the wavevector of incident light and the needle is (a) 0° and (b) 30°. After
Ref. [4]. Copyright (©) 2003 Optical Society of America, Inc.

by Draine [27]:

_ 3Em—1 _ arL

ars =R 2= T T Ti(/3) (bR anr (844
Results of calculations for (8.42) depend on the intersection ratio 7/ R—that is, the
ratio of the distance between neighboring particles and its radius (see Fig.8.3). We
choose the ratio as 7/R =~ 1.66 to reproduce the quasi-static polarizability of an
elongated metal ellipsoid.

In our numerical simulations [4,7], a single nanostick was represented by four
parallel chains of spherical particles to take into account the skin effect (see Fig. 8.3).
Specifically, we consider the field distribution in the vicinity of a conducting stick
with roughly 2b = 30 nm thickness and 2a ~ 15 um long, illuminated by a plane
wave with the wavelength of 540 nm. Our results, shown in Fig. 8.4, clearly identify
the interference pattern between irradiation and the plasmon polariton wave excited
on the metal surface. Similar interference patterns were observed in experiments
[28,29]. Note that the electromagnetic field is concentrated around the wire surface,
which suggests the possibility to use nanowires as nano waveguides.

Simulations for shorter sticks (2a = 480 nm) presented in Fig. 8.5 also show the
existence of sharp plasmon resonances [4,7] when the wavelength of the light is a
multiple of surface plasmon (half) wavelengths. The enhancement of the local field
intensity in the resonance can reach the magnitude of 103, The spatial area where the
field concentrates is highly localized around the nanowire, and it can be as small as
100nm. This plasmon resonance is narrowband, with the spectral width in a single
nanowire about 50nm, which corresponds to the discussed above equations (8.39)
and (8.40).

In a composite with metal sticks randomly distributed in a dielectric substrate, the
metal—dielectric transition occurs at a significantly smaller metal concentration than

in the case of percolation films formed by spherical particles. In the 2-D case of a
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Fig.8.5 The intensity distribution of the electric field at surface plasmon polariton resonance
in a silver nanowire excited by a plane electromagnetic wave. The angle between the nanowire
and the wavevector of the incident light is 30 degrees. The wavevector and E vector of the
incident irradiation are in the plane of the figure; the needle length is 480 nm. After Ref. [4].
Copyright (C) 2003 Optical Society of America, Inc.
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Fig. 8.6 Field distribution in nanowire percolation Ag composite for the incident wavelength
of 550 nm (left) and 750 nm (right). In both figures the case of normal incidence with (E||z)
is considered. After Ref. [4). Copyright (© 2003 Optical Society of America, Inc.

wire composite, the percolation threshold is close to the inverse of the stick aspect
ratio [8], and hence it can be arbitrary small for sufficiently long sticks.

We simulate composites by a random distribution of identical metal nanowires over
a dielectric surface. In these simulations, the length of individual nanowires is given
by 2a = 480 nm, while their diameter is 30 nm. Figure 8.6 shows the intensity |E |2 of
the local electric field at wavelengths A = 540 and 750 nm. Our simulations exhibit
the existence of localized plasmon modes in such composites. Similar to localization
of quasi-static plasmon modes [30], the localization of plasmon-polaritons bounded
in the metal nanowires leads to large enhancement of local optical fields. Our
simulations suggest that the local intensity enhancement factor reaches 103.

Our simulations also show that plasmon modes cover a broad spectral range. The
Incident field at a given wavelength excites small resonant parts of the percolation
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Fig. 8.7 Current in the two-stick circuit excited by external magnetic field H. The displace-
ment currents, “closing” the circuit, are shown by dashed lines.

system, resulting in a large enhancement of the local fields in these elements. In
our case, such resonating elements can be single nanowires or groups of nanowires.
Different clusters of wires resonate at different frequencies and all together cover a
broad spectral range where the stick composite has plasmon modes.

8.5 MAGNETIC RESPONSE OF CONDUCTING STICK COMPOSITES

We consider now a metal—dielectric composite consisting of pairs of parallel metal
sticks embedded in a dielectric host. We assume that the volume concentration p
of the sticks is less than the percolation threshold p < pc ~ b/a < 1. We also
suppose that neither the sticks nor the dielectric have magnetic properties. One might
think that the composite has no magnetic properties under such conditions. Indeed,
the magnetic response of a single conducting stick is small even at high frequencies
(Ref. [18], Section 59). Since we have concentration p < 1, one could anticipate
that the response of the entire composite is also small.

