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Effects of porous walls on near-wall supersonic turbulence
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We have investigated the effects of the wall permeability on the isothermal-wall su-
personic channel flow turbulence. The study is conducted via large-eddy simulations
(LES) based on the sub-grid-scale closure proposed by Vreman [Phys. Fluids 16, 3670
(2004)]. The effects of the wall porosity are modeled via the application of a time-
domain impedance boundary condition (TDIBC), which accurately imposes the complex
acoustic wall impedance. Bulk Mach numbers of Mb = 1.50 and 3.50 are selected, with
bulk Reynolds numbers chosen to ensure the same semilocal friction Reynolds number
of Re∗

τ ≈ 220. A three-parameter impedance model is used with resonating frequency
tuned to the time scales of the energy containing eddies, with wall acoustic resistances
R = 0.50, 1.00, ∞, ranging from the most permeable to impermeable, respectively. It is
found that only cases with R = 0.50 yield significant changes in the near-wall turbulence
structures, which include a deviation from the linear relation of mean velocity and normal-
ized wall distance in viscous sublayer, and increase in the mean wall-shear stress, as well
as a strong increase in both turbulent kinetic energy (TKE) production and dissipation near
the wall primarily due to large contribution coming from the instability waves triggered
by the permeability. Such waves are found to be confined in the first 10% of the channel
half-height near the impedance boundary, creating local circulation zones separated by
regions of flow entrainment. It is found that for a given R, the waves are more confined
as the Mach number increases. For pressure-related terms, the complex impedance wall
effects changes the role of pressure diffusion term in the budget the most, making it
responsible for the transport toward the wall, opposite to what is observed in impermeable
wall cases. The confined waves also enhance the sink/source effect of the pressure strain
term in budget of Reynolds normal stresses, leading to a redistribution of normal stresses.

DOI: 10.1103/PhysRevFluids.6.084607

I. INTRODUCTION

Porous media find widespread applications in aeronautical engineering for noise reduction and
passive flow control. Performing high-fidelity numerical simulations including the flow in the pore
space requires demanding effort in grid generation and high computational cost associated with
the small grid size. When the effect of wall porosity is acoustic in nature, one solution is the
mathematical imposition of a complex impedance Ẑ (ω) at the interface between the flow domain
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and the porous media denoted as impedance surface. The impedance Ẑ (ω) takes the form [1]

Ẑ (ω) = 1

ρsas

p̂(ω)

v̂(ω) · n
= R(ω) + iX (ω), (1)

where ω is the angular frequency; p̂ and v̂ are the Fourier transform of the pressure and velocity
fluctuations, respectively; n is the unit vector normal to the impedance surface pointing away from
the flow domain; ρs is the base density and as is the base speed of sound, both of which are taken at
the impedance surface;i is the imaginary unit i = √−1. The impedance itself is a complex number,
with the real part R(ω) and imaginary part X (ω) called resistance and reactance, respectively. A
boundary condition that imposes the complex impedance Ẑ (ω) is referred to as the impedance
boundary condition (IBC). Such IBC formulation assumes linear wave propagation dynamics within
the porous media and at the interface with the flow. To implement IBCs in time-domain based
flow solvers a time-domain equivalent of Eq. (1), which appears in the form a convolution integral,
must be numerically implemented at the impedance surface. Such boundary conditions are called
time-domain impedance boundary conditions (TDIBCs). Constraints including passivity, reality,
and causality must be honored by the TDIBC implementation to accurately predict the correct
physics and to ensure numerical stability, as stated by Rienstra [2] and summarized by Douasbin
et al. [3]. Tam and Auriault [4] proposed a three-parameter impedance model obtained by fitting
experimental data from a typical acoustic liner in the frequency domain. A set of time-domain
ODEs were derived directly from it. This type of TDIBC is proved to be well posed provided the
imaginary part of the impedance has either nonnegative mass-like reactance or negative spring-like
reactance (while using the e−iωt convention for Fourier transform). Later, Fung and Ju [5] proposed
a TDIBC methodology based on the residue theorem. In this method, the time-domain convolution
integral derived from Eq. (1) is evaluated numerically through the trapezoidal rule. However, this
formulation is limited to second order accuracy in time. Dragna et al. [6] proposed the adoption
of auxiliary differential equations (ADE) method for implementing TDIBC, which was originally
developed in the field of electromagnetism [7]. With the ADE method, the convolution integral is
converted into a set of ODEs with respect to two auxiliary variables, which can be advanced in
time with the same time marching technique as the flow solver. Other TDIBCs methods based on
different techniques such as z transform [8,9] and characteristic-based formulation [10–12] are also
available in the literature. Readers are encouraged to consult the references for more details.

Researchers have applied TDIBCs to help investigate the effect of porous media on a fully
subsonic turbulent flow field. For example, Jiménez et al. [13] performed Direct Numerical Simula-
tions (DNS) of incompressible turbulent channel flow over one porous wall, in which the boundary
conditions are those of purely real impedance, i.e., v′ = −βp′ where β is the porosity coefficient.
It was found that permeability significantly alters near-wall turbulence. Local blowing and suction
regions have been identified, which on average increase the mean wall-shear stress. Scalo et al. [14]
conducted a series of numerical experiments of compressible turbulent channel flow over complex
wall impedance, using Fung and Ju’s TDIBC technique and the three-parameter impedance model
with the resonating frequency tuned to the most energetic frequency in the flow. The study spans
a flow regime from nearly incompressible (Mb = 0.05) to low subsonic (Mb = 0.5). Spanwise
rollers, exhibiting Kelvin-Helmholtz-type behavior, are found to replace the typical streamwise
streaks. These structures are confined in a so-called resonating buffer layer—replacing the classic
impermeable buffer layer—and change only the near-wall turbulent structures, as in flow over
canopies. Later, [15] performed simulations of a similar flow with the same impedance model, but
with the TDIBC formulation proposed by Ref. [4]. The flow conditions were at Mb = 0.3, with one
case being Mb = 0.4, and with various selections of the resonating frequency. Results have shown
that the spanwise coherence of the rollers gradually disappear as the resonating frequency is tuned
beyond the characteristic flow frequency. All the aforementioned work focus on incompressible
or subsonic compressible flow. The current work is motivated by the increasing attention to the
application of porous media/coatings in high-speed flow, as well as the desire by the authors to
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FIG. 1. Sketch of the flow setup for turbulent channel flow over one permeable wall. The negative sign in
the impedance boundary condition comes from the convention of the outward-facing normal n [see Eq. (1)].

extend the work by Scalo et al. [14] to the supersonic and hypersonic regime. The effect of such
surfaces on the high-speed near-wall turbulence is of great interest. To the authors’ knowledge, there
is no existing published work about their applications in high-speed turbulent flows. This paper
and its companion publication [16] pioneer such investigation. The paper is organized as follows:
Section II describes the flow problem, Sec. III provides the numerical setup, results are discussed in
Secs. IV–VI, and conclusions are provided in Sec. VII.

