Nanophotonics and Metamaterials*

Professor Vladimir M. Shalaev
ECE695S

*) This course was prepared with M. Brongersma and S. Fan from Stanford. Their help is highly appreciated.
Nanophotonics and Metamaterials

Instructor
Professor Vladimir M. Shalaev
BRK1027A; 494-9855
Email: shalaev@purdue.edu
Office hour: Fri 2pm-3pm

Grader – TA: Aveel Dutta, BNC/BRK 1226; tel: 496-3308
Office hour Mo 2pm-3pm; email: dutta6@purdue.edu

Course Web page
http://cobweb.ecn.purdue.edu/~shalaev/teaching.html - to download lectures

Recommended Textbook:
1. Photonic Crystals: Molding the flow of light.

Grading 30% homework, 30% midterm exam, 40% final (presentation and report)
Overview of the Course

Part I: Introduction to light interaction with matter
 Derivation Wave Equation in matter from Maxwell’s equations
 Dielectric properties of insulators, semiconductors and metals (bulk)
 Light interaction with nanostructures and microstructures (compared with λ)

Part II: Photonic Crystals
 Electromagnetic effects in periodic media
 Media with periodicity in 1, 2, and 3-dimensions
 Applications: Omni-directional reflection, sharp waveguide bends,
 Light localization, Superprism effects, Photonic crystal fibers

Part III: Metal optics (plasmonics) and nanophotonics
 Light interaction with 0, 1, and 2 dimensional metallic nanostructures
 Guiding and focusing light to nanoscale (below the diffraction limit)
 Photonic, plasmonic and hybrid nanocircuits
 Near-field optics
 Nanolasers
 Plasmonic nano-sensors
Overview of the Course

Part IV: Metamaterials and hot topics in quantum nanophotonics

- Metamaterials: artificial magnetism and negative refractive index
- Metamaterials: superlens and hyperlens
- Transformation optics and cloaking
- Tunable and active plasmonic materials
- Refractory plasmonics
- Plasmonics for energy conversion, data storage and biomed applications
- Metasurfaces
- Nanolasers
- Tunable and active plasmonic materials
- Refractory plasmonics
- Plasmonics for energy conversion, data storage and biomed applications
- Silicon photonics
- Diamond photonics
- Graphene photonics
- Intro to quantum photonics
- Topological Quantum Computer
- Photonic Neuromorphic Computing
- Photonic Topological Insulators
- Parity-Time Symmetry in Optics and Photonics
- Random Lasers
- Coherent Perfect Absorber or ‘Anti-Laser’
- Orbital Angular Momentum of Light and its control with metamaterials/metasurfaces
- Epsilon-Near-Zero (ENZ) and Mu-Near-Zero (MNZ) metamaterials
- All-Dielectric Metasurfaces
- Control of Heat Radiation with Metamaterials
- Phase-Change Materials for Photonics
- Optical Nano-tweezers to manipulate and control nano-objects