Random Lasers

Paul Chiang
Outline

• Laser Overview
• Conventional and Random
• Why Random Lasers?
• Category of Random Lasers
• Boosted Random Lasers
• Conclusion
Outline

• Laser Overview
 • Conventional and Random
 • Why Random Lasers?
 • Category of Random Lasers
 • Boosted Random Lasers
 • Conclusion
Laser Overview History

Theory | 1917
Albert Einstein
Stimulated Emission

First Laser | 1960
Theodore Maiman
Hughes Research Lab

Photonic Bomb | 1968
Vladilen Letokhov
Strong Scattering

Ref. [1]
Laser Overview Components

INPUT SOURCE
- Electrical
- Optical

FEEDBACK
- High reflector
- Minimized scattering

GAIN MEDIUM
- Gas: CO₂
- Solid: Ruby, Nd:YAG Sapphire
- Liquid: Fluorescent dye
Outline

• Laser Overview
• Conventional and Random
• Why Random Lasers?
• Category of Random Lasers
• Boosted Random Lasers
• Conclusion
Conventional and Random

- Total reflection
- $L = \text{multiple} \times \lambda/2$

- No confinement
- Multiple scattering
- Gain path length > loss → lasing

Ref. [2]
Outline

• Laser Overview
• Conventional and Random
• Why Random Lasers?
• Category of Random Lasers
• Boosted Random Lasers
• Conclusion
Why Random Lasers?

- Speed of transistor become saturated
Outline

• Laser Overview
• Conventional and Random
• Why Random Lasers?
• Category of Random Lasers
• Boosted Random Lasers
• Conclusion
Category of Random Lasers Incoherent Feedback

LETTERS TO NATURE

Laser action in strongly scattering media
N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes & E. Sauvain

- 3 mJ pump
- w/o scatters

- 3 mJ pump with scatters
- Amplitude / 20

FIG. 1. a, Emission spectrum of a 2.5×10^{-3} M solution of rhodamine 640 perchlorate in methanol pumped by 3-mJ (7-ns) pulses at 532 nm. b and c, Emission spectrum of the TiO$_2$ nanoparticle (2.8×10^{16} cm$^{-3}$) colloidal dye solution pumped by 2.2-mJ and 3-mJ (7-ns) pulses, respectively. The amplitude of the spectrum in b has been scaled up by a factor of 10, whereas that in c has been scaled down by a factor of 20.
Category of Random Lasers: Incoherent Feedback

LETTERS TO NATURE

Laser action in strongly scattering media

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes & E. Sauvalin

Ref. [4]
Category of Random Lasers Coherent Feedback

Ref. [5],[12]-[16]
Outline

• Laser Overview
• Conventional and Random
• Why Random Laser?
• Category of Random Laser
• Random lasers boosted with Plasmonics and Metamaterials
• Conclusion
Boosted Random Laser

PLASMONICS (Resonance)
- Reduced threshold
- Enhanced signals
- Tunable wavelength
- Mode interactions

HYPERBOLIC MATEMATERIALS (Non-resonance)
- Reduced threshold
- Broadband enhanced signals
- Increased possibility of forming closed loop
Boosted Random Laser Plasmonics

Controlling Random Lasing with Three-Dimensional Plasmonic Nanorod Metamaterials

Zhenxian Wang,1 Xiangeng Meng,2,3 Seung Ho Choi,2 Sebastian Knitter,1 Young L. Kim,1 Hui Cao,1 Vladimir M. Shalaev,1 and Alexandra Boltasseva1,4

- Tilted silver nanorod

- Reduced threshold by increasing silver nanorod length due to strong scattering
Boosted Random Laser Plasmonics

- Tunable wavelength by gold nanoparticles
 - Annealing temp.
 - Concentration of gold colloidal solution

Ref. [7]
Boosted Random Laser Plasmonics

Metal–Dielectric Core–Shell Nanoparticles: Advanced Plasmonic Architectures Towards Multiple Control of Random Lasers

Xiangeng Meng,* Koji Fujita,* Yusuke Moriguchi, Yanhua Zong, and Katsuhiro Tanaka

- Pump threshold vs shell thickness

Ref. [8]

Mode interactions

Gold only

Gold + Silica
Boosted Random Laser **Hyperbolic Metamaterials**

Robust enhancement of random laser action assisted by hyperbolic metamaterials

Hung-I Lin1,2, Yu-Ming Liao3, Kun-Ching Shen1, and Yang-Fang Chen1,2,*

1Graduate Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan
2Department of Physics, National Taiwan University, Taipei 106, Taiwan
3Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan

Abstract: We use hyperbolic metamaterials to strongly enhance random laser action and reduce lasing threshold. The excited high-k modes can increase the possibility of forming closed loop paths and decrease the energy consumption of photon propagation.

OCIS codes: (140.3460) Lasers; (160.3918) Metamaterials; (230.4170) Multilayers

\[
\frac{k_x^2 + k_y^2}{\varepsilon_{||}} - \frac{k_z^2}{|\varepsilon_{\perp}|} = \left(\frac{\omega}{c}\right)^2
\]

Ref. [9],[10]
Outline

• Laser Overview
• Conventional and Random
• Why Random Laser?
• Category of Random Laser
• Random lasers boosted with Plasmonics and Metamaterials
• Conclusion
Conclusion

ADVANTAGE

• Low cost
• Sample-specific wavelength of operation
• Small size
• Flexible shape
• CMOS compatibility

APPLICATION

• Imaging
• Medical diagnostics
• Display
• Miniature light source in photonic integrated circuit

Ref. [11]
Q & A
References

Slides

Theory

Anderson localized modes
Lucky photons on long path
Pre-localized modes
Delocalized, interacting modes
Several of these scenarios
Hyperbolic Metamaterials

\[
\frac{k_x^2 + k_y^2 + k_z^2}{\varepsilon} = \left(\frac{\omega}{c}\right)^2 - \frac{k_x^2}{|\varepsilon_\parallel|} + \frac{k_z^2}{|\varepsilon_\perp|} = \left(\frac{\omega}{c}\right)^2
\]

\[
\frac{k_x^2 + k_y^2 - k_z^2}{|\varepsilon_\parallel|} = \left(\frac{\omega}{c}\right)^2
\]