II. PROBLEM FORMULATION

In this paper, large-eddy simulations (LES) of fully developed turbulent channel flow with
isothermal walls are performed. The top wall is kept impermeable for all cases, while the bottom
wall is allowed to have various degrees of permeability modeled by time-domain impedance bound-
ary conditions. The flow setup is shown in Fig. 1. For clarity, the coordinate (x, y, z) = (x1, x2, x3)
represent the streamwise, wall-normal, and spanwise directions, respectively. The reference pa-
rameters are the channel half-height δ, speed of sound at the wall aw, wall temperature Tw, and
bulk density ρb = 〈ρ〉V , where the brackets 〈·〉V indicate the volumetric-average operator. The bulk
Reynolds number is then defined as

Reb = ρbUbδ

μref
, (2)

where Ub = 〈ρu1〉V /ρb is the density weighted bulk velocity, also yielding the bulk Mach number
Mb = Ub/aw; μref is the dynamic viscosity taken at the wall. In the current work, the bulk Mach
number Mb is chosen as Mb = {1.50, 3.50}. Different bulk Reynolds numbers Reb are selected
so that all Mach number cases share a similar viscous Reynolds number Re∗

τ ≈ 220, that is, the
semilocal viscous Reynolds number accounting for variable density effects [17] present in this flow.

The simulations are performed by solving the compressible Navier-Stokes equations:

∂ρ

∂t
+ ∂ρu j

∂x j
= 0, (3)

∂ρui

∂t
+ ∂ρuiu j

∂x j
= − ∂ p

∂xi
+ ∂τi j

∂x j
+ ρ fi, (4)

∂ρE

∂t
+ ∂ρu jE

∂x j
= −∂ pu j

∂x j
+ ∂ (ukτk j − q j )

∂x j
+ ρ f ju j . (5)
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Here τi j is the stress tensor given by

τi j = (μ + μsgs)

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
, (6)

with the subscript “sgs” denoting sub-grid-scale (SGS) model terms. Note that a repeated i index
implies the summation when used as a subscript, while used in equations such as Eq. (1) it indicates
the imaginary unit. The heat flux vector qj is defined as

q j = −Cp

(
μ

Pr
+ μsgs

Prsgs

)
∂T

∂x j
, (7)

where Cp is the heat capacity at constant pressure and Pr = 0.72 is the Prandtl number. The turbulent
Prandtl number Prsgs is chosen to be 0.90. The ideal gas constitutive relation p = ρRgasT is used with
Rgas being the gas constant. The power law μ/μref = (T/Tref )n is assumed for dynamic viscosity
with n = 0.76. The eddy viscosity model by Vreman [18] is used as the turbulence closure.

To drive the flow, a uniform external body force f1 in streamwise direction is dynamically
adjusted to maintain the desired bulk mass flow rate. Its time average reads

f 1 = τw

δρb
, (8)

where τw is the mean wall shear stress. For all simulations, periodic boundary conditions are used
in streamwise and spanwise directions. For wall boundaries, the conditions are given as

u1 = u3 = 0, (9a){
u2 = 0, impermeable,
p̂ = ρwawẐ (ω)v̂ · n, permeable,

(9b)

T = Tw, (9c)

where Tw = 1 and aw = 1 based on current normalization. For both permeable and impermeable
walls, no-slip conditions are used for the tangential velocity components. One underlying assump-
tion is that the orifice size of a corresponding physical array of Helmholtz resonators in the current
setup is very small compared to the channel half height δ, and thus yields negligible tangential
velocities, as also assumed for other types of porous walls used in high-speed flow applications
[19]. Appendix A provides an analysis of the range of pore sizes relative to the boundary layer
thickness typically found in high-speed flow conditions, supporting such assumption. For purely
impermeable walls, the no-penetration condition is adopted (i.e., infinite impedance), while for
permeable walls, TDIBC is applied with prescribed finite wall impedance Ẑ (ω). Note that for
the permeable wall simulations, the net mass flux across the impedance boundary is not enforced
to be numerically zero. To prevent the occurrence of spurious net mass accumulation or leak in
the channel, the surface-average mass flux through the impedance boundary is calculated at each
sub-timestep, and converted into a density weighted wall-normal velocity ṽ = ρv/ρ. Such velocity
is then subtracted from the instantaneous vertical velocity at the impedance boundary, ensuring a
zero net mass flux through the whole impedance boundary at each sub-timestep. More details on
the TDIBC implementation are discussed in the next two subsections.

A. TDIBC based on ADE method

Instead of directly using Ẑ (ω), the TDIBC in the current work relies on the time-domain
expression of the complex wall softness coefficient Ŝ(ω) defined as

Ŝ(ω) = 2

1 + Ẑ (ω)
. (10)
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Its relation with the complex wall reflection coefficient, R̂(ω) is simply Ŝ(ω) = R̂(ω) + 1. The
reflection coefficient R̂(ω) directly measures the magnitude and phase changes between the incident
and the reflected waves, with values of −1, 0,+1 corresponding to surfaces of hard reflection, no
reflection and pressure-release conditions, respectively. The complex wall-softness shares similar
properties and relates the (flow) domain-leaving wave, v̂out

n (ω), to the domain-entering wave, v̂in
n (ω),

both normal to the bottom-wall impedance surface, via

v̂in
n (ω) = [̂S(ω) − 1)]v̂out

n (ω). (11)

The time-domain expressions for such waves at the bottom boundary (with n for the bottom
boundary pointing downwards) read

vout
n (t ) = v′

n(t ) − p′
w(t )

ρwaw

, (12a)

vin
n (t ) = v′

n(t ) + p′
w(t )

ρwaw

, (12b)

where p′
w(t ) is the pressure fluctuation at the wall. Such local recasting of the fluctuating field

is consistent with Poinsot and Lele [20]’s characteristic boundary condition approach for the
compressible Navier-Stokes equations. The impedance is here after assumed to act on only the
acoustic waves.