In reality, as we show below, the composite may have a giant magnetic response
at some frequencies. The reason for such a behavior is the resonant response of the
stick pairs to a high-frequency magnetic field. The external magnetic field excites
electric currents in these stick pairs. The magnetic moments for the currents flowing
in the stick pairs result in the magnetic response of the composite. Consider a pair of
the sticks and suppose that an external magnetic field H = Ho exp(—iwt) is applied
perpendicular to their plane. This field excites a circular current I in the system of
two parallel sticks. The circular current I flows in one stick in one direction and in the
opposite direction in another stick as shown in Fig. 8.7. The displacement currents
flowing between the two sticks close the circuit. The considered two-stick circuit
acts as the well-known two-wire transmission line excited by an external magnetic
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field. The current I in the two-wire line can be calculated from the Telegrapher’s
equation (see, e.g., Refs.[17] and [31] ). The electrodynamics processes in the line
of two wires, separated by a distance d are determined by the impedance per unit

length,
2

W
Z = W - z-c—2L2 (8.45)
where o, and b are the renormalized stick conductivity [see equation (8.21)] and
radius, respectively. The parameter Ly is the self-inductance per unit length for a
system of two parallel straight wires having a cross section of radius b. We define
the inductance Lo, following the procedure used to define the inductance of a single

stick [see derivation of equation (8.16)]. Thus we obtain
Ly =41n(d/b) — (d/a)2 + % (dk)2 [3 + 4iak + 6 log(2 a/d)] (8.46)

where d is the distance between the axes of the wires. Another important parameter is
the mutual capacity per unit length C of two wires. The approach that has been used
to define a capacitance of a single stick [see equation (8.8)] results in the following
equation for Co .
€d
Co = 2 p)

4 log(d/b) — 3 (d/a)” + (d k)" [2 log(2a/d) — 1] /2
where &4 is the permittivity of the dielectric host. The capacitance C' determines
the value of the displacement currents flowing between the two wires. Following
the procedure described in Section 8.2, we introduce the current I as the current in
a single stick. This current depends on the coordinate z along the stick. We also
introduce the potential difference U () between the two sticks. Using Faraday’s Law

}{ Edl = i%//Hds (8.48)
S

(a"b1c7d)

(8.47)

where S = d x dz is the area restricted by the contour (a, b, ¢, d) as shown in Fig. 8.7,

we find
dU (2)
dz
The current I (z) depends on the coordinate z since it can go out from one stick and
come into another stick. The second equation for I () and U (z) is obtained from the
charge conservation law. Considering the currents in the sticks and the displacement
current between them we find

= ZI (2) + idkH, (8.49)

—(-l%l = iwClU (2) (8.50)

The combination of equations (8.49) and equation (8.50) gives the second-order dif-
ferential equation for the current,

d2 I (Z) 2 ngwz

it P AL §

e 91 (2) + —

—a<z<a, I(-a)=1I(a)=0

H, (8.51)
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where the parameter g equals

1 & N (dk)?
log(d/b) \ 2a2 4

i 2 _ 802
+ 5 ak(dk) Toer (8.52)

=K1+
and €7, = idmo;, /w is the renormalized metal permittivity [see equation (8.21)].
Note that we still assume that d/a <« 1 and dk < 1. For the perfect metal
(les| — 00), the parameter g does not depend on the metal properties. We solve
equation (8.51) for the current J(2) and calculate the magnetic moment m for the
circuit in the two sticks,

1
m =2—c/[r x j(r)] dr : (8.53)

where j(r) is the density of the current in the two conducting sticks and the density of
the displacement currents. Integration in equation (8.53) goes over the two conducting
sticks as well as over the space between them where the displacement currents are

flowing. From equations (8.51)~(8.53) we obtain the magnetic moment for the system
of two sticks:

m = 2H0a302(kd)23?-’-1(g—“);ﬂ (8.54)
(9a)