The time-domain equivalent form of Eq. (11) is

vin
n (t ) = −vout

n (t ) +
∫ ∞

−∞
s(τ )vout

n (t − τ )dτ. (13)

The goal of TDIBC methods is to evaluate this integral while ensuring the physical realizability
of the boundary condition. It has been summarized by Rienstra [2] that physical realizability can
be ensured by satisfying passivity, reality, and causality constraints. However, such constraints are
derived based on Ẑ (ω), i.e., the formulation in Eq. (1). When the characteristic form of the incoming
and outgoing acoustic waves is used [Eq. (11)], the constraints, which should be applied on Ŝ(ω) to
ensure a causal integral, read:

(1) Passivity of the impedance boundary. The acoustic power through the impedance surface
must entail a net acoustic energy transfer outside of the domain. Suppose Ŝ(ω) can be written as a
fractional function, i.e., Ŝ(ω) = Â(ω)/B̂(ω), then such constraint requires

	{B̂(ω)} � 1,∀ω ∈ R, (14)

which is equivalent to 	{Ẑ (ω)} � 0 for all real ω.
(2) Reality of the signals. This guarantees the signals obtained in time-domain are purely real,

resulting in

Ŝ(ω) = Ŝ�(−ω), (15)

with � representing the complex conjugate.
(3) Causality. The state of the physical process at the current time should not depend on the

information from future. This means that the contribution to the convolution integral in Eq. (13) due
to τ < 0 should be zero, hence s(τ ) = 0 for τ < 0.

The TDIBC methodology adopted in the current work builds upon the auxiliary differential
equation (ADE) method [6,7] as well as the recasting of Ŝ(ω) into the summation of partial fractions
using its residues, μk = ak + ibk , and poles, pk = ck + idk , which is interpretable as the linear
superposition of n0 causal harmonic oscillators [21],

Ŝ(ω) =
n0∑

k=1

(
μk

iω − pk
+ μ�

k

iω − p�
k

)
. (16)
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With such form, the reality constraint is automatically satisfied. The causality constraint requires
the real part of the poles pk to be negative, i.e., ck � 0, which then yields the expression in the time
domain,

s(t ) =
n0∑

k=1

(
μkepkt + μ�

kep�
kt
)
H (t ), (17)

where H (t ) is the Heaviside function resulting from the inverse transform. Note that this mathe-
matical form only implies one-way causality, consistent with the fact that the acoustic characteristic
reflected off the impedance boundary vin

n (t ) is dependent, in a one-way fashion, on vout
n (t ), impinging

on the impedance boundary.
A new set of auxiliary variables is then defined,

ψ
(1)
k (t ) =

∫ t

0
2akeck (t−τ ) cos[dk (t − τ )]vout

n (τ )dτ, (18)

ψ
(2)
k (t ) =

∫ t

0
2bkeck (t−τ ) sin[dk (t − τ )]vout

n (τ )dτ, (19)

and the domain-leaving, vout
n (t ), and domain-entering, vin

n (t ), waves can be related via

vin
n (t ) = −vout

n (t ) +
n0∑

k=1

2
[
akψ

(1)
k (t ) − bkψ

(2)
k

]
, (20)

with ψ
(1)
k (t ) and ψ

(2)
k (t ) governed by the ODEs

dψ
(1)
k (t )

dt
= ck−1ψ

(1)
k (t ) − dk−1ψ

(2)
k (t ) + vout

n (t ), (21)

dψ
(2)
k (t )

dt
= ck−1ψ

(2)
k (t ) + dk−1ψ

(1)
k (t ), (22)

where ak, bk, ck, dk are the real and imaginary parts of the residues μk and poles pk , as stated above.
Such ODEs can then be advanced with the same temporal scheme as the main flow solver and
boundary conditions can be applied by solving for vn and p′

w from Eq. (12). A more generalized
impedance boundary condition could be developed to account for vortical and entropy mode
impedances (see Suzuki and Lele [22]). This effort is out of scope of the current paper and it would
also raise issues of practical realizability of such generalized boundary condition.

B. The three-parameter impedance model

In the present work, the three-parameter impedance model proposed by Tam and Auriault [4] is
adopted:

Ẑ (ω) = R + i(X+ω − X−1ω
−1), (23)

which can be shown to be equivalent to a single-pole Helmholtz oscillator [21]. Here R, X+, X−1 are
acoustic resistance, acoustic mass-like reactance, and acoustic spring-like reactance, respectively.
Note that unless otherwise indicated, the time harmonic convention e+iωt is assumed in this paper,
as opposed to Tam and Auriault [4] who adopted the e−iωt convention. The model in Eq. (23) entails
a frequency-selective acoustic permeability, which can be tuned to a characteristic frequency ωres

given by

ωres =
√

X−1

X+1
. (24)
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In this paper, an equivalent set of three parameters R, ωres and ζ are used where ζ is the damping
ratio defined as

ζ = 1 + R

2ωresX+1
. (25)

The impedance model in Eq. (23) can then be recast into the fully dimensionless form

Ẑ

(
ω

ωres

)
= R + i

R + 1

2 ζ

[
ω

ωres
− ωres

ω

]
. (26)

With the above form of impedance and its connection to Ŝ(ω), one can show that the three
aforementioned constraints in Sec. II A requires (for an underdamped system){

R � 0, passivity,
ζ ∈ (0, 1), causality, (27)

where the reality constraint Eq. (15) is automatically satisfied. Preliminary results have shown that
a very low resistance R—or, equivalently, very high permeability—could cause high amplitude
instability waves in the flow and thus impose severe constraints on the allowable Courant-Friedrichs-
Lewy (CFL) numbers. Hence, values of R are selected as R = 0.50, 1.00,∞ for both Mach
numbers, where the infinite value of R corresponds to impermeable wall conditions. A value of
ζ = 0.5 is selected for all permeable wall simulations. The impedance boundary in the current work
is designed to react to the frequencies of energy containing eddies of the overlying turbulent flow,
which yields the tuning condition

ωres = 2πUb/δ. (28)

consistent with the approach followed by Scalo et al. [14]. It should be noted that the TDIBC
based on such three-parameter impedance model could be implemented in a simpler and more
straightforward way, such as the method used by Ref. [23]. In the current work, however, we have
chosen to adopt a general approach that can allow for any realizable form of impedance to be applied
as a boundary condition in a high-fidelity compressible-flow calculation.

III. NUMERICAL SETUP AND FLOW CONDITIONS

The compressible Navier-Stokes equations with prescribed boundary conditions are solved via
a six-order compact finite differencing code originally developed by Ref. [24] and now under
continued development at Purdue. The code implements grid transformation to allow the prob-
lem to be solved on curvilinear grids. A semi-implicit temporal scheme is used to alleviate the
constraints in CFL numbers imposed by strong vertical velocities near the permeable wall, and it
has been developed based on previously established fully implicit methods [24–27] and the explicit
Runge-Kutta (RK) scheme used by Ref. [28]. Only the wall normal derivative terms are treated
implicitly and are solved within each Runge-Kutta substep. The approximate factorization allows
the resulting matrix-inversion problem to be solved iteratively with relatively low cost by using
alternating direction implicit (ADI) sweeping. Three subiterations have been proven to be sufficient
to ensure convergence at each RK substep. The validation of such scheme can be found in the
reference [16].

The flow conditions and the grid size of all cases presented are listed in Table I. The domain
size for cases with impermeable walls are both Lx × Ly × Lz = 12δ × 2δ × 4δ, while the rest of the
cases with finite R can be appropriately simulated in a shorter domain in the streamwise direction,
Lx × Ly × Lz = 8δ × 2δ × 4δ, as proven by the two-points correlations given in Appendix B. The
number of grid points is chosen so that the grid spacing is fine enough to resolve the near-wall
event induced by the impedance wall. A grid sensitivity study has been performed for the case with
most energetic response, i.e., Mb = 3.50, R = 0.50, and the results are given in Appendix C. The
validation of TDIBC implementation can be found in the companion publication [16]. In Table II
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TABLE I. Flow conditions, impedance parameters, and number of grid points for all the LES cases. Cases
run at Mb = 1.50 and 3.50 are hereafter labeled with the “(I)” and “(II)” Roman numerals, respectively.

Group Mb Reb R Lx × Ly × Lz Nx × Ny × Nz

(I) 1.50 5000 ∞ 12δ × 2δ × 4δ 160 × 192 × 120
1.00 8δ × 2δ × 4δ 128 × 192 × 128
0.50 8δ × 2δ × 4δ 128 × 192 × 128

(II) 3.50 10000 ∞ 12δ × 2δ × 4δ 400 × 256 × 240
1.00 8δ × 2δ × 4δ 270 × 256 × 240
0.50 8δ × 2δ × 4δ 340 × 300 × 300

the grid resolution is reported in terms of the plus units, along with the time-step and CPU hours
per flow-through time. Note that due to the asymmetry in the boundary conditions, data based on
top and bottom wall statistics are given separately.

IV. MEAN VELOCITY AND REYNOLDS STRESSES

In this section, some of the first and second-order mean flow statistics are reported. Unless
otherwise stated, the Favre averaging [30] is used. The Favre-averaged mean value of a quantity φ

is denoted by φ̃ and the fluctuation by φ′′, while for Reynolds average φ and φ′ are used to represent
the mean and the fluctuation part, respectively. Figure 2 shows the transformed mean streamwise
velocity profile as well as the Favre-averaged Reynolds stresses ũ′′

i u′′
j . The transformation applied

to the mean velocity is the one proposed by Ref. [29] for compressible wall-bounded turbulence,
denoted as U TL (and hereafter referred to as TL transformation), which has been shown to collapse
the mean velocity profile for Mach number up to 4.0 for compressible turbulent channel flows.

The TL transformation naturally yields the semilocal wall normal coordinate y∗ defined as [17]

y∗ = ρu∗
τ y

μ
, u∗

τ =
√

τw/ρ, (29)

where ρ and μ are local flow density and dynamic viscosity averaged in time and homogeneous
directions; τw is the mean wall shear stress. The corresponding normalization of the Reynolds
stress is given as ρu′′

i u′′
j /τw. For reference, the compressible channel flow data by Ref. [31] (Mb =

1.50, Reb = 5000) and the incompressible channel flow data from Ref. [32] are also included.

TABLE II. Grid resolutions in wall units and percentage increase in the wall shear stress for the permeable-
wall LES cases. Top and bottom wall statistics are reported separately. The increasing dash spacing in the line
style indicates increasing wall permeability. The time step and the CPU hours per flow-through time are also
reported.

Bottom Top CPU hours/

Group Mb R Line style 
x+ 
y+
min 
z+ 
τw (%) 
x+ 
y+

min 
z+ 
τw (%) 
t flow-through time

(I) 1.50 ∞ 25.37 0.14 11.30 0.00 25.23 0.14 11.24 0.00 2 × 10−4 16 457
1.00 21.53 0.14 10.77 2.33 20.94 0.14 10.47 +2.18 2 × 10−4 16 384
0.50 22.87 0.15 11.44 18.02 21.40 0.14 10.70 +4.42 2 × 10−4 16 384

(II) 3.50 ∞ 28.85 0.30 16.06 0.00 29.22 0.30 16.26 0.00 2 × 10−4 82 285
1.00 30.22 0.32 17.01 12.35 29.38 0.31 16.53 +3.35 1 × 10−4 87 711
0.50 23.81 0.27 13.50 10.93 23.00 0.26 13.04 +0.62 1 × 10−4 137 143
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10−1 100 101 102 103

y∗

0

5

10

15

20
U

T
L

(I)
(II)

(a)

0 1 2
−ρu v /τw

0.0

0.2

0.4

0.6

0.8

1.0

y 0.0 0.4
0.00

0.04

(I)

1.0 1.4
0.00

0.04

(II)

(b)

FIG. 2. First and second-order flow statistics: (a) TL-transformed mean streamwise velocity profile [29].
The dashed-dotted line represents the reference log-law U TL = 2.5lny∗ + 5.5 and the linear law (below
y∗ = 5); (b) Reynolds shear stress normalized by mean wall shear; (c)–(e) Reynolds normal stresses normalized
by U 2

b . The line spacing in the plot increases with an increasing permeability (decreasing resistance R).Arrows
indicate direction of increasing permeability.

For the LES impermeable wall cases, the near-wall profiles agree well with reference data. The
case at Mb = 1.50 starts to see an overshoot beyond y∗ ≈ 15, while case with the higher Mach
number shows good agreement across the whole channel. With wall permeability, the mean velocity
profile starts to deviate from its impermeable reference as shown in Fig. 2(a). For both Mach
numbers, the effect of wall permeability is not apparent at R = 1.00. As R decreases to the value
of 0.50, the mismatch appears early in the viscous sublayer region and continues all the way to
the channel center. At such low values of wall acoustic resistance, the typical viscous sublayer
scaling, or U T L ≈ y∗, is no longer followed. For this reason, the value of y∗ loses its correlation
to a specific state of wall-bounded turbulence. As a result, most of the statistics shown later will
simply use the wall normal coordinate y made dimensionless with the channel semi-height δ. The
high near-wall velocity gradient indicates the increase in the mean wall shear stress compared to
the impermeable wall baselines, whose values are also reported in terms of percentage increase

τw in Table II. Except for the one with R = 1.00 at Mb = 1.50, all other cases show at least 10%
of enhancement in the mean wall shear stress. The Reynolds shear stress −ρu′′v′′/τw reflects the
near-wall changes more clearly and is given in Fig. 2(b). A local peak of −ρu′′v′′/τw is observed
below y = 0.02 (see the inset view), which means a stronger correlation between fluctuations in
streamwise and wall normal velocity components at this location, and thus an enhancement in
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the convective momentum transfer in the near-wall region. Again, such enhancement has not been
observed in the low permeability case at low Mach number with high resistance.