Let us now estimate quantitatively the effective magnetic permeability p. of the
conducting stick composite. We suppose that the stick pairs are oriented in one
direction. Taking into account the definition of the effective magnetic permeability
teHo = H 4 47M, where M is the magnetic moment per unite volume, we obtain
from equation (8.54) the following equation for the component of . perpendicular
to the pairs:

fe = 1+ 47rn7—n— ~1+ 4ﬂp902adk2w (8.55)
Ho b (9a)°
where n is the density of the stick pairs, p = bdan is the volume concentration of the
pairs, and parameters C; and g are given by equations (8.47) and (8.52), respectively.
The effective magnetic permeability p. of the conducting stick composite is shown
in Fig. 8.8 for the concentration p = 0.2. The permeability 4. reaches its maximum
at the resonance and becomes negative for the wavelength below the resonance.
The length of a pair 2a = 400 nm is much smaller than the resonance wavelength
~ 2 pm. Therefore, the spatial dispersion effects, discussed at the end of Section 8.2,
can be neglected and the composite has a well-defined magnetic permeability. Thus,
composite materials formed by pairs of metal nanowires can act as left-handed
material with negative refraction in the optical range.

8.6 PLANAR NANOWIRE COMPOSITES

In the sections above, we considered the response of conducting stick composites
to the electric and magnetic fields. In this section, we consider a planar compos-
ite comprising regular array of pairs of parallel nanowires (see Fig. 8.9), which is
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Fig. 8.8 Optical magnetic permeability p# = 1 + 2 (141, continuous line; iz, dashed line)
of the composite containing pairs of silver sticks; @ = 200nm, d = 50 nm, b = 10nm.
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Fig. 8.9 A layer of pairs of parallel nanowires. After Ref. [4]. Copyright (€) 2003 Optical
Society of America, Inc.

illuminated by a plane electromagnetic wave impinging perpendicular to the plane
of the composite. First, we show that in the far zone the field scattered by pairs of
nanowires can be approximated by the effective dipole and magnetic moments even
when the size of the pair is comparable with the wavelength X of the incident light.
Then we consider the optical properties of a layer of such nanowire pairs.

Electric and magnetic fields at the distance R away from the nanowire pair with
dimensions 2a X d x 2b (see Fig. 8.9) are derived from the vector potential A that
for large distances, R >> ), by, by, d, takes the following standard form:

A =(e*"/cR) /e_ik(n")j(r) dr

where j(r) is the current density inside the nanowires and vector n is the unit vector
in the observation direction. We introduce the vector d directed from one nanowire to
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another, and assume that the coordinate system has its origin in the center of the system
so that the centers of the wires have the coordinates d /2 and —d /2, respectively. The
electromagnetic wave is incident in the plane of the wires perpendicular to them (see
Fig. 8.9), that is, the wavevector k || d. Then, the vector potential A can be written
as

gtk R na) [ kg k) [T ikna
A= e~ Fmd) / e” 2™y (p) dp + 7 () f e~ %55(p) dp
_bl

cR -b

(8.56)
where j; and j2 are the currents in the wires, and z is the coordinate along the wires
(z L d). As known, the dipole component is dominated in scattering by a thin
antenna even for an antenna size comparable to the wavelength (see, e.g., Ref. [34]).
Therefore we can approximate the term e~ **"% in equation (8.56) by unity. Note
that for the forward and backward scattering, which are responsible for the effective
properties of a medium, this term is exactly equal to one.

We consider the system where the distance d between the wires is much smaller
than the wavelength and expand equation (8.56) in a series over d. This results in

ethR b1 ik by
A= [ G d-Twd [ G-wd] e
cR | J_p, 2 —b,
The first term in the square brackets in equation (8.57) gives the effective dipole

moment P for the system of two nanowires and its contribution to the scattering can
be written as Ay = —ik (e**/R) P, where

P= /p (r)dr (8.58)

and p is the local polarizations. The integration in equation (8.58) is over the volume
of both wires. The second term in equation (8.57) gives the magnetic dipole and
quadrupole contributions to the vector potential:

ike?*R a Mo
Amg = R > M] - % /b (n- (§1 — j2)) dp (8.59)
—91

where M is the magnetic moment of two wires,

1
M= / e x j (r)] dr (8.60)

and the integration is over the volume of the wires as in equation (8.58).

We show now results of our numerical simulations for the optical properties of gold
nanowires (Fig. 8.10). According to our simulations, both the dielectric and magnetic
moments excited in the nanowire system are opposite to the excited field when the
wavelength of the incident field is below resonance. Thus, in this frequency range,
composite material based on parallel nanowire pairs have the dielectric permittivity
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Fig. 8.10 Dielectric (a) and magnetic (b) moments in nanowire pairs as functions of wave-
lengths. The distance between the nanowires in the pairs is varied: d = 0.15 um (1),
d=0.23um@2),d = 0.3 pm (3), and d = 0.45 pm (4); for all plots, ¢ = 0.35 um and
b = 0.05 um. The moments are normalized to the unit volume. After Ref. [4]. Copyright
(© 2003 Optical Society of America, Inc.

and magnetic permeability both negative and thus the composite acts as a left-handed
material. These results are in good qualitative agreement with equations (8.31) and
(8.54) which were derived for the case of needles with a high aspect ratio.