Figures 2(c) and 2(e) demonstrate the normal Reynolds stresses, which are normalized by U 2
b

to allow for an easier comparison. A redistribution of the turbulence intensities has been observed
due to wall porosity, which also varies with Mach numbers. Typically the no-slip impermeable wall
conditions lead to a two-component nature of turbulent channel flow in the near-wall region—the

vertical component ṽ′′v′′ grows roughly as y4 while ũ′′u′′ and ˜w′′w′′ as y2, resulting in ṽ′′v′′
approaching zero at the wall much faster than the other two components [33]. In addition, ũ′′u′′
is usually the largest component because of the fluctuation energy extraction from the mean stream-
wise shear. The high resistance cases (R = 1.00) at both Mach numbers do not show significant
differences with respect to the impermeable baseline cases, except for a slightly increase in the peak
of ũ′′u′′. For lower resistance R = 0.50 at low Mach number Mb = 1.50, a decrease is observed
in ũ′′u′′ in the near-wall region and the other two components exhibit enhancement in the lower
half channel. However, when keeping the same resistance and increasing the Mach number, an
increase in all stress components are observed. Nonzero values of ṽ′′v′′ are observed due to the
nonzero transpiration velocity v′ at the permeable wall. This redistribution of the normal stresses
will be addressed with further details in Sec. VI B. The observation in the first and second-order
mean statistics suggests that for cases with sufficiently high wall permeability, the near-wall turbu-
lence structures might have been altered. The structural-wise changes are investigated in the next
section.

V. NEAR-WALL TURBULENCE STRUCTURES

A. Streamwise traveling structures

The mean flow statistics indicates the possibility of the alterations in near-wall turbulence
structures, which is confirmed in Fig. 3, where for cases with R = 0.50 the isosurface of Q criterion
[34] are shown on top of contour of wall pressure fluctuations.

Groups of streamwise traveling structures are identified, which leave a coherent footprint of
pressure waves on the wall surface. The characteristic wavelength of such structures is found to
be λx ≈ 0.47 for both Mach numbers. The velocity field obtained by subtracting the mean flow
from the instantaneous field shows that such waves create localized circulation zones in regions
of positive pressure fluctuation p′, separated by flow entrainment region that brings the high
momentum fluid toward the wall, which leads to a local increase of the wall shear stress. With
the same R = 0.50, a discernible difference in the pressure pattern of Mb = 1.50 and Mb = 3.50 is
observed. At Mb = 3.50, the wave structure is confined closer near the wall, with the high pressure
blob more concentrated in a smaller region, as compared to the pattern at Mb = 1.50. In Ref. [14],
the permeable walls in subsonic channel flows trigger Kelvin-Helmholtz type of instability, and
result in a layer of spanwise rollers that disrupt the viscous sublayer. At that low Mach number, the
characteristic length scale of the rollers was found to be λx ≈ 0.40 with regions of flow entrainment
and circulation zones of comparable size. In the current work a longer length scale of the instability
is observed with λx ≈ 0.47 and circulation regions are more extended than the entrainment region.
As the Mach number increases, a deviation from spatially harmonic pattern is observed, with more
localized and abrupt positive pressure fluctuations, indicating possible coupling with the overlying
flow field, associated to a stronger flow response; For the lower Mach number case, the same value of
dimensionless resistance (R = 0.50) yields a weaker response, which preserves its modal nature and
hence likely decouples from the turbulence. This behavior might relate to the increasing temperature
gradient as the Mach number increases in such type of flow, which requires further investigation in
the future. For all Mach number cases, the observed waves are ’trapped’ as shown in a companion
work [16], in the sense of wave being confined near the impedance boundary but able to propagate
along the boundary indefinitely. The same type of waves have been defined by Ref. [35] as “surface
waves” when discussing waves confined close to an impedance lining in a duct with flow. However,

084607-10



EFFECTS OF POROUS WALLS ON NEAR-WALL …

FIG. 3. Near-wall instability waves resulting from the interaction of the impedance wall and the overlying
supersonic turbulent flow field. The cases presented are (a) Mb = 1.50, R = 0.50 and (b) Mb = 3.50, R = 0.50.
In each subfigure, the following quantities are shown: Isosurface of Q criterion overlaid on the pressure
fluctuation contour on the wall (left); spanwise slice of the pressure contour showing the characteristic wave
length λx (top right); The vector plot of fluctuating velocity field (center right); Signals of wall normal velocity,
pressure fluctuation and shear stress at y = 0 at the same spanwise slice (bottom right).

in acoustics the term “trapped” refers to a wave that is not able to escape a given region in any
direction [36], and therefore the word “trapped” is avoided here for clarity.

B. Vorticity fluctuation intensity

The presented flow structures due to the response of permeable walls greatly affect the vorticity
field near the wall. The normalized root-mean-square (RMS) vorticity components 〈ωx〉∗rms are
presented in Fig. 4. The superscript “∗” indicates the value that is normalized by the quantity
μref/τw,R=∞ taken from the baseline cases. The logarithm scale is used to emphasize the near-wall
changes.

In all the cases presented, the wall normal component 〈ωy〉∗rms does not experience obvious
changes over various wall permeabilities except for the low resistance case at Mb = 1.50 in which
an enhancement of 〈ωy〉∗rms is shown below y = 0.1. The effect of wall permeability mainly exists
in the other two components, 〈ωx〉∗rms and 〈ωz〉∗rms. In a typical impermeable channel flow, clusters
of streamwise streaks resides near the wall, which can be approximately visualized as streamwise
aligned vortices. On the average, these streaks create a local maximum at y ≈ 0.1 in 〈ωx〉∗rms (roughly
at y∗ = 24 ∼ 25 in an impermeable wall case), which corresponds to the averaged height of the
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FIG. 4. Root-mean-square fluctuation vorticity components, normalized by μref and the wall shear stress
τw in the impermeable wall cases. The line spacing in the plot increases with an increasing permeability
(decreasing resistance R), also shown by the arrow.

vortex centers [37]. Due to the no-slip condition in u and w, a maximum in 〈ωx〉∗rms is observed
on the surface. The combined effect of streaks and no-slip conditions leads to a local minimum
that is roughly at the edge of the pictured vortex structures. After applying the permeable wall
condition, significant enhancement of 〈ωx〉∗rms is observed below y = 0.2 and the locations of the
local maximum and minimum are shifted closer to the wall. The phenomenon of increasing 〈ωx〉∗rms
is due to the entrainment effect of the wave structures as presented in Fig. 3, which is in fact a
three-dimensional event as sketched in Fig. 5. While the high momentum fluid is entrained toward
the wall, it is also found to be expelled to the cross direction. This leads to secondary flows that
increase the component ∂w′/∂y and thus 〈ωx〉∗rms. A cross-plane view of the flow field is shown in

FIG. 5. A sketch of the flow pattern associated to wave-like structures showing the circulation zone,
entrainment region and the resulting cross flow. The background isosurface plot is generated with the case
Mb = 3.50, R = 0.50).
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FIG. 6. Instantaneous flow field in the cross-plane (z-y plane) at the location of entrainment (positive pres-
sure fluctuation) on top of the contour plot of pressure fluctuations, taken from the case Mb = 3.50, R = 0.50.
The vector length is proportional to the in-plane velocity magnitude.

Fig. 6 for Mb = 3.50, R = 0.50, which clearly shows the cross flow on sides of the positive pressure
fluctuation blob, where the flow entrainment is present. The effect of permeable walls on 〈ω〉∗z,rms is
mainly confined below y = 0.02. Significance enhancement of the strength can be observed below
y = 0.01, which tends to be the effect of circulation zones captured by Q criterion as spanwise
“rollers” as previously shown in Fig. 3.

VI. TKE BUDGET ANALYSIS

In this section, parts of the budgets of turbulence kinetic energy (TKE) will be examined. The
transport equation for TKE in compressible flows, including the SGS contribution, is given by

ρ
∂k

∂t
+ ρũ j

∂k

∂x j
= Pk − ε + Dk + T k + Dk

p + W k + �k
p − εsgs + Dk

sgs, (30)

where k = 1
2 ũ′′

i u′′
i represents the TKE. Two groups of the terms on the right-hand side of TKE budget

are selected for further examination:
(1) Group I: Production and dissipation

Pk = −ρu′′
i u′′

j

∂ ũi

∂x j
, production, (31a)

ε = τ ji
∂u′′

i

∂x j
, resolved dissipation, (31b)

εsgs = τ ji,sgs
∂u′′

i

∂x j
, SGS dissipation. (31c)

(2) Group II: Pressure-related terms

Dk
p = −∂ p′u′′

j

∂x j
, pressure diffusion, (32a)

W k = −u′′
i

∂P

∂xi
, pressure work, (32b)

�k
p = p′ ∂u′′

i

∂xi
, pressure dilatation. (32c)

Unless otherwise mentioned, all budget terms are normalized by the quantity τwUb/δ taken from
the present impermeable-wall simulations. Some available reference data for impermeable-wall
calculations [31] will also be included.
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FIG. 7. Budgets terms below y = 0.6 for all simulations. Plots in the same column belong to the same
Mach, indicated by labels “(I)” and “(II).” First row: Turbulence production, Pk , resolved dissipation, ε, and
SGS dissipation, εsgs. Second row: pressure diffusion Dk

p and pressure dilatation �k
p. Third row: pressure-strain

terms �ii, i = 1, 2, 3 as will be given in Eq. (37). The line spacing in the plot increases with an increasing
permeability (decreasing resistance R). For the same Mach number, quantities in cases of various resistance R
are normalized by values taken from impermeable wall simulations.

A. Group I: Production and dissipation

In this section the turbulent production Pk and resolved dissipation ε are examined. For complete-
ness, the SGS dissipation εsgs is also included. All these terms are plotted in Fig. 7. The dissipation
term can be further decomposed into a solenoidal part, εs, and a dilatational part, εd , where

ρεs = νρω′′
i ω

′′
i , ρεd = 4

3νρu′′
i,iu

′′
i,i. (33)

Their ratio, εd/εs, is (surprisingly) found to be negligible for all cases and is not included in Fig. 7.
As expected, cases with R = 1.00 exhibit no significant differences in the budgets as compared
to the baseline impermeable cases due to their relatively low permeability (or high resistance R).
Effects on the budgets due to the permeability start to show in lower resistance cases with R = 0.50.
Higher turbulent production is observed in the near-wall region, with peaks of production shifted
closer to the wall; the fluid layer of high turbulent production also widens. The change in turbulent
production agrees with the trend shown in the mean velocity and Reynolds-shear stress previously
shown in Fig. 2. Exploiting the statistical homogeneity in the x and z directions the production term
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FIG. 8. Premultiplied production spectrum as a function of distance from the wall and streamwise wave-
length at Mb = 1.50 (a) and Mb = 3.50 (b). The “x” symbols indicate the highest contribution to the production
spectra. Dashed lines indicate the location and the wavelength of the contribution associated to the waves due
to porous walls. The impermeable cases (R = ∞) have longer domains, hence the larger maximum λx .

reads

Pk = −ρu′′v′′ dũ

dy
. (34)

The reaction of the impedance wall to the overlying turbulence enhances the near-wall momentum
transport, leading to higher wall shear (thus, high dũ/dy) and the Reynolds shear stress, which
eventually results, in turn, in an enhancement of the turbulent production. Permeability also leads to
a spike in dissipation, with a ten-fold increase at the wall as compared to impermeable baselines.

The observed changes in the TKE budgets are due to the instability wave pattern shown in
Sec. V, which has been confirmed in the companion work [16] by showing the contribution of
TKE production terms of different wavenumbers at different locations, though for slightly different
wall permeabilities for each Mach number. Here the same methodology applied to the cases in this
work, as shown in Fig. 8. The production spectrum reads

P̂k = −1

2

[〈
	

{
ρ̂u′v̂′� dũ

dy

}〉
z,t

+
〈
	

{
ρ̂v′û′� dũ

dy

}〉
z,t

]
, (35)

where the superscript � represents the complex conjugate of a quantity, and 〈·〉z,t indicates an
averaging operator in spanwise direction and time, and ·̂ the Fourier transform operator. This is
similar to the method used by Ref. [38], with a modification to account for compressibility. It is
also found that there is no significant difference between the two terms on the right-hand side of
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Eq. (35) and thus an average operation is performed. Figure 8 shows the contour line plot of the
premultiplied spectra

�̂∗
Pk ,x = Re∗

τ κxyP̂kμ/τ 2
w,R=∞ (36)

as a function of streamwise wavelength and distance from the wall, normalized by the shear stress
of the reference impermeable cases.

At the lower Mach number with R � 1.00, most of the production is due to wavelengths λx � 2.0
and is concentrated in the region y ∈ (0.05, 0.2), which roughly corresponds to y∗ ∈ (15, 50) of
the impermeable wall case. As the resistance decreases to R = 0.50, the spectra exhibit the same
pattern in the same region. However, a second region of high contribution has appeared in the range
y ∈ (0.01, 0.05), whose wavelength matches the length scale of the wave structure shown in Fig. 3.
For Mb = 3.50, a similar behavior is observed and the second region also appears for the higher
resistance case (R = 1.00). In either Mach number, the wave pattern of the instability observed in
the flow is responsible for the enhancement in the near-wall production.