We consider now the transmittance and reflectance of a planar nanowire composite
when an electromagnetic wave impinges normal to its plane. We take into account
the dipole P and magnetic Ml moments given by equations (8.58) and (8.60), respec-
tively, since they are responsible for the main contribution to forward and backward
scattering. The second term in equation (8.59) describes a quadrupole contribution,
which vanishes for the forward direction. (see discussion in Ref. [4]).

Maxwell’s equations for the composite can be written in the following form
) dr, .
curl E = ikH, curl H = 7J—zkE (8.61)

where j is the current in the nanowires. We split the current j in two parts j = jp+j-
Here jjr is the circular current in the nanowire pair. This current can be presented
as jps = ccurlm with the vector m vanishing outside the composite. Then equa-
tions (8.61) can be rewritten as

4
curlE = ik (H' + 4mm), curlH' = —:-j p—ikE (8.62)

where H = H — 4rm. We suppose that z = 0 is the principal plane of the
composite and the electromagnetic wave is incident along the z-axis. We average
equations (8.62) over the {z, y} plane and integrate them over the space between the
two reference planes placed in front (z = —a) and behind (z = a) the composite.
The distance a is chosen so that d < a < 1/k. After the integration, equations (8.62)
take the following form

E, — By & ikdndpM,;, H, — H; = —ikdndpP, (8.63)
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where E1 =E (—a), Eg =E (a), H]_ =H (—a), Hz =H (a); P1 = P/ (blbgd)
and M; = M/ (b1 b2d) are the dipole and magnetic moments of the nanowire pairs.
These moments are given by equations (8.58) and (8.60) which are normalized to the
volume of the pairs, p is the filling factor, that is, the ratio of the area covered by the
nanowires and the total area of the film.

The moments P; and M; are proportional to the effective electric and magnetic
fields, respectively. For the dilute case (p < 1) considered here we can write P
and M, as 4rpP; = e (Ey + Eq) /2 and d7pM,; = u(Hy + H;) /2, where the
coefficients € and p are the effective dielectric constant and magnetic permeability
of the nanowire composite. Then equations (8.63) take the following form:

E; —E; 2dkdu(Hy + Hy), H,—-H; = —ikde (E; + Ey) (8.64)
‘We match equation (8.64) at z = —a with the plane wave solution
E = E [exp(ikz) + r exp(—ikz)]

that holds in front of the film (2 < —a) and match equations (8.64) at z = @ with
the solution E = Eytexp(ikz) that holds behind the film. Ej is the amplitude of
the impinging wave, r and ¢ are reflection and transmission coefficients, respectively.
This matching results in two equations for r and ¢. Solutions to these equations
allow us to find the reflection R and transmittance TT coefficients of the nanowire
composite in the following form

2 2

2dk (e — ) (8.65)

_ 4 + d?k2ep
T | (—2 + idke) (=2 + idkp)

R Sl o s ey idkp)

When ¢ = p, the reflectance vanishes while the transmittance is given by T =
(2 + idke) / (2 — idke)|>. If & = p and it is a real number, the reflectance T' = 1.
Still, the interaction of the electromagnetic wave with the composite results in the
phase shift 2 arctan(d ke/2) for the transmitted wave. The phase shift is positive
if ¢ = p > 0 and the shift is negative when ¢ = p < 0. The last case corresponds
to a left-handed material. Thus, a negative phase of the transmitted electromagnetic
wave indicates the left-handedness of the composite.

8.7 CONCLUSIONS

We presented a detailed study of the electrodynamic properties of metal—dielectric
composites consisting of elongated conducting inclusions—conducting sticks—em-
bedded in a dielectric host. Conducting stick composites have new and unusual
properties at high frequencies when surface plasmon-polaritons are excited in the
sticks. The effective dielectric permittivity has strong resonances at some frequencies.
The real part vanishes at the resonance and acquires negative values for frequencies
above resonance. The dispersion behavior does not depend on the stick conductivity
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