B. Group II: Pressure-related terms

All pressure-related terms in the TKE energy budgets are presented in this section, including
pressure diffusion Dk

p and pressure dilatation �k
p. The term W k

p , i.e., pressure work, is found to be
negligible across the whole channel even with high wall permeability and it thus omitted from the
plots. All these three terms are known to be small as compared to other terms in an impermeable wall
channel flow. The pressure diffusion term Dk

p characterizes the TKE diffusion process caused by the
fluctuating pressure, which tends to reduce the spatial heterogeneity in the TKE distribution. For an
impermeable wall, a local maximum with a normalized value around 0.1 is observed near the wall
at y ≈ 0.03, serving as a gain term in the TKE budget, that is, TKE is transported into this region.
The magnitude of Dk

p becomes negligible above y = 0.2. For permeable wall cases with R = 1.0 at
Mb = 1.50, attenuation of the transport in the same region is observed, with no significant changes
in other part of channel except for a nonzero value at the porous wall. At higher Mach number Mb =
3.50 for the same resistance, the peak changes sign and becomes negative, indicating TKE being
diffused away from this region. Same negative peaks are observed at lower resistances R = 0.50 for
both Mach numbers. In addition, a value around 1.0 is achieved on the wall surface as compared
to zero for the impermeable wall. This behavior indicates that for the cases with the highest wall
permeability, TKE is being diffused toward the porous surface by the pressure fluctuations. The
value of pressure dilatation �k

p is negligible across the whole channel over an impermeable wall.
The presence of an impedance wall merely results in a spike of negative pressure dilatation in the
region y � 0.02. As shown in previous sections, a redistribution of energy in the normal components
of Reynolds stresses is observed at both Mach numbers. It is therefore interesting to examine the
pressure-strain term that is known to be responsible for TKE redistribution [33]. The pressure-strain
term in normal components of Reynolds stresses can be obtained by deriving the corresponding
transport equation given in Appendix D. The pressure-strain term then reads

�ii = 2p′ ∂u′′
i

∂xi
, i = 1, 2, 3. (37)

Note that the summation over repeated indices is not used here, and i represents ith coordinate
direction. The above terms are plotted in Fig. 7 for all cases presented. �11 acts as a sink in
the budget of ũ′′u′′ across the whole domain, with a maximum peak achieved around y = 0.08
over an impermeable wall. The effect of the permeability is to further enhance the sink effect
below y = 0.2, mainly for cases with R = 0.50 and permeable cases at Mb = 3.50. However for
each Reynolds normal stress, it is the balance of its production, dissipation (components) and the
pressure-strain that eventually determines the intensity, which is the reason that ũ′′u′′ show slightly
different behavior for different Mach numbers with resistance R = 0.50. The production of �22 and
�33 are zero due to statistical homogeneity. For the rest two normal stresses, the production terms
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are zero due to double statistical homogeneity. Permeability attenuates the sink effect of �22 and
enhance the source effect of �33 in regions close to the wall, both of which lead to an increase in the
respective normal stresses. This agrees with the observed redistribution of normal stresses in Fig. 2.

VII. CONCLUSION

To investigate the effect of porous media on supersonic turbulent flow field, large-eddy simu-
lations of compressible turbulent channel flows over complex wall impedance at two bulk Mach
numbers Mb = 1.50, 3.50 were carried out. The bulk Reynolds numbers of cases presented are
adjusted to keep the viscous Reynolds number fixed around Re∗

τ = 220. A time-domain impedance
boundary condition (TDIBC) based on auxiliary differential equation (ADE) method is applied to
bottom wall of the channel, using a three-parameter model with a resonating frequency tuned to
most energetic frequency in the turbulent channel flow. Two values of resistance R = {0.50, 1.00},
which is inversely proportional to the wall permeability at resonating frequency, are chosen for
each Mach number. Results show that finite wall permeability has a significant effect on the
near-wall turbulence with sufficiently low resistance value R = 0.5, while cases with R = 1.0 show
no appreciable difference with the impermeable baseline cases. The typical law-of-wall is no longer
followed with nonzero wall permeability and the deviation increases as the permeability increases.
As compared to impermeable wall cases, higher wall-normal gradient of mean streamwise velocity
is observed in permeable wall cases, indicating an increase in the mean wall shear stress. The
phenomenon is due to the oscillatory wall normal velocity enhancing turbulent mixing close to
the wall. Redistribution of Reynolds normal stresses are shown, with an increase in the components

ṽ′′v′′ and ˜w′′w′′, and a drop in ũ′′u′′ specifically to the case Mb = 1.50, R = 0.50, as a result of
balancing among production, dissipation and pressure-strain terms.

The change in the mean flow statistics are directly related to the structural changes in the
near-wall turbulence. Streamwise-traveling waves with a wavelength λx ≈ 0.47 are captured by
Q criterion in permeable wall cases, creating local circulations zones separated by entrainment that
is directing the flow toward the wall. The analysis of TKE budgets shows that most of the effects are
confined near the wall. The turbulence production is significantly enhanced below y = 0.1, with the
most of contribution in this region coming from the aforementioned wave structures. The dissipation
is also increased but its effect is mostly discernible on the wall surface. No obvious changes have
been observed in dilatational dissipation. For other budget terms, pressure diffusion is the only one
that is obviously altered: TKE is being diffused from where production reaches its maximum toward
the wall at R = 0.50, opposite to the behavior of low permeability cases. It is also confirmed that
the impedance wall significantly changes the pressure-strain terms in the budget of normal stresses,
which eventually leads to the redistribution of TKE.

The only previous work applying IBCs in a hypersonic flow is limited to transitional flows
[Fedorov et al. (2003); Sousa et al. (2019)]. With this paper we start to explore the possibility
of controlling a high-speed fully developed turbulent flow. We have found the range of resistance
values that yield an effect on the flow and have characterized what type of structural changes
turbulence is experiencing as a result. This is the first step toward something more meaningful
which might require optimization strategies applied to a variable surface impedance.

ACKNOWLEDGMENTS

The authors acknowledge the support of the National Science Foundation (NSF) Fluid Dynamics
Program (Award No. 1706474) and the Air Force Research Office of Scientific Research (AFOSR)
2018 Young Investigator Award (YIP) (Grant No. FA9550-18-1-0292). Computational resources
are provided by the Rosen Center for Advanced Computing (RCAC) at Purdue University and
the Extreme Science and Engineering Discovery Environment (XSEDE). Scalo acknowledges the
support of the U.S. Air Force Research Laboratory (AFRL) DoD Supercomputing Resource Center
(DSRC), via allocation under Subproject No. AFOSR43032009.

084607-17



YONGKAI CHEN AND CARLO SCALO

TABLE III. Equivalent dimensional pore size dpore, boundary layer thickness δbl (or channel half height)
and characteristic resonant frequency fres for current supersonic channel flow calculations and for two existing
hypersonic flow cases.

Application Mach dpore δbl fres

Current Channel Flows Conditions 1.5 ∼100 μm 4.9 mm 228 kHz
3.5 ∼100 μm 4.9 mm 531 kHz

Hypersonic Flow (T3-26 Tunnel) [19] 6.0 100 μm 1 mm 225–375 kHz
Hypersonic Flow (HEG Tunnel) [41] 7.4 20–100 μm 1 mm 300 kHz

APPENDIX A: ESTIMATION OF PORE SIZES IN HIGH-SPEED FLOWS

In Table III we analyze some realistic supersonic and hypersonic flow conditions, relating them
to our permeable-wall channel calculations made dimensional by scaling the flow parameters to
match HyShot II’s combustor inlet at one working condition [39,40]. This results in dimensional
values for effective pore diameters dpore and resonating frequencies fres of the impedance boundary
condition that can be compared to realistic spatial and temporal scales.

The dimensional channel half height is chosen to be δ = 4.9 mm, which can be interpreted as a
reference boundary layer height. Varying the Mach number in the range M = 1.5–3.5 then results in
a corresponding range of resonating frequencies fres = 228–531kHz for the three-parameter IBCs
used in our study. The frequencies are of the same order of magnitude as what naturally observed
in the hypersonic flow cases mentioned in the table (T3-26 and HEG Tunnels). Assuming a wall
porosity consistent with the adopted three-parameter model (i.e., an idealized Helmholtz resonator),
the resulting resonating frequencies have been calculated via

f = a

2π

√
A

V0 �eq
, (A1)

where a is the speed of sound, A ∼ d2
pore the orifice’s opening area, V0 is the resonating cavity volume

and �eq is the effective neck length. In the Hyshot II setup, the wall temperature is chosen as Tw =
300K and the resulting speed of sound at the wall is aw ≈ 347 m/s. We assume V0 and �eq share the
common characteristic length scale �c given the typical structure of porous walls used in high-speed
applications, resulting in V0 ∼ �3

c and �eq ∼ �c. Choosing a pore diameter of dpore ∼ 100 μm (and
hence �c ∼ 100 μm), this results in the frequency range relevant to the first two cases of Table III.
Another point is that values considered for the resistance (to be interpreted as the inverse of the wall
permeability) are never lower than 0.5, further supporting the assumption of small pore size.

The small pore sizes reported here entail typical pore-size-to-Stokes-boundary-layer-thickness
ratios of less than 0.1. This means that the wave-induced flow in the porous media is heavily
viscously dominated, and the acoustic waves are strongly attenuated in the depth of the porous
layer making nonlinear effects and slip-flow effects at the surface unlikely to be relevant.

With this pore size, one can do a back-of-the-envelope calculation about how many grid points
would be required if the pores are fully resolved. Take the case Mb = 3.50 as an example whose
pore size is about 1/49 of the channel half height δ. Further assume at least five grid points must
be used to resolve the pore (in each parallel direction, i.e., x and z) and the same pore spacing, then
a well-resolved simulation would require about 5 times of the points in x and 2 times of the points
in z as compared to the current simulation, not including the points required to resolve the interior
of cavities and pores. The current calculations are computationally intensive due to the nonzero
wall-normal velocities caused by porosity near the IBC, creating rather constraining convective CFL
conditions. For example, the current grid size for the case Mb = 3.50, R = 0.50 is 340 × 300 × 300
and one flow-through requires 137143 CPU hours. An equivalent pore-resolved simulation would
at least need 0.3 billions of grid point at such high speed and definitely way more CPU hours.
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FIG. 9. Two-point correlations in streamwise direction (left column) and spanwise direction (right column)
for all cases presented in this work. Variables being evaluated are u, v and p. Two locations are picked: y∗ ≈
15(R = ∞) and y = 1 (channel center). Note that for impermeable wall cases (R = ∞), the domains are longer
in streamwise direction as compared to permeable wall cases.

APPENDIX B: TWO-POINT CORRELATION OF CHANNEL FLOWS

Here the two-point correlations of all cases are presented in Fig. 9, which show sufficient domain
length in periodic directions.

APPENDIX C: GRID SENSITIVITY STUDY

The grid sensitivity study is conducted with case Mb = 3.50, R = 0.50, which exhibits most
energetic flow response from permeable wall. Three grids are tested. First and second order mean
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FIG. 10. First and second order statistics of case on different grids of case B2 (Mb = 3.50, R = 0.50).
Grid sizes presented are: 200 × 200 × 180 (—), 270 × 256 × 240 (—-),340 × 300 × 300 (—). The quantities
shown are (a) mean streamwise velocity in TL-transformation, (b) normalized Reynolds shear stress, (c)–(e)
normalized normal stresses. The normalization of the stresses follows the convention ρu′′

i u′′
j /τw .

flow statistics are plotted in Fig. 10. The mean flow statistics are found to be more sensitive to the
grid than impermeable wall cases. Meanwhile the profiles in the outer layer converge much slower
than those in the inner layer. The results show decent convergence in the near-wall region, which is
the main focus of the current study.

APPENDIX D: TRANSPORT EQUATION OF REYNOLDS STRESS

The derivation of transport equation of Reynolds stress is slightly tedious and is thus omitted
here, readers can consult textbooks such as [30]. The result is given as follows with Ri j = ũ′′

i u′′
j

denoting the Reynolds stress tensor:

∂ρRi j

∂t
+ ∂ρũkRi j

∂xk
= −Rik

∂ ũi

∂xk
− Rjk

∂ ũ j

∂xk
− εi j + �i j + ∂

∂xk
[τk ju′′

i + τkiu′′
j − Ci jk]

− u′′
i

∂P

∂x j
− u′′

j

∂P

∂xi
, (D1)

084607-20



EFFECTS OF POROUS WALLS ON NEAR-WALL …

where

εi j = τk j
∂u′′

i

∂xk
+ τki

∂u′′
j

∂xk
, �i j = p′

(
∂u′′

i

∂x j
+ ∂u′′

j

∂xi

)
, Ci jk = ρu′′

i u′′
j u

′′
k + p′u′′

i δ jk + p′u′′
j δik . (D2)

Equations for the normal stresses can be obtained by simply setting i = j.